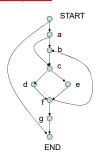
Dominators, control-dependence and SSA form

Organization

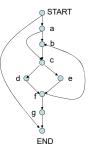
- · Dominator relation of CFGs
 - postdominator relation
- · Dominator tree
- · Computing dominator relation and tree
 - Dataflow algorithm
 - Lengauer and Tarjan algorithm
- · Control-dependence relation
- SSA form

2

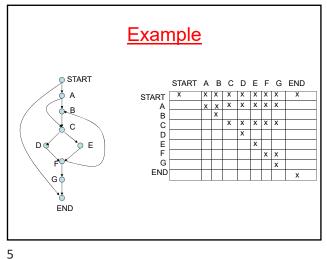

4

Control-flow graphs

- CFG is a directed graph Unique node START from which all nodes in CFG are reachable Unique node END reachable from all nodes
- all nodes
 Dummy edge to simplify
 discussion START → END
 Path in CFG: sequence of nodes,
 possibly empty, such that
 successive nodes in sequence are
 connected in CFG by edge

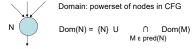

 If x is first node in sequence and y
 is last node, we will write the path
 as x → *y

 If path is non-empty (has at least
 one edge) we will write x → + y



Dominators

- In a CFG G, node a is said to dominate node b if every path from START to b contains
- Dominance relation: relation on nodes
 - We will write a dom b if a dominates b



3

Computing dominance relation

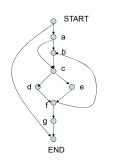
Dataflow problem:

Find greatest solution.

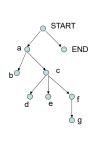
Work through example on previous slide to check this. Question: what do you get if you compute least solution?

6

Properties of dominance


- · Dominance is
 - reflexive: a dom a
 - anti-symmetric: a dom b and b dom a → a = b
 - transitive: a dom b and b dom c → a dom c
 - tree-structured:
 - a dom c and b dom c → a dom b or b dom a
 - intuitively, this means dominators of a node are themselves ordered by dominance

Example of proof


- Let us prove that dominance is transitive.
 - Given: a dom b and b dom c
 - Consider any path P: START →+ c
 - Since b dom c, P must contain b.
 - Consider prefix of P = Q: START →+ b
 - Q must contain a because a dom b.
 - Therefore P contains a.

7 8

Dominator tree example

9

Check: verify that from dominator tree, you can generate full relation

Computing dominator tree

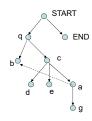
· Inefficient way:

10

- Solve dataflow equations to compute full dominance relation
- Build tree top-down
 - Root is START
 - · For every other node
 - Remove START from its dominator set
 - If node is then dominated only by itself, add node as child of START in dominator tree
 - · Keep repeating this process in the obvious way

Building dominator tree directly

- Algorithm of Lengauer and Tarjan
 - Based on depth-first search of graph
 - $O(E^*\alpha(E))$ where E is number of edges in CFG
 - Essentially linear time
- Linear time algorithm due to Buchsbaum et al.
 - Much more complex and probably not efficient to implement except for very large graphs


Immediate dominators

- Parent of node b in tree, if it exists, is called the immediate dominator of b
 - written as idom(b)
 - idom not defined for START
- Intuitively, all dominators of b other than b itself dominate idom(b)
 - In our example, idom(c) = a

11 12

Useful lemma

- Lemma: Given CFG G and edge a→b, idom(b) dominates a
- Proof: Otherwise, there is a path P: START →+ a that does not contain idom(b). Concatenating edge a→b to path P, we get a path from START to b that does not contain idom(b) which is a contradiction.

a→b is edge in CFG idom(b) = q which dominates f

Postdominators

- Given a CFG G, node b is said to postdominate node a if every path from a to END contains b.
 - we write b pdom a to say that b postdominates a
- Postdominance is dominance in reverse CFG obtained by reversing direction of all edges and interchanging roles of START and END.
- Caveat: a dom b does not necessarily imply b pdom a.
 - See example: a dom b but b does not pdom a

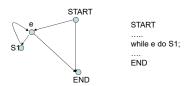
13 14

Obvious properties

- · Postdominance is a tree-structured relation
- Postdominator relation can be built using a backward dataflow analysis.
- Postdominator tree can be built using Lengauer and Tarjan algorithm on reverse CFG
- · Immediate postdominator: ipdom
- Lemma: if a → b is an edge in CFG G, then ipdom(a) postdominates b.

Control dependence

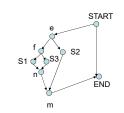
- Intuitive idea:
 - node w is control-dependent on a node u if node u determines whether w is executed
- · Example:


START

if e then S1 else S2

END

We would say S1 and S2 are control-dependent on e


Examples (contd.)

We would say node S1 is control-dependent on e. It is also intuitive to say node e is control-dependent on itself:
- execution of node e determines whether or not e is executed again.

17 18

Example (contd.)

- S1 and S3 are control-dependent on f
- Are they control-dependent on e?
- Decision at e does not fully determine if S1 (or S3 is executed) since there is a later test that determines this
- So we will NOT say that S1 and S3 are control-dependent
- Intuition: control-dependence is about "last" decision point However, f is control-dependent on e, and S1 and S3 are transitively (iteratively) control-dependent on e

Example (contd.)

- · Can a node be controldependent on more than one node?
 - yes, see example
 - nested repeat-until loops
 - n is control-dependent on t1 and t2 (why?)
- · In general, controldependence relation can be quadratic in size of program

Formal definition of control dependence

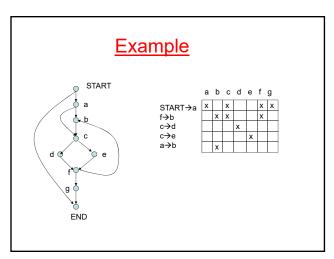
- · Formalizing these intuitions is quite tricky
- · Starting around 1980, lots of proposed definitions
- · Commonly accepted definition due to Ferrane, Ottenstein, Warren (1987)
- Uses idea of postdominance
- We will use a slightly modified definition due to Bilardi and Pingali which is easier to think about and work with

19 20

Control dependence definition

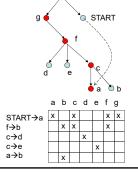
- First cut: given a CFG G, a node w is controldependent on an edge (u→v) if
 - w postdominates v
 - w does not postdominate u
- Intuitively,
 - first condition: if control flows from u to v it is guaranteed that w will be executed
 - second condition: but from u we can reach END without encountering w
 - so there is a decision being made at u that determines whether w is executed

Control dependence definition


- Small caveat: what if w = u in previous definition?
 - See picture: is u controldependent on edge u→v?
 - Intuition says yes, but definition on previous slides says "u should not postdominate u" and our definition of postdominance is reflexive
- Fix: given a CFG G, a node w is control-dependent on an edge (u→v) if
 - w postdominates v
 - if w is not u, w does not postdominate u

21 22

Strict postdominance


- A node w is said to strictly postdominate a node u if
 - w != u
 - w postdominates u
- That is, strict postdominance is the irreflexive version of the postdominance relation
- Control dependence: given a CFG G, a node w is control-dependent on an edge (u→v) if
 - w postdominates v
 - w does not strictly postdominate u

23 24

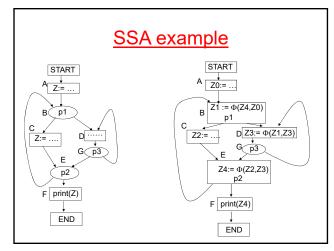
Computing control-dependence relation

- Control dependence: given a CFG G, a node w is control-dependent on an edge (u→v) if
 - w postdominates v w does not strictly postdominate u
- Nodes control dependent on edge (u→v) are nodes on path up the postdominator tree from v to ipdom(u), excluding ipdom(u)
 - We will write this as [v,ipdom(u)) half-open interval in tree

END

Computing control-dependence relation

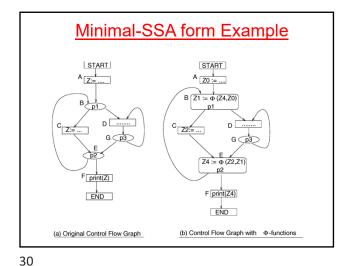
· Compute the postdominator tree


26

- Overlay each edge u >v on pdom tree and determine nodes in interval [v,ipdom(u))
- Time and space complexity is O(EV).
- Faster solution: in practice, we do not want the full relation, we only make queries
 - cd(e): what are the nodes control-dependent on an edge e?
 - conds(w): what are the edges that w is control-dependent on?
 - dequiv(w): what nodes have the same control-dependences as node w?
- It is possible to implement a simple data structure that take's O(E) time and space to build, and that answers these queries in time proportional to output of query (optimal) (Pingali and Bilardi 1997).

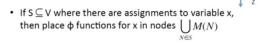
25

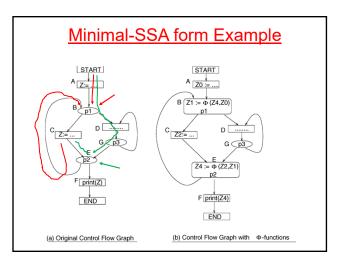
SSA form


- · Static single assignment form
 - Intermediate representation of program in which every use of a variable is reached by exactly one
 - Most programs do not satisfy this condition
 - (eg) see program on next slide: use of Z in node F is reached by definitions in nodes A and C
 - Requires inserting dummy assignments called Φfunctions at merge points in the CFG to "merge" multiple definitions
 - Simple algorithm: insert $\Phi\text{-functions}$ for all variables at all merge points in the CFG and rename each real and dummy assignment of a variable uniquely
 - · (eg) see transformed example on next slide

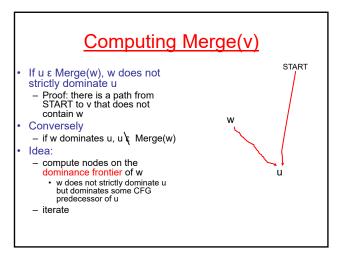
27 28

Minimal SSA form


- In previous example, dummy assignment Z3 is not really needed since there is no actual assignment to Z in nodes D and G of the original program.
- · Minimal SSA form
 - SSA form of program that does not contain such "unnecessary" dummy assignments
 - See example on next slide
- Question: how do we construct minimal SSA form directly?



29


Minimal SSA form

- Compute Merge relation M: V → P(V)
- If node N contains an assignment to a variable x, then node Z is in M(N) if:
 - 1. There is a non-null path P1 := N → Z
 - The value computed at X reaches Z
 - 2. There is a non-null path P2 := START →+ Z
 - 3. P1 and P2 are disjoint except for Z

31 32

Dominance frontier

- · Dominance frontier of node w
 - Node u is in dominance frontier of node w if w
 - dominates a CFG predecessor v of u, but
 - · does not strictly dominate u
- Dominance frontier = control dependence in reverse graph ABCDEFG

Running example:

33 34

Iterated dominance frontier

- Irreflexive closure of dominance frontier relation
- Related notion: iterated control dependence in reverse graph Where to place Φ-functions for a variable Z
 - Antable 2

 Let Assignments = {START} U
 {nodes with assignments to Z in original CFG}

 Find set I = iterated dominance frontier of nodes in Assignments
 - Place Φ-functions in nodes of set I
- set I
 For example

 Assignments = {START,A,C}

 DF(Assignments) = {E}

 DF(DF(Assignments)) = {B}

 DF(DF(DF(Assignments))) = {B}

 So I = {E,B}

 This is where we place (b.
- This is where we place Φ-functions, which is correct

START START A Z0 := B Z1 := Φ (Z4,Z0) G (13) Z4 : (Z2,Z1) Print(Z) F print(Z4) END END (b) Control Flow Graph with Φ-fu (a) Original Control Flow Graph

Why is SSA form useful?

- For many dataflow problems, SSA form enables sparse dataflow analysis that
 - yields the same precision as bit-vector CFG-based dataflow analysis
 - but is asymptotically faster since it permits the exploitation of sparsity
- SSA has two distinct features
 - factored def-use chains
 - renaming
 - you do not have to perform renaming to get advantage of SSA for many dataflow problems

Computing SSA form

- · Cytron et al algorithm
 - compute DF relation (see slides on computing control-dependence relation)
 - find irreflexive transitive closure of DF relation for set of assignments for each variable
- · Computing full DF relation
 - Cytron et al algorithm takes O(|V| +|DF|) time
 - |DF| can be quadratic in size of CFG
- · Faster algorithms
 - O(|V|+|E|) time per variable: see Bilardi and Pingali

Dependences

- · We have seen control-dependences.
- What other kind of dependences are there in programs?
 - Data dependences: dependences that arise from reads and writes to memory locations
- Think of these as constraints on reordering of statements

37

Data dependences

- Flow-dependence (read-after-write): S1→S2
 - Execution of S2 may follow execution of S1 in program order
 - S1 may write to a memory location that may be read by S2
 - Example:

Anti-dependences

- Anti-dependence (write-after-read): S1→S2
 - Execution of S2 may follow execution of S1 in program order
 - S1 may read from a memory location that may be (over)written by S2
 - Example:

38

```
x := ...
..x....
x:= ... anti-dependence
```

39 40

Output-dependence

- Output-dependence (write-after-write): S1→S2
 - Execution of S2 may follow execution of S1 in program order
 - S1 and S2 may both write to same memory location

Summary of dependences

- Dependence
 - Data-dependence: relation between nodes
 - Flow- or read-after-write (RAW)
 - Anti- or write-after-read (WAR)
 - Output- or write-after-write (WAW)
 - Control-dependence: relation between nodes and edges