Live Variable Analysis

What are the live
variables at each
program point?

Dataflow Analysis Frameworks

Method:

1. Define sets of
live variables

1. Build constraints

2. Solve constraints

CS 412/413 Spring 2008 Introduction to Compilers 1 CS 412/413 Spring 2008 Introduction to Compilers
Derive Constraints Derive Constraints
Constraints for each L L=Lu{c} b
. . L, — L
instruction: - L=V, N
L3 L= (L-0h v v} L3
in[1]=(out[1]-def[1]) L" L= (L-{yhv {z} L4
5 _ 5
U use[l] L Ls= LU {d} N
L Le=L, UL, L
_ o L= (0D 2 U
Constraints for N L=l o
control flow: ° Lo= Li-{z} ’
LlU I-10
L Lio=1L, L
out[B] = v in[B] 1 Ly = (Lip{Zh) U {x N
B’ e succ(B) 7% u= G Zh v G Ly
CS 412/413 Spring 2008 Introduction to Compilers 3 CS 412/413 Spring 2008 Introduction to Compilers

Initialization

Iteration 1

L= Lu{c} L= L=Lu{c L=boyz.edy
L=Luly L=0 L=Luly, Ly ={xy.z,d}
L= (LeOD U v} k=0 L= (b U i) bzl
L= (Do cy L= Do @ A
Ls=Lyu {d} Lo Ls= Leu {d} Lty
L=L,ul, ° ;g L=LulL, ° ;iyg
L= LD U {2 ' L= LD U 2} T
_ L=} _ L={}
Lg=Lg L= Le=1Lo Lo={}
Lo= Lyo-{z} =0 Lo= Lyo-{z} °
Lio={} Lo ={}
Lo=1L; Lo=1L;
L=} Ly ={}
Lu= Lp{zhv {3 L= L= Lp{zhv {x} L=0
CS 412/413 Spring 2008 Introduction to Compilers CS 412/413 Spring 2008 Introduction to Compilers
Iteration 2 Fixed-point!
L= LU {c} L,={xy,z,c,d} L=Lu{c} L,={x.y,z,c,d}
L=LluUly L, ={xy.z,c,d} L=LuUly, L, ={x,y.z,c,d}
L= b U L =bizedy L= LbD U L =bizedp
L= DD U@ L -bozed L= DU @ b-bozed
L= Lyu {d} Ls=boyz.cdy L= LU {d) Ly ={xy.z,c.d}
B L, ={y,z,c.d} _ L, ={y.z,c,d}
: ; E:s'{x}) v {y.z} Le={x.y.c.d} : ; S;s'{x}) v {y.z} Ly ={x.y,c,d}
L Lo={x,y.c,d} . Ly ={x,y.c,d}
tg :LEO_{Z} Lo ={x.y.z.c.d} tg iLE"_{Z} Lio ={x.y.z,c,d}
v L ={x} v Ly ={¢
L= (Lp{zhv {x} L,=0 L= (L {zh v {x} L,=0
CS 412/413 Spring 2008 Introduction to Compilers 7 CS 412/413 Spring 2008 Introduction to Compilers 8

Final Result

L,={xy.z,c,d}
L, ={x,y.z,c,d}
Ly ={y.z,c.d}
L, ={xz,c,d}
Ls ={x.y.z,c,d}
Ls ={x.y.z,c,d}
L; ={y.z,c,d}
Lg={x.y.c.d}
Lo ={x.y.c,d}
Ly ={x,y.z,c,d}

l L ={}

x live here !

Final result: sets
of live variables at
each program point

CS 412/413 Spring 2008 Introduction to Compilers 9

Characterize All Executions

L,={x.y.z,c,d}
L, ={x,y.z,c,d}
Ly ={y.z,c.d}
L, ={x,z,c,d}
Ls ={x,y.z,c,d}
Ls ={x,y,z,c,d}
L, ={y.z,c,d}
Lg={x.y.c.d}
Lo={x.y.c.d}
Ly ={x.y.z,c,d}
Ly ={x}

L, ={}

The analysis detects
that there is an
execution that uses
the value x = y+1

CS 412/413 Spring 2008 Introduction to Compilers 10

Generalization

» Live variable analysis and detection of available
copies are similar:
— Define some information that they need to compute
— Build constraints for the information
— Solve constraints iteratively:

* The information always “increases” during iteration
« Eventually, it reaches a fixed point.

* We would like a general framework
— Framework applicable to many other analyses

— Live variable/copy propagation = instances of the
framework

CS 412/413 Spring 2008 Introduction to Compilers 11

Dataflow Analysis Framework

» Dataflow analysis = a common framework for
many compiler analyses
— Computes some information at each program point

— The computed information characterizes all possible
executions of the program

* Basic methodology:

— Describe information about the program using an
algebraic structure called a lattice

— Build constraints that show how instructions and
control flow influence the information in terms of
values in the lattice

— Iteratively solve constraints

CS 412/413 Spring 2008 Introduction to Compilers 12

Partial Order Relations

 Lattice definition builds on the concept of a
partial order relation

e A partial order (P,E) consists of:

— AsetP

— A partial order relation E that is:
1. Reflexive X E X
2. Anti-symmetric XEY,yEX = xX=y
3. Transitive: XEy,yEz = XEz

« Called a “partial order” because not all elements are
comparable, in contrast with a fofa/ order, in which

—4. Total XEyoryEx

CS 412/413 Spring 2008 Introduction to Compilers 13

Example

e Pis {red, blue, yellow, purple, orange, green}
e E
red E purple, red E orange,
blue E purple, blue E green,
yellow E orange, blue E green,
red E red,
blue E blue,
yellow E yellow,
purple E purple,
orange E orange,
green E green

CS 412/413 Spring 2008 Introduction to Compilers 14

Hasse Diagrams

< A graphical representation
of a partial order, where
— x and y are on the same
level when they are
incomparable purple orange green

— x is below y when xEy and
X2y | >< >< |

— x is below y and connected red blue yellow
by a line when xEy, xzy,
and there is no z such that
XEz, ZBy, x#Z, and y=#z

CS 412/413 Spring 2008 Introduction to Compilers 15

Lower/Upper Bounds

e If (P, E) is a partial order and S < P, then:
1. xeP is a lower bound of S if x E y, for all yeS
2. xeP is an upper bound of S if y E x, for all yeS

e There may be multiple lower and upper bounds
of the same set S

CS 412/413 Spring 2008 Introduction to Compilers 16

Example, cont.

purple orange green

| > >

red blue yellow

Example, cont.

purple orange green

red’ red blue yellow

red is lower bound for {purple, orange}
blue is lower bound for {purple, green}
yellow is lower bound for {orange, green}
no lower bound for {purple, orange, green}

purple is upper bound for {red, blue}
orange is upper bound for {red, yellow}
green is upper bound for {orange, green}
no upper bound for {red, bule, yellow}

red is lower bound for {purple, orange}
blue is lower bound for {purple, green}
yellow is lower bound for {orange, green}
no lower bound for {purple, orange, green}

purple is upper bound for {red, blue}
orange is upper bound for {red, yellow}
green is upper bound for {orange, green}
no upper bound for {red, bule, yellow}

no lower bound for {red, blue} no upper bound for {purple, orange}
no lower bound for {red, yellow} no upper bound for {orange, green}
no lower bound for {blue, yellow}, no upper bound for {purple, green}

etc. etc.

no lower bound for {red, blue} no upper bound for {purple, orange}
no lower bound for {red, yellow} no upper bound for {orange, green}
no lower bound for {blue, yellow}, no upper bound for {purple, green}

etc. etc.

CS 412/413 Spring 2008 Introduction to Compilers 17

red’ is also a lower bound for {purple, orange}

CS 412/413 Spring 2008 Introduction to Compilers 18

LUB and GLB

« Define least upper bound (LUB) and greatest lower
bound (GLB) as follows:
e If (P, E) is a partial order and S € P, then:
1. xeP is GLB of S if:
a) x is a lower bound of S
b) y E x, for any lower bound y of S

2. xeP is a LUB of S if:
a) x is an upper bound of S
b) x Ey, for any upper bound y of S

e ... are GLB and LUB unique?

CS 412/413 Spring 2008 Introduction to Compilers 19

Example, cont.

purple orange green

| > >

red blue yellow

red is GLB for {purple, orange}
blue is GLB for {purple, green}
yellow is GLB for {orange, green}

purple is LUB for {red, blue}
orange is LUB for {red, yellow}
green is LUB for {orange, green}

CS 412/413 Spring 2008 Introduction to Compilers 20

Example’

purple

red’ red

orange green

blue yellow

blue is GLB for {purple, green}
yellow is GLB for {orange, green}

purple is LUB for {red, blue}
orange is LUB for {red, yellow}
green is LUB for {orange, green}

purple is LUB for {red’, blue}
orange is LUB for {red’, yellow}

red’ is a lower bound for {purple, orange}
red is a lower bound for {purple, orange}

There is no GLB for {purple, orange}

CS 412/413 Spring 2008

Introduction to Compilers 21

Lattices

e Apair (L, E) is a lattice if:
1. (L, E) is a partial order
2. Any finite non-empty subset S € L has a LUB and a
GLB

CS 412/413 Spring 2008 Introduction to Compilers 22

Example”

e L is natural numbers {0, 1, 2, 3, ... }

e Eis<

Every finite subset of L has a LUB
Every subset of L has a GLB
Therefore (L, <) is a lattice

No infinite subset of L has a LUB

CS 412/413 Spring 2008

oO—F —N—w—1:

Introduction to Compilers 23

Complete Lattices

e A pair (L, E) is a complete lattice if:
1. (L, E) is a partial order
2. Any non-empty subset S € L has a LUB and a GLB

* Can identify and name two special elements:
1. Bottom element: 1 = GLB(L)
2. Top element: T = LUB(L)

« All finite lattices are complete

CS 412/413 Spring 2008 Introduction to Compilers 24

Example™

e L is natural numbers {0, 1, 2, 3, ... }
e Cis<

Example™”

white

| purple orange green
Every finite subset of L has a GLB and LUB | red blue ye”OW
Therefore (L, <) is a lattice 3
Every infinite subset of L has a LUB
Therefore (L, <) is a complete lattice | black
However, L has infinite ascending chains 2
| black is GLB for {red, blue, yellow} ‘ ‘ white is LUB for {purple, orange, green}
1
0
CS 412/413 Spring 2008 Introduction to Compilers 25 CS 412/413 Spring 2008 Introduction to Compilers 26
Meet and Join Example”” Lattice
< By definition, for any lattice L, GLBs and LUBs = Consider S = {a,b,c} and its power set P =
are defined for finite sets {®1 {a}, {b}, {C}1 {a,b}, {blc}i {a,C} {a,b,C}}
) - » Define partial order as set inclusion: X € Y
= Define operators meet () and join (U) as _ Reflexive X € X
—xny = GLB{x,y}) white — Anti-symmetric XS Y,YSX = X=Y
—-Xuy= LUB({x,y}) — Transitive XeY,YEZ = XcZ
— For any finite set S L
- ns =yG|_B(3) purple - orange ~ green « Also, for any two elements of P, there is a set
- US = LUB(S) |>< >< | that includes both and another set that is
red blue yellow included in both
\mlmk/ « Therefore (P, <) is a (complete) lattice
CS 412/413 Spring 2008 Introduction to Compilers 27

CS 412/413 Spring 2008 Introduction to Compilers 28

Power Set Lattice

e Partial order:
(set inclusion)

e Meet: n {a,b,c}
(set intersection) / |

e Join: U {a,b} {ac} {b,c}
(set union) | >< >< |

- Top element: {a,b,c} {a} {b} {c}
(whole set) |

e Bottom element: & %)
(empty set)

CS 412/413 Spring 2008 Introduction to Compilers 29

Reversed Lattice

* Partial order: 2
(set inclusion)

e Meet: U
(set union) |

. Join: n {a} {0} {c}
(set intersection) | >< >< |

- Top element: & {a,b} {ac} {bc}
(empty set) |

« Bottom element: {a,b,c} {a,b,c}
(whole set)

CS 412/413 Spring 2008 Introduction to Compilers 30

Relation To Dataflow Analysis

¢ Information computed by live variable analysis
and available copies can be expressed as
elements of lattices

e Live variables: if V is the set of all variables in
the program and P the power set of V, then:

— (P, ©) is a lattice
— sets of live variables are elements of this
lattice

CS 412/413 Spring 2008 Introduction to Compilers 31

Relation To Dataflow Analysis

e Copy Propagation:
- Vis the set of all variables in the program

-V x V the Cartesian product representing all
possible copy instructions

- P the power set of V x V

e Then:
— (P, ©) is a lattice
— sets of available copies are lattice elements

CS 412/413 Spring 2008 Introduction to Compilers 32

Using Lattices

« Assume information we want to compute in a
program is expressed using a lattice L

e To compute the information at each program
point we need to:
— Determine how each instruction in the program
changes the information

— Determine how information changes at join/split
points in the control flow

CS 412/413 Spring 2008 Introduction to Compilers

33

Transfer Functions
« Dataflow analysis defines a transfer function
F : L — L for each instruction in the program

e Describes how the instruction modifies the
information

e Consider in[I] is information before I, and out[1] is
information after |

e Forward analysis:
* Backward analysis:

out[I] = F(in[I])
in[1] = F(out[1])

CS 412/413 Spring 2008 Introduction to Compilers 34

Basic Blocks

« Can extend the concept of transfer function
to basic blocks using function composition

* Consider:

— Basic block B consists of instructions (I, ..., I,;) with
transfer functions F,, ..., F,

— in[B] is information before B
— out[B] is information after B

e Forward analysis:

out[B] = F,(...(F(in[B]))) = F, °... ° Fy(in[B])
e Backward analysis:

in[l] = Fy(... (Fy(out[i]))) =F,°... ° Fy(out[B])

CS 412/413 Spring 2008 Introduction to Compilers

35

Split/Join Points

» Dataflow analysis uses meet/join operations at split/join
points in the control flow

« Consider in[B] is lattice information at beginning of
block B and out[B] is lattice information at end of B

* Forward analysis: in[B] = M {out[B’] | B'epred(B)}
* Backward analysis: out[B] = M {in[B"] | B'’esucc(B)}

« Can alternatively use join operation u (equivalent to
using the meet operation n in the reversed lattice)

CS 412/413 Spring 2008 Introduction to Compilers 36

Cartesian Products

e letl,, .., L, be sets

» Cartesian product of L,,...,L, is
{ <X X> | X € L}

e IfL,, ..., L, are (complete) lattices then their Cartesian
product is a (complete) lattice, where C is defined by

<XKppeXy> B <yy,.y,> iff forall i, x 2y,

CS 412/413 Spring 2008 Introduction to Compilers 37

Information as Cartesian Product

* Consider a program analysis in which n program
analysis variables range over lattice L

* We view the analysis as computing an n-tuple of L-
values, i.e., a point in the n-ary Cartesian product of L

* Each change of one program analysis variable changes
one component of the n-tuple

* Analysese will terminate because we will only consider
— Lattices with no infinite descending chains

— “Monotonic” transfer functions that move us down (or not at
all) in the lattice

CS 412/413 Spring 2008 Introduction to Compilers 38

More About Lattices

< In a lattice (L, E), the following are equivalent:

1.xEy
2.Xny=x
3.xuy=y

< Note: meet and join operations were defined
using the partial order relation

CS 412/413 Spring 2008 Introduction to Compilers 39

Proof (1 & 2)

e Prove that x Ey implies x ny = x:
—Xx is a lower bound of {x,y}
— All lower bounds of {x,y} are less= than X,y
— In particular, they are less= than x

e Prove that x ny = x impliessXE vy :
—x is a lower bound of {x,y}
— X is less= than x and y
— In particular, x is less= than y

CS 412/413 Spring 2008 Introduction to Compilers 40

10

Properties of Meet and Join

e The meet and join operators are:

1. Associative xny)nz=xn(ynz)
2. Commutative XAy =ynx
3. Idempotent: XX =X

e Property: If “n” is an associative, commutative, and
idempotent operator, then the relation “=” defined as
XEy iff x 0y = x is a partial order

= Above property provides an alternative definition of a
partial orders and lattices starting from the meet (join)
operator

CS 412/413 Spring 2008 Introduction to Compilers 41

11

