
1

OptimizationsOptimizations

1

Where We Are
Source code
(character stream)

Lexical Analysis
Syntax Analysis

Semantic Analysis
IR Generation

if (b == 0) a = b;
Errors

2

Correct program
In High IR

IR Lowering
Program
In Low IR

What Next?

• At this point we could generate assembly code
from the low-level IR

• Better:
– Optimize the program first

3

– Then generate code

• If optimization performed at the IR level, then
they apply to all target machines

Optimizations
Source code
(character stream)

Lexical Analysis
Syntax Analysis

Semantic Analysis
IR Generation

if (b == 0) a = b;
Errors

4

Correct program
In High IR

IR Lowering
Program
In Low IR

Optimize

Optimize

2

What are Optimizations?

• Optimizations = code transformations that
improve the program

• Different kinds
– space optimizations: improve (reduce) memory use

5

– space optimizations: improve (reduce) memory use
– time optimizations: improve (reduce) execution time

• Code transformations must be safe!
– They must preserve the meaning of the program

Why Optimize?

• Programmers don’t always write optimal code –
can recognize ways to improve code (e.g.,
avoid recomputing same expression)

• High-level language may make some
optimizations inconvenient or impossible to

6

p p
express

a[i][j] = a[i][j] + 1;

• High-level unoptimized code may be more
readable: cleaner, modular

int square(x) { return x*x; }

Where to Optimize?
• Usual goal: improve time performance
• Problem: many optimizations trade off space

versus time
• Example: loop unrolling

– Increases code space, speeds up one loop

7

p , p p p
– Frequently executed code with long loops:

space/time tradeoff is generally a win
– Infrequently executed code: may want to optimize

code space at expense of time

• Want to optimize program hot spots

Many Possible Optimizations

• Many ways to optimize a program
• Some of the most common optimizations:

Function Inlining
Function Cloning
Constant folding
Constant propagation

8

Dead code elimination
Loop-invariant code motion
Common sub-expression elimination
Strength reduction
Branch prediction/optimization
Loop unrolling

3

Constant Propagation
• If value of variable is known to be a constant, replace

use of variable with constant
• Example:

n = 10
c = 2
for (i=0; i<n; i++) { s = s + i*c; }

9

for (i=0; i<n; i++) { s = s + i*c; }
• Replace n, c:

for (i=0; i<10; i++) { s = s + i*2; }
• Each variable must be replaced only when it has known

constant value:
– Forward from a constant assignment
– Until next assignment of the variable

Constant Folding
• Evaluate an expression if operands are known

at compile time (i.e., they are constants)
• Example:

x = 1.1 * 2; ⇒ x = 2.2;

10

• Performed at every stage of compilation
– Constants created by translations or optimizations

int x = a[2] ⇒ t1 = 2*4
t2 = a + t1
x = *t2

Algebraic Simplification

• More general form of constant folding: take
advantage of usual simplification rules
a * 1 ⇒ a a * 0 ⇒ 0
a / 1 ⇒ a a + 0 ⇒ a
b || false ⇒ b b && true ⇒ b

11

||

• Repeatedly apply the above rules
(y*1+0)/1 ⇒ y*1+0 ⇒ y*1 ⇒ y

• Must be careful with floating point!

Copy Propagation

• After assignment x = y, replace uses of x with y
• Replace until x is assigned again

x = y;
if (x > 1) ⇒

x = y;
if (y > 1)

12

• What if there was an assignment y = z before?
– Transitively apply replacements

s = x * f(x - 1); s = y * f(y - 1);

4

Common Subexpression Elimination

• If program computes same expression multiple
time, can reuse the computed value

• Example:
a = b+c;
c b+c; ⇒

a = b+c;
c a;

13

• Common subexpressions also occur in low-level
code in address calculations for array accesses:

a[i] = b[i] + 1;

c = b+c; ⇒
d = b+c;

c = a;
d = b+c;

Unreachable Code Elimination
• Eliminate code that is never executed
• Example:

#define debug false
s = 1;
if (debug)

s = 1;⇒

14

if (debug)
print(“state = ”, s);

• Unreachable code may not be obvious in low IR
(or in high-level languages with unstructured
“goto” statements)

Unreachable Code Elimination
• Unreachable code in while/if statements when:

– Loop condition is always false (loop never executed)
– Condition of an if statement is always true or always

false (only one branch executed)

if (false) S ⇒ ;

15

if (false) S ⇒ ;

if (true) S else S’ ⇒ S
if (false) S else S’ ⇒ S’

while (false) S ⇒ ;
while (2>3) S ⇒ ;

Dead Code Elimination
• If effect of a statement is never observed,

eliminate the statement

x = y+1;
y = 1;
x = 2*z;

y = 1;
2*

⇒

16

x = 2 z;

• Variable is dead if value is never used after
definition

• Eliminate assignments to dead variables
• Other optimizations may create dead code

x = 2*z;

5

Loop Optimizations

• Program hot spots are usually loops
(exceptions: OS kernels, compilers)

• Most execution time in most programs is
spent in loops: 90/10 is typical

• Loop optimizations are important effective

17

• Loop optimizations are important, effective,
and numerous

Loop-Invariant Code Motion
• If result of a statement or expression does not

change during loop, and it has no externally-
visible side-effect (!), can hoist its computation
out of the loop

• Often useful for array element addressing

18

computations – invariant code not visible at
source level

• Requires analysis to identify loop-invariant
expressions

Code Motion Example

• Identify invariant expression:

for(i=0; i<n; i++)
a[i] = a[i] + (x*x)/(y*y);

H i t th i t f th l

19

• Hoist the expression out of the loop:

c = (x*x)/(y*y);
for(i=0; i<n; i++)

a[i] = a[i] + c;

Another Example

• Can also hoist statements out of loops
• Assume x not updated in the loop body:

…
while (…) {

y = x*x;

…
y = x*x;

hil () {⇒

20

y = x*x;
…

}
…

• … Is it safe?

while (…) {
…

}
…

⇒

6

Strength Reduction
• Replaces expensive operations (multiplies, divides) by

cheap ones (adds, subtracts)
• Strength reduction more effective in loops

• Induction variable = loop variable whose value is
depends linearly on the iteration number
A l h d i i d i i bl

21

• Apply strength reduction to induction variables

s = 0;
for (i = 0; i < n; i++) {

v = 4*i;
s = s + v;

}

s = 0; v = -4;
for (i = 0; i < n; i++) {

v = v+4;
s = s + v;

}

⇒

Strength Reduction

• Can apply strength reduction to
computation other than induction
variables:

x * 2 ⇒ x + x
i * 2 i

22

i * 2c ⇒ i << c
i / 2c ⇒ i >> c

Induction Variable Elimination
• If there are multiple induction variables in a loop, can

eliminate the ones that are used only in the test
condition

• Need to rewrite test using the other induction variables
• Usually applied after strength reduction

23

s = 0; v=-4;
for (i = 0; i < n; i++) {

v = v+4;
s = s + v;

}

s = 0; v = -4;
for (; v < (4*n-4);) {

v = v+4;
s = s + v;

}

⇒

Loop Unrolling
• Execute loop body multiple times at each

iteration

• Example:
for (i = 0; i< n; i++) { S }

24

• Unroll loop four times:
for (i = 0; i < n-3; i+=4) { S; S; S; S; }
for (; i < n; i++) S;

• Gets rid of ¾ of conditional branches!
• Space-time tradeoff: program size increases

7

Function Inlining
• Replace a function call with the body of the function:

int g(int x) { return f(x)-1; }
int f(int n) { int b=1; while (n--) { b = 2*b }; return b; }

int g(int x) { int r;

i

25

int n = x;

{ int b =1; while (n--) { b = 2*b }; r = b }

return r – 1; }

• Can inline methods, but more difficult
• … how about recursive procedures?

Function Cloning
• Create specialized versions of functions that are called

from different call sites with different arguments

void f(int x[], int n, int m) {
for(int i=0; i<n; i++) { x[i] = x[i] + i*m; }

}

26

• For a call f(a, 10, 1), create a specialized version of f:

void f1(int x[]) {
for(int i=0; i<10; i++) { x[i] = x[i] + i; }

}
• For another call f(b, p, 0), create another version f2(…)

When to Apply Optimizations

High IR

L IR

Function inlining
Function cloning
Constant folding
Constant propagation
Value numbering
Dead code elimination
L i i t d ti

27

Low IR

Assembly

Loop-invariant code motion
Common sub-expression elimination
Strength reduction
Constant folding & propagation
Branch prediction/optimization
Loop unrolling
Register allocation
Cache optimization

Summary
• Many useful optimizations that can transform

code to make it faster

• Whole is greater than sum of parts:
optimizations should be applied together,

28

p pp g
sometimes more than once, at different levels

• Problem: when are optimizations are safe?

