Graphite: the polyhedral framework of GCC

Sebastian Pop
AMD - Austin, Texas

October 20, 2010

1/25 Sebastian Pop Graphite: the polyhedral framework of GCC

Outline

v

Graphite in GCC
detection of SCoPs

v

v

polyhedral representation

v

code generation: CLooG

v

loop transforms: blocking, flattening, autopar, autovect

2 /25 Sebastian Pop Graphite: the polyhedral framework of GCC

Graphite in GCC

Front—ends ((C++) (Java

,,,,, ,,,,¢,,,,,J/,,,,,,,,,,,,,,,,,,,,,,,,,

GENERIC)

Middle—end

GIMPLE

GIMPLE - SS

(GnmrLE)

Back-end

&TL Machine Description

Asm

3 /25 Sebastian Pop

Graphite: the polyhedral framework of GCC

Components of Graphite

Front—ends ((C++) (Java

(GENERIC)
s i N
Graphite SCoP detection
GIMPLE
Middle—end @olyhedral representation)
apply loop transforms
GIMPLE - SSQ/\\ C)
\\\/ [CLooG code generation)
CLAST translation
GIMPLE L)
Back-end @TL }%‘ Machine Description
Asm

4 /25 Sebastian Pop Graphite: the polyhedral framework of GCC

Gimple, SSA, CFG, natural loops

Gimple = 3 address code
SSA = Static Single Assignment
CFG = Control Flow Graph

Natural loops = strongly connected components of the CFG

v

v

v

v

Reference books:
» the “Dragon Book” (Aho, Lam, Sethi, Ullman)
» Steven Muchnick
» Michael Wolfe

Compiler .

FCOMPILER DESIGN
P IMPLEMENTATION

~ Steven S Muchnick

5/25 Sebastian Pop Graphite: the polyhedral framework of GCC

int foo (int. int):
void xxx(void)

int res = 0, x;
for (x = 45: x > 0:

res = foo (x,
return res:

$2 = void
(gdb) p debug_loops (3)
loop_0 (header = 0, latch = L, niter =)
1

bb_2 (preds = {bb_0 }. succs = {bb_3 })

{
<bb 2>:

¥
bb_5 (preds = {bb_3 }. succs = {bb_1 })

€
<bb 5>:
return;

¥
Toop_1 (header = 3. latch = 4. niter = . upper_bound = 45. estimate = 45)
1

bb_3 (preds = {bb_4 bb_2 ¥. succs = {bb_4 bb_5 })
{

<bb 3Y:
x_11 = PHI <x_7(4). 45(2)>
res_10 = PHI <res_5(4). 0(2)>
res 5 = foo (x_11, res_10);
x_7 = xA1 + -1;
if (<7 > 0)
goto <bb d>:
0 el

se
goto <bb 5>;

¥
bb_4 (preds = {bb_3 }, succs = {bb_3 })

{
<bb 43:
goto <bb 3):

SCoP detection

SCoP: Static Control Part is a region with no side effects

» induction variables (1Vs) affine

» canonical IV: one per loop, from 0 to number of iterations,
with steps of 1

> linear loop bounds (linear = function of params and outer IVs)
» linear memory accesses
» side effects: function calls, inline asm, volatile, etc.

» regular control flow: irreducible strongly connected
components not handled

> basic blocks with no memory accesses not represented

» statements = basic blocks with regular memory accesses

7 /25 Sebastian Pop Graphite: the polyhedral framework of GCC

SCoP example

8 /25 Sebastian Pop Graphite: the polyhedral framework of GCC

Translation to polyhedral representation

» build Polyhedral Black Boxes (PBB): one statement, a
sequence of statements, one basic block, or a single entry
single exit (SESE) region.

» record original PBB schedule

> loop nest around PBB

» conditions around PBB

> find SCoP parameters

» record SCoP context: constraints on parameters

> iteration domains: constraints on IV

> data accesses in PBB

> build the data dependence graph

9 /25 Sebastian Pop Graphite: the polyhedral framework of GCC

Representation of scalar dependences in Graphite

> the SSA represents dependences between scalars.

» when the scalar dependences cross the boundary of PBBs, we
have to expose these dependences to the polyhedral
framework: translate scalars into arrays (for a scalar variable

s", define an array of one element and replace all the
occurrences of the scalar variable by “S[0]").

» commutative associative reductions are special cased in the
data dependence test to remove unwanted dependences.

10 /25 Sebastian Pop Graphite: the polyhedral framework of GCC

Polyhedral representation

1. scop context = constraints on parameters

2. iteration domain = bounds of enclosing loops

for (i=0; i<m; i++) i j m n cst
: ; . 1 0 0 0 0 i>0
=5; j<n; j++ -
for (J. 5’. j<n; 3+ -1 0 1 0 -1 —i+m—-1>0
A[2xi] [j+1] = ... o 1 0 0 s i
0 -1 0 1 -1 —j+n—1>0

11 /25 Sebastian Pop Graphite: the polyhedral framework of GCC

Polyhedral representation

1. scop context = constraints on parameters
2. iteration domain = bounds of enclosing loops

3. schedule = execution time (static + dynamic)

> sequence [s;; so]:
S[si] = t, Sl2] =t +1

> loop [loop; s endi]: i indexes loop; iterations: dynamic time
S[loop:] =t, S[s] = (t, 4, 0)

11 /25 Sebastian Pop Graphite: the polyhedral framework of GCC
/

Polyhedral representation

scop context = constraints on parameters
iteration domain = bounds of enclosing loops

schedule = execution time (static + dynamic)

A

access functions = data reference accesses

for (i=0; i<m; i++)
for (j=5; j<m; j++)
Al2%i] [§+1] = ...

o N -
— ofw.
o ol3
o ol
o

cst
2%
1 j+1

11 /25 Sebastian Pop Graphite: the polyhedral framework of GCC

Polyhedral representation

scop context = constraints on parameters
iteration domain = bounds of enclosing loops

schedule = execution time (static + dynamic)

Ll

access functions = data reference accesses

data dependences = ILP solution of all these constraints

11 /25 Sebastian Pop Graphite: the polyhedral framework of GCC

Data dependence analysis

v

data dependences characterize computation sharing

v

sharing = synchronization and communications

v

no sharing = parallelism = recomputations (privatization)

v

legality of a transform = satisfy original computation order

12 /25 Sebastian Pop Graphite: the polyhedral framework of GCC

Counting points in polyhedra

In many program analyses and optimizations, questions starting
with "how many” need to be answered:

>

>

>

>

>

How
How
How
How
How
How
How

How

many memory locations are touched by a loop?

many operations are performed by a loop?

many cache lines are touched by a loop?

many array elements are accessed between two points?
many array elements are live at a given iteration?

many times is a statement executed before an iteration?
many cache misses does a loop generate?

much memory is dynamically allocated?

Techniques used for counting points:

» Ehrhart polynomials

» Barvinok's generating functions

13 /25 Sebastian Pop

Graphite: the polyhedral framework of GCC

Loop transforms

» Graphite represents the static and dynamic schedules under a
polyhedral format: the scattering polyhedra

> identifying statements belonging to a loop, or updating the
sequence of statements on the polyhedral representation is
difficult

» the LST = Loop Statement Tree represents the statement
sequence and loop nesting, but does not include informations
about the iteration domains

> loop transformations are performed on the LST and then
impacted on the scattering polyhedra

14 /25 Sebastian Pop Graphite: the polyhedral framework of GCC

Code generation

» the code generation of an imperative language from the
polyhedral representation introduces imperative language
constructs: sequence, loops, parallel computations,
communication, ...

» call CLooG for code generation, produces a representation
CLAST: CLooG Abstract Syntax Trees

» generate GIMPLE-SSA from CLAST

15 /25 Sebastian Pop Graphite: the polyhedral framework of GCC

CLooG's code generation from polyhedra

o Operation of S1
» Operation of $2
_x Operation of S3
ix
n &« & § x %
oo
LIRS
S

® e o o o

©
=
]

Ts, :

Ts, : {
Tsy - {

——
S
I
[
IN
3

~
A INIA
AN INIA
3 = 3

S

(a) Initial domains to scan

16 /25 Sebastian Pop Graphite: the polyhedral framework of GCC

CLooG's code generation from polyhedra

5 Operation of S1 & Operation of S1
« Operation of $2 Operation of S2
x Operation of 3 x Operation of 3
s s \
_ SIS2andS3 __ S3 _
n ¢ & & & & < X n ¢ & & & ¢ X X
.« e e u RS
e o 9 . o o 9
2 e 0w 2 e
1. 1.
- - - -
12 <o neeem i 12 o neeem i
do i=1, n
1<i<n
<i<n Ts, 1{ .
Ts, : J=1
=1
. f1<i<n
T, 4 1SEST 2ili<j<n
2 li<i<n .
1<i<n
. Tsy iy . =
T { 1<i<m Jj=n
A
J=n do i=n+1l, m

fn+1<i<m
Tsﬁ'{ j=n

(b) Projection and separation

a) Initial domains to scan . .
@ onto the first dimension

16 /25 Sebastian Pop Graphite: the polyhedral framework of GCC

CLooG's code generation from polyhedra

o Operation of S1
« Operation of S2
x Operation of $3
Ja
no¢ & & &g XX

e o o o

e o o
2 e »
1 =

12 n---m

1 n

%“{ sis
1<i<n
E2{z§j§n
1<i<m

Ts, {]:n

© Operation of S1
o Operation of S2
 x Operation of $3
Ja a
_ SI1S2andS3 __ S3
N & & & &g XX

e
2 L)
1 *
12 n m i
do i=1, n
1<i<n
'Ts,:{ T
J=1
1<i<n
ET{iSan
1<i<n
TSS'{jzn

do i=n+l, m

fn+1<i<m
TS:;'{ ji=n

(b) Projection and separation

a) Initial domains to scan X .
@ onto the first dimension

o Operation of S1
« Operation of $2

x Operation of $3
Ja

n & & & & &3 %

2
. o /e
2 e
1 /s
i -
12 n-em 1

do i=1, n
if (i==n) then
S1(j=n)
S2 (j=n)
S3(j=n)
if (i<=n-1) then
s1(j=1)
$2(3=1)
do j=i+l, n-1
| s2
if (i<=n-1) then
S2 (j=n)
53 (j=n)
do i=n+l, m
S$3(j=n)

(c) Recursion on next
dimension

16 /25 Sebastian Pop

Graphite: the polyhedral framework of GCC

CLooG's code generation from

o Operation of S1
 Operation of S2
x Operation of §3

Ja
n « & & & ¢ X X
e
.
2 L)
1 *
1 2 n-eem
1<i<n
Ts, : { LT
ic
1<i<n
%T{iﬁjgn
1<i<m
n{ 1200

(a) Initial domains to scan

& Operation of S1
« Operation of 2
x Operation of 3
e siszandss 3

n & & & & ¢ < X

e o o o

..
2 e
1
-
12 neem i
do i=1, n
1<i<n
j=1
1<i<n
ﬁf{iSan
1<i<n
Ts, : { LT
J=n

do i=n+l, m

. n+1<i<m
733‘ { j=n

(b) Projection and separation

onto the first dimension

n

polyhedra

o Operation of S1
» Operation of S2
x Operation of $3
A

« & & & ¢ 0 X
o o o 9

o oy

do i=1, n

if (i==n) then
S1(j=n)
52 (J=n)
S$3(J=n)

S1(j=1i)
S2(3=1)

do j=i+1l, n-1
S2

52 (3=n)
S$3(J=n)
do i=n+l, m
| s3(3=n)

(c) Recursion on next
dimension

if (i<=n-1) then

if (i<=n-1) then

& Operation of S1

« Operation of 2
 x Operation of $3
ia

n & & &)@ g5 %

o o o e

S
2 ee
1 .

-
12 neeem i

S1(i=n, j=n)
S2(i=n, j=n)
S3(i=n, j=n)
do i=n+l, m
| s3(3=n)

(d) Backtrack with dead code
removing

16 / 25

Sebastian Pop

Graphite: the polyhedral framework of GCC

Code generation details

» type of induction variables (IV): when a transform increases

the number of iterations, the original IV type may not be large
enough to contain all the values of the new IV: use the scop
context to get an approximation of the largest integer of the
new IV, then compute the smallest type that can represent IV

to backup original code, use SESE versioning:

if (0){
original code;

} else {
transformed code;

}

> one could replace the 0 with a runtime condition that validates

additional assumptions under which a transform is legal

17 /25

Sebastian Pop Graphite: the polyhedral framework of GCC

Examples

> strip mining
> interchange: improves spatial and temporal data locality
» loop blocking (tiling): strip mining + interchange

> loop flattening: removes loops, increases ILP, avoids bubbles
in processors’ pipeline

18 /25 Sebastian Pop Graphite: the polyhedral framework of GCC

Loop blocking

» original loop nest:

for (i = 0; i < 1000; i++)
for (j = 0; j < 1000; j++)
ali]li]l =b[i][i] + 1;

> strip mining (with strides of 64):
0

for (sl = 0; sl <= 15; sl+4++4)
for (i = 64xsl; i <= min (64xsl + 63, 999); i++)
for (s3 = 0; s3 <= 15; s3++)
for (j = 64xs3; j <= min (64xs3 + 63, 999); j++)
ali][il =b[i][i] + 1;

» interchange (for better data locality):

for (s1 = 0; sl <= 15; sl++4)
for (s3 = 0; s3 <= 15; s3+4+)

for (i = 64xsl; i <= min (64xsl + 63, 999); i++)
for (j = 64xs3; j <= min (64xs3 + 63, 999); j++)
ali]li] = b[i][i] + 1;

19 /25 Sebastian Pop Graphite: the polyhedral framework of GCC

Loop blocking

for (s1=0;s1<=15;81++)

e . . for (s! <=15;83++)
for (i =0 i < 1000; i++) sLii<=min(64*s1463,999);i4++)
for (j = 0; j < 1000: j++) for (j=64s3;j<=min(64*s3+63,999):j++)

aliJl) = bl + 1 alillj] = bl + 15

i 1

S S S S
e 08 00 00
ss 00000
e 08 00 00
ss 00000

csoes 00000

N“.........

P SO E 0 S 000 0

20 /25 Sebastian Pop Graphite: the polyhedral framework of GCC

Loop blocking

for (s1=0;s1<=15;s1++)
3++)
for (i =0;1< 1000; i++) for min(64*s1463,999);i++)
for (j = 0; j < 1000; j++) for (j=64"s3;j<=min(64*s3+63,999);j++)
a[i](j] = bll[j] + 1; afi][j] = bl[l + 1;

21 /25 Sebastian Pop Graphite: the polyhedral framework of GCC

Loop flattening

» projection of a loop nest into one dimension (execution trace)
» multiplication of number of iterations for nested loops

» addition of number of iterations for sequential loops

» original loop nest:

for (i = 0; i < 1000; i++)
for (j = 0; j < 1000; j++)
ali][jl =b[i][i] + 1;

> loop flattening:

for (t = 0; t < 1000 = 1000; t++) {
i =t / 1000;
i =t % 1000;
ali][il =b[i][i] + 1;

22 /25 Sebastian Pop Graphite: the polyhedral framework of GCC

Loop flattening

. . . for (t=0;t<1000*1000;t++) {
for (i=0; i< 1000; i++)

for j = 0: j < 1000; j++) J‘:/%l??)go

20T =Bl + 15 ali][j) = bIiI] + 1:
i b
tesssees : : [] [] : """ : .o
® o e 0 [N) *
[] o e 0 0 *®
L] L N) [N) []
L] e e 0 ® 0 L]
L] L N) [N) []
L] e e 0 ® 0 L]
L] L N) [N) []
[B L) oo)

same iteration order: loop flattening is always legal

23 /25 Sebastian Pop Graphite: the polyhedral framework of GCC

Writing and reading the polyhedral representation

» for GSoC'10 Riyadh Baghdadi added -fgraphite-write and
-fgraphite-read to read and write OpenSCoP to disk

» OpenSCoP format: complete polyhedral representation,
supported by several other polyhedral tools.

> read and write of OpenSCoP allows development and use of
external components (Pluto, PoCC, Pace, etc.)

24 /25 Sebastian Pop Graphite: the polyhedral framework of GCC

Auto parallelization with Graphite

» for GSoC’09 Li Feng added -floop-parallelize-all that uses
Graphite to tag parallel loops and code generate them using
the autopar infrastructure of GCC on top of OpenMP runtime.

» OpenCL code generation: soon to be contributed to Graphite,
see the GCCSummit'10 paper “GRAPHITE-OpenCL:
Generate OpenCL Code from Parallel Loops” by Alexey
Kravets, Alexander Monakov, and Andrey Belevantsev from
Russian Accademy of Science (ISPRAS).

> auto-vectorization on the polyhedral representation: still to be
worked on . ..

25 /25 Sebastian Pop Graphite: the polyhedral framework of GCC

