
Optimizations

1

2

Where We Are
Source code
(character stream)

Lexical Analysis
Syntax Analysis

Semantic Analysis
IR Generation

if (b == 0) a = b;

Correct program
In High IR

IR Lowering

Errors

Program
In Low IR

3

What Next?
• At this point we could generate assembly code

from the low-level IR

• Better:
– Optimize the program first
– Then generate code

• If optimization performed at the IR level, then
they apply to all target machines

4

Optimizations
Source code
(character stream)

Lexical Analysis
Syntax Analysis

Semantic Analysis
IR Generation

if (b == 0) a = b;

Correct program
In High IR

IR Lowering

Errors

Program
In Low IR

Optimize

Optimize

5

What are Optimizations?
• Optimizations = code transformations that

improve the program

• Different kinds
– space optimizations: improve (reduce) memory use
– time optimizations: improve (reduce) execution time
– power optimizations: improve (reduce) power

consumption

• Code transformations must be safe!
– They must preserve the meaning of the program

6

Why Optimize?
• Programmers don’t always write optimal code –

can recognize ways to improve code (e.g.,
avoid recomputing same expression)

• High-level language may make some
optimizations inconvenient or impossible to
express

a[i][j] = a[i][j] + 1;

• High-level unoptimized code may be more
readable: cleaner, modular

int square(x) { return x*x; }

7

Where to Optimize?
• Usual goal: improve time performance
• Problem: many optimizations trade off space

versus time
• Example: loop unrolling

– Increases code space, speeds up one loop
– Frequently executed code with long loops:

space/time tradeoff is generally a win
– Infrequently executed code: may want to optimize

code space at expense of time
• Want to optimize program hot spots

8

Many Possible Optimizations

• Many ways to optimize a program
• Some of the most common optimizations:

Function Inlining
Function Cloning
Constant folding
Constant propagation
Dead code elimination
Loop-invariant code motion
Common sub-expression elimination
Strength reduction
Branch prediction/optimization
Loop unrolling

9

Constant Propagation
• If value of variable is known to be a constant, replace

use of variable with constant
• Example:

n = 10
c = 2
for (i=0; i<n; i++) { s = s + i*c; }

• Replace n, c:
for (i=0; i<10; i++) { s = s + i*2; }

• Each variable must be replaced only when it has known
constant value:
– Forward from a constant assignment
– Until next assignment of the variable

10

Constant Folding
• Evaluate an expression if operands are known

at compile time (i.e., they are constants)
• Example:

x = 1.1 * 2; ⇒ x = 2.2;

• Performed at every stage of compilation
– Constants created by translations or optimizations

int x = a[2] ⇒ t1 = 2*4
t2 = a + t1
x = *t2

11

Algebraic Simplification
• More general form of constant folding: take

advantage of usual simplification rules
a * 1 ⇒ a a * 0 ⇒ 0
a / 1 ⇒ a a + 0 ⇒ a
b || false ⇒ b b && true ⇒ b

• Repeatedly apply the above rules
(y*1+0)/1 ⇒ y*1+0 ⇒ y*1 ⇒ y

• Must be careful with floating point!

12

Copy Propagation
• After assignment x = y, replace uses of x with y
• Replace until x is assigned again

• What if there was an assignment y = z before?
– Transitively apply replacements

x = y;
if (x > 1) ⇒
s = x * f(x - 1);

x = y;
if (y > 1)
s = y * f(y - 1);

13

Common Subexpression Elimination
• If program computes same expression multiple

time, can reuse the computed value

• Example:

• Common subexpressions also occur in low-level
code in address calculations for array accesses:

a[i] = b[i] + 1;

a = b+c;
c = b+c; ⇒
d = b+c;

a = b+c;
c = a;
d = b+c;

14

Unreachable Code Elimination
• Eliminate code that is never executed
• Example:

#define debug false
s = 1;
if (debug)

print(“state = ”, s);

• Unreachable code may not be obvious in low IR
(or in high-level languages with unstructured
“goto” statements)

s = 1;⇒

15

Unreachable Code Elimination
• Unreachable code in while/if statements when:

– Loop condition is always false (loop never executed)
– Condition of an if statement is always true or always

false (only one branch executed)

if (false) S ⇒ ;

if (true) S else S’ ⇒ S
if (false) S else S’ ⇒ S’

while (false) S ⇒ ;
while (2>3) S ⇒ ;

16

Dead Code Elimination
• If effect of a statement is never observed,

eliminate the statement

x = y+1;
y = 1;
x = 2*z;

• Variable is dead if value is never used after
definition

• Eliminate assignments to dead variables
• Other optimizations may create dead code

y = 1;
x = 2*z;

⇒

17

Loop Optimizations

• Program hot spots are usually loops
(exceptions: OS kernels, compilers)

• Most execution time in most programs is
spent in loops: 90/10 is typical

• Loop optimizations are important, effective,
and numerous

18

Loop-Invariant Code Motion
• If result of a statement or expression does not

change during loop, and it has no externally-
visible side-effect (!), can hoist its computation
out of the loop

• Often useful for array element addressing
computations – invariant code not visible at
source level

• Requires analysis to identify loop-invariant
expressions

19

Code Motion Example
• Identify invariant expression:

for(i=0; i<n; i++)
a[i] = a[i] + (x*x)/(y*y);

• Hoist the expression out of the loop:

c = (x*x)/(y*y);
for(i=0; i<n; i++)

a[i] = a[i] + c;

20

Another Example
• Can also hoist statements out of loops
• Assume x not updated in the loop body:

…
while (…) {

y = x*x;
…

}
…

• … Is it safe?

…
y = x*x;
while (…) {

…
}
…

⇒

21

Strength Reduction
• Replaces expensive operations (multiplies, divides) by

cheap ones (adds, subtracts)
• Strength reduction more effective in loops

• Induction variable = loop variable whose value is
depends linearly on the iteration number

• Apply strength reduction to induction variables
s = 0;
for (i = 0; i < n; i++) {

v = 4*i;
s = s + v;

}

s = 0; v = -4;
for (i = 0; i < n; i++) {

v = v+4;
s = s + v;

}

⇒

22

Strength Reduction
• Can apply strength reduction to

computation other than induction
variables:

x * 2 ⇒ x + x
i * 2c ⇒ i << c
i / 2c ⇒ i >> c

23

Induction Variable Elimination
• If there are multiple induction variables in a loop, can

eliminate the ones that are used only in the test
condition

• Need to rewrite test using the other induction variables
• Usually applied after strength reduction

s = 0; v=-4;
for (i = 0; i < n; i++) {

v = v+4;
s = s + v;

}

s = 0; v = -4;
for (; v < (4*n-4);) {

v = v+4;
s = s + v;

}

⇒

24

Loop Unrolling
• Execute loop body multiple times at each

iteration

• Example:
for (i = 0; i< n; i++) { S }

• Unroll loop four times:
for (i = 0; i < n-3; i+=4) { S; S; S; S; }
for (; i < n; i++) S;

• Gets rid of ¾ of conditional branches!
• Space-time tradeoff: program size increases

25

Function Inlining
• Replace a function call with the body of the function:

int g(int x) { return f(x)-1; }
int f(int n) { int b=1; while (n--) { b = 2*b }; return b; }

int g(int x) { int r;
int n = x;
{ int b =1; while (n--) { b = 2*b }; r = b }
return r – 1; }

• Can inline methods, but more difficult
• … how about recursive procedures?

26

Function Cloning
• Create specialized versions of functions that are called

from different call sites with different arguments

void f(int x[], int n, int m) {
for(int i=0; i<n; i++) { x[i] = x[i] + i*m; }

}

• For a call f(a, 10, 1), create a specialized version of f:

void f1(int x[]) {
for(int i=0; i<10; i++) { x[i] = x[i] + i; }

}
• For another call f(b, p, 0), create another version f2(…)

27

When to Apply Optimizations

High IR

Low IR

Assembly

Function inlining
Function cloning
Cache optimizations
Constant folding
Constant propagation
Value numbering
Dead code elimination
Loop-invariant code motion
Common sub-expression elimination
Strength reduction
Constant folding & propagation
Branch prediction/optimization
Loop unrolling
Register allocation

28

Summary
• Many useful optimizations that can transform

code to make it faster

• Whole is greater than sum of parts:
optimizations should be applied together,
sometimes more than once, at different levels

• Problem: when are optimizations are safe?
– Dataflow analysis to find opportunities for applying

optimizations safely

	Slide Number 1
	Where We Are
	What Next?
	Optimizations
	What are Optimizations?
	Why Optimize?
	Where to Optimize?
	Many Possible Optimizations
	Constant Propagation
	Constant Folding
	Algebraic Simplification
	Copy Propagation
	Common Subexpression Elimination
	Unreachable Code Elimination
	Unreachable Code Elimination
	Dead Code Elimination
	Loop Optimizations
	Loop-Invariant Code Motion
	Code Motion Example
	Another Example
	Strength Reduction
	Strength Reduction
	Induction Variable Elimination
	Loop Unrolling
	Function Inlining
	Function Cloning
	When to Apply Optimizations
	Summary

