
1

CS 412/413   Spring 2008 Introduction to Compilers 1

Loop Optimizations 
and Pointer Analysis 

CS 412/413   Spring 2008 Introduction to Compilers 2

Loop optimizations

• Optimize loops
– Loop invariant code motion [last time]
– Strength reduction of induction variables 
– Induction variable elimination

CS 412/413   Spring 2008 Introduction to Compilers 3

Strength Reduction
• Basic idea: replace expensive operations (multiplications) with 

cheaper ones (additions) in definitions of induction variables

while (i<10) {
j = 3*i+1;   //<i,3,1>
a[j] = a[j] –2;
i = i+2;

}

• Benefit: cheaper to compute s = s+6 than j = 3*i
– s = s+6  requires an addition
– j = 3*i requires a multiplication

s = 3*i+1;
while (i<10) {

j = s;
a[j] = a[j] –2;
i = i+2;
s= s+6; 

}

CS 412/413   Spring 2008 Introduction to Compilers 4

Induction Variables
• An induction variable is a variable in a loop, 

whose value is a function of the loop iteration 
number  v = f(i)

• In compilers, this a linear function: 
f(i) = c*i + d

• Observation: linear combinations of linear 
functions are linear functions
– Consequence: linear combinations of induction 

variables are induction variables



2

CS 412/413   Spring 2008 Introduction to Compilers 5

Families of Induction Variables
• Basic induction variable: a variable whose only definition in the 

loop body is of the form
i = i + c

where c is a loop-invariant value

• Derived induction variables: Each basic induction variable i defines 
a family of induction variables Family(i)
– i  Family(i) 
– k  Family(i) if there is only one definition of k in the loop body , and it 

has the form k = c*j  or k=j+c, where
(a) j  Family(i)
(b) c is loop invariant
(c) The only definition of j that reaches the definition of k is in the loop
(d) There is no definition of i between the definitions of j and k

Representation
• Representation of induction variables in family i by triples: 

– Denote basic induction variable i by <i, 1, 0>
– Denote induction variable k=i*a+b by triple <i, a, b>

CS 412/413   Spring 2008 Introduction to Compilers 6

Finding Induction Variables
Scan loop body to find all basic induction variables

do
Scan loop to find all variables k with one assignment of form k = 

j*b, where j is an induction variable <i,c,d>, and make k an 
induction variable with triple <i,c*b,d>

Scan loop to find all variables k with one assignment of form k = 
jb where j is an induction variable with triple <i,c,d>, and 
make k an induction variable with triple <i,c,bd>

until no more induction variables found

CS 412/413   Spring 2008 Introduction to Compilers 7 CS 412/413   Spring 2008 Introduction to Compilers 8

Strength Reduction
• Basic idea: replace expensive operations (multiplications) with 

cheaper ones (additions) in definitions of induction variables

while (i<10) {
j = …;   // <i,3,1>
a[j] = a[j] –2;
i = i+2;

}

• Benefit: cheaper to compute s = s+6 than j = 3*i
– s = s+6  requires an addition
– j = 3*i requires a multiplication

s = 3*i+1;
while (i<10) {

j = s;
a[j] = a[j] –2;
i = i+2;
s= s+6; 

}



3

CS 412/413   Spring 2008 Introduction to Compilers 9

General Algorithm
• Algorithm:

For each induction variable j with triple <i,a,b>
whose definition involves multiplication:

1. create a new variable s
2. replace definition of j with j=s
3. immediately  after i=i+c, insert s = s+a*c

(here a*c is constant)
4. insert s = a*i+b into preheader

• Correctness:  transformation maintains invariant  s = a*i+b

CS 412/413   Spring 2008 Introduction to Compilers 10

Strength Reduction
• Gives opportunities for copy propagation, dead code 

elimination

s = 3*i+1;
while (i<10) {

a[s] = a[s] –2;
i = i+2;
s= s+6; 

}

s = 3*i+1;
while (i<10) {

j = s;
a[j] = a[j] –2;
i = i+2;
s= s+6; 

}

CS 412/413   Spring 2008 Introduction to Compilers 11

Induction Variable Elimination
• Idea: eliminate each basic induction variable whose only uses 

are in loop test conditions and in their own definitions i = i+c
- rewrite loop test to eliminate induction variable

• When are induction variables used only in loop tests?
– Usually, after strength reduction
– Use algorithm from strength reduction even if definitions 

of induction variables don’t involve multiplications 

s = 3*i+1;
while (i<10) {

a[s] = a[s] –2;
i = i+2;
s= s+6; 

}

CS 412/413   Spring 2008 Introduction to Compilers 12

Induction Variable Elimination
• Rewrite test condition using derived induction variables
• Remove definition of basic induction variables (if not used 

after the loop)

s = 3*i+1;
while (i<10) {

a[s] = a[s] –2;
i = i+2;
s= s+6; 

}

s = 3*i+1;
while (s<31) {

a[s] = a[s] –2;
s= s+6; 

}



4

CS 412/413   Spring 2008 Introduction to Compilers 13

Induction Variable Elimination
For each basic induction variable i whose only uses are

– The test condition i < u
– The definition of i: i = i + c

• Take a derived induction variable k in family i, with 
triple <i,c,d> 

• Replace test condition i < u with k < c*u+d
• Remove definition i = i+c if i is not live on loop exit

CS 412/413   Spring 2008 Introduction to Compilers 14

Where We Are
• Defined dataflow analysis  framework

• Used it for several analyses
– Live variables
– Available expressions
– Reaching definitions
– Constant folding

• Loop transformations
– Loop invariant code motion
– Induction variables

• Next: 
– Pointer alias analysis

CS 412/413   Spring 2008 Introduction to Compilers 15

Pointer Alias Analysis
• Most languages use variables containing addresses

– E.g. pointers (C,C++), references (Java), call-by-
reference parameters (Pascal, C++, Fortran)

• Pointer aliases: multiple names for the same memory 
location, which occur when dereferencing variables that hold 
memory addresses

• Problem:
– Don’t know what variables read and written by accesses 

via pointer aliases (e.g. *p=y; x=*p; p->f=y; x=p->f; 
etc.)

– Need to know accessed variables to compute dataflow 
information after each instruction

CS 412/413   Spring 2008 Introduction to Compilers 16

Pointer Alias Analysis
• Worst case scenarios

– *p = y may write any memory location
– x = *p may read any memory location

• Such assumptions may affect the precision of other analyses

• Example1: Live variables
before any instruction x = *p, all the variables may be live

• Example 2: Constant folding
a = 1; b = 2;*p = 0; c = a+b;

• c = 3 at the end of code only if *p is not an alias for a or b!

• Conclusion: precision of result for all other analyses depends 
on the amount of alias information available
- hence, it is a fundamental analysis



5

CS 412/413   Spring 2008 Introduction to Compilers 17

Alias Analysis Problem

• Goal: for each variable v that may hold an address, 
compute the set Ptr(v) of possible targets of v
– Ptr(v) is a set of variables (or objects)
– Ptr(v) includes stack- and heap-allocated variables (objects)

• Is a “may” analysis: if x  Ptr(v), then v may hold the 
address of x in some execution of the program

• No alias information: for each variable v, Ptr(v) = V, 
where V is the set of all variables in the program

CS 412/413   Spring 2008 Introduction to Compilers 18

Simple Alias Analyses
• Address-taken analysis:

– Consider AT = set of variables whose addresses are taken
– Then, Ptr(v) = AT, for each pointer variable v
– Addresses of heap variables are always taken at allocation 

sites (e.g., x = new int[2]; x=malloc(8); )
– Hence AT includes all heap variables

• Type-based alias analysis:
– If v is a pointer (or reference) to type T, then Ptr(v) is the 

set of all variables of type T
– Example: p->f and q->f can be aliases only if p and q are 

references to objects of the same type
– Works only for strongly-typed languages

CS 412/413   Spring 2008 Introduction to Compilers 19

Dataflow Alias Analysis
• Dataflow analysis: for each variable v, compute points-

to set Ptr(v) at each program point

• Dataflow information: set Ptr(v) for each variable v
– Can be represented as a graph G ⊆ 2 V x V

– Nodes = V (program variables)

– There is an edge vu if u  Ptr(v)

x y
z

t

Ptr(x) = {y}
Ptr(y) = {z,t}

CS 412/413   Spring 2008 Introduction to Compilers 20

Dataflow Alias Analysis
• Dataflow Lattice: (2 V x V, ⊇ )

– V x V represents “every variable may point to every var.”
– “may” analysis: top element is , meet operation is ⋃

• Transfer functions: use standard dataflow transfer functions: 
out[I] = (in[I]-kill[I]) U gen[I]

p = addr q kill[I]={p} x V     gen[I]={<p,q>}
p = q kill[I]={p} x V     gen[I]={p} x Ptr(q)
p = *q kill[I]={p} x V     gen[I]={p} x Ptr(Ptr(q))
*p = q kill[I]= … gen[I]=Ptr(p) x Ptr(q)
For all other instruction, kill[I] = {}, gen[I] = {}

• Transfer functions are monotonic, but not distributive!



6

CS 412/413   Spring 2008 Introduction to Compilers 21

Alias Analysis Example

x=&a;
y=&b;
c=&i;
if(i) x=y;
*x=c;

Program

*x=c

x=&a
y=&b
c=&i
if(i)

x=y

CFG Points-to
Graph

(at the end of program)

x a

by
i

c

CS 412/413   Spring 2008 Introduction to Compilers 22

Alias Analysis Uses
• Once alias information is available, use it in other 

dataflow analyses

• Example: Live variable analysis
Use alias information to compute use[I] and def[I] for 
load and store statements:

x = *y use[I] = {y} ⋃ Ptr(y) def[I]={x}
*x = y use[I] = {x,y} def[I]=Ptr(x)


