Introduction
to
Loop Transformations




Organization of a Modern Compiler

Source
Program Front-end syntax analysis + type-checking + symbol table
High-level
Intermediate
Representation
loops,array references : :
(areppr&e:rg\// ed) Middlel | loop-level transformations
Low-level
Intermediate
Representation conventional optimizations
(array references converted into Middle2
low level operations, loops
converted to control flow)
Low-level
intermediate |
Representation Back-end Assembly
Code

register allocation
instruction selection




ﬁ(ey concepts:

for J =1, N
for I =1, N
Y(I) = Y(I) + A(T,J0)*X(J)

for k =1, N
a(k,k) = sqrt (a(k,k))
for i = k+1, N
a(i,k) = a(i,k) / a(k,k)
for i = k+1, N
for j = k+1, i
a(i,j) -= a(i,k) * a(j,k)

.

Perfectly-nested loop: Loop nest in which all assignment
statements occur in body of innermost loop.

Imperfectly-nested loop: Loop nest in which some assignment statements
occur within some but not all loops of loop nest

~




Our focus for now: perfectly-nested loops




4 A

Goal of lecture:

e We have seen two key transformations of perfectly-nested loops

for locality enhancement: permutation and tiling.

e There are other loop transformations that we will discuss in
class.

e Powerful way of thinking of perfectly-nested loop execution and

transformations:

e loop body instances < iteration space of loop
e loop transformation <> change of basis for iteration space

N _/




-~

.

Iteration Space of a Perfectly-nested Loop

Each iteration of a loop nest with n loops can be viewed as an

integer point in an n-dimensional space.

Iteration space of loop: all points in n-dimensional space

corresponding to loop iterations

O
O
"
-
Z
<

Execution order = lexicographic order on iteration space:

(1,1) < (1,2) 2o < (1,M) < (2,1) 2 (2,2)... < (N, M)

~

/




Goop permutation = linear transformation

DO I=1,N
DO J=1M

(1.J)

DO K =1, M
DO L=1N
S(K,L)

J

on iteration space

I
1 N

1
— O

~




Locality enhancement:

Loop permutation brings iterations that touch the same cache line
”closer” together, so probability of cache hits is increased.




~

Subtle issue 1: loop permutation may be illegal in some loop nests

J

DO 1=2,N
DO J=1M
A[l,J =A[l-1,3+1] + 1

Assume that array has 1's stored everywhere before loop begins.
After loop permutation:

DO J=1M
DO 1=2,N
Al =A[I-1,:+1] + 1

Transformed loop will produce different values (A[3,1] for example)
=> permutation isillegal for thisloop.

Question: How do we determine when loop permutation is legal ?

N _/




-~

Subtle issue 2: generating code for transformed loop nest may be

non-trivial!

Example: triangular loop bounds (triangular solve/Cholesky)

FOR I =1, N
FOR J =1, I-1
S

Here, inner loop bounds are functions of outer loop indices!

Just exchanging the two loops will not generate correct bounds.

.

~

10






DO I=1,N
DO J =11

(1.J)

K

K Question: How do we generate loop bounds for transformed |oop nest? /

12



-~

General theory of oop transformations shou d te us

e which transformations are lega ,

e what the best sequence of transformations should be for a
given target architecture, and

e what the transformed code shou d be.

Desirable: quantitative estimates of performance improvement

.

13



ILP Formulation
of

Loop Transformations

14




-~

Goal:

1. formu ate correctness of permutation as integer linear
programming (ILP) problem
2. formulate code generation problem as ILP

.

15



Two problems:

Given a system of linear inequalites AX < b

where A is a m X n matrix of integers,
b is an m vector of integers,
X is an n vector of unknowns,

(i) Are there integer solutions?
(i) Enumerate all integer solutions.

Most problems regarding correctness of transformations
and code generation can be reduced to these problems.

16




/ Intuition about systems of linear inequalities:

.

Equality: line (2D), plane (3D), hyperplane (> 3D)
Inequality: half-plane (2D), half-space(>2D)

y

3x+4y = 12

X +4y<=12

Region described by inequality is convex
(if two points arein region, al pointsin between them are in region)

17




/ Intuition about systems of linear inequalities:

.

Conjunction of inequalties = intersection of half-spaces
=> some convex region

y<5< y

3X+4y <= 12
X>=-5

3Xx-3y<=9

Region described by inequalitiesis a convex polyhedron
(if two points arein region, al pointsin between them are in region)

18




-~

Let us formulate correctness of loop permutation as ILP problem.

Intuition: If a iterations of a loop nest are independent, then
permutation is certainly legal.

This is stronger than we need, but it is a good starting point.
What does independent mean?

Let us ook at dependences.

.

19



flow
Dependences: < /\ output

control

Flow dependence: S1 -> S2
(1) S1 executes before S2 in program order
(i1) S1 writesinto alocation that is read by S2 - ~

Anti-dependence: S1 -> S2 X:=2 ) flow
.(I) S1 executes beforeS? | | output Y =X +1
(ii) S1readsfrom alocation that is overwritten later by S2 . anfl
Output dependence: S1 -> S2 X:=3 output
(i) S1 executes before S2 L y.=7 )

(i) S1 and S2 write to the same location
Input dependence: S1 -> S2

() S1 executes before S2
(ii) S1 and S2 both read from the same location

Input dependence is not usually important for most app ications.

N /

20




4 A

Conservative Approximation:

- Real programs. imprecise information => need for safe approximation

“When you are not sure whether a dependence exists, you must assume it does.’

( 7

Example:

procedure f (X,i,))

begin
X(i) = 10;
X() =5
end

Question: Is there an output dependence from the first assignment to the second?

Answer: If (i =), there is a dependence; otherwise, not.

=> Unless we know from interprocedural analysis that the parametersi and j are always distinct,
we must play it safe and insert the dependence.

Key notion: Aliasing : two program names may refer to the same location (like X (i) and X(j))
May-dependence vs must-dependence: More precise analysis may eliminate may-dependences

21



Loop level Analysis. granularity isaloop iteration

'DOI=1,100
DOJ=1100 | ———— J| .o
each (I,J) valueof | * * ¢ * * °
N S ) loopindicescorresponds| * * * ° °* °

to one point in picture

Dynamic instance of a statement:
Execution of a statement for given loop index values

Dependence between iterations:

Iteration (11,J1) is said to be dependent on iteration (12,J2) if
adynamic instance (11,J1) of a statement in loop body

IS dependent on a dynamic instance (12,J2) of a statement

In the loop body.

How do we compute dependences between iterations of aloop nest?

/

22



/Dependences in loops

FOR 10 I

10

.

X(£(I))

1, N

... X(g(D))..

e Conditions for flow dependence from iteration I,, to I,:

o 1 <1, <I. <N (write before read)
e f(Iy)=9(I,) (same array location)

e Conditions for anti-dependence from iteration I, to I,:

e 1<1,< I, <N (read before write)
o f(I,) =9(I,) (same array location)

e Conditions for output dependence from iteration I,,; to I»o:

o 1 < 1Iy1 <Iys <N (write in program order)
o f(Iy1)= f(Lw2) (same array location)

23




ﬁ)ependences in nested loops

FOR 10 I = 1, 100
FOR 10 J = 1, 200
X(£(I,3),g(I,D)) = ...

10 = ...X((1,J),k(I,7))..

Conditions for flow dependence from iteration (I, Jy) to (I, J;):
Recall: < is the lexicographic order on iterations of nested loops.
< I, <100

Jw < 200

I, < 100

Jr < 200

(I»J)

h(1.J: )

k(I ,J, ) /

e e O =
INA A

IA

(Iw,Jw)
flwdy)

K g(L.Jw)

| A

24



Anti and output dependences can be defined analogously.

25



Array subscripts are affine functions of loop variables
=>
dependence testing can be formulated as a set of ILP problems

26




/ ILP Formulation

FOR I =1, 100
X(2I) = .... X(2I+1)...

Is there a flow dependence between different iterations?
1 < Tw<Ir <100

2w = 2Ir +1

which can be written as

ot
IA

Tw
Ir—1
100
2Ir+1
21w

Tw

Ir

21w
2Ir 41

AN VAN VAR VAN




Ghe system

[

1

\ 2

1

Tw

Ir

21w
2Ir+ 1

0 )
-1
1
—2

2

VAN VAN VAN VANRN VAN

Tw
Ir

Tw
Ir—1
100
2Ir+1
21w

can be expressed in the form Az < b as follows

L
IA

28




/ ILP Formulation for Nested Loops \

FOR I = 1, 100
FOR J = 1, 100
X(I,J) = ..X(I-1,J+1)...

Is there a flow dependence between different iterations?

1 < ITw<100
1 < Ir <100
1 < Jw <100
1 < Jr<100
({w,Jw) < (Ir,Jr)(lexicographic order)
Ir—1 = Tw
Jr+1 = Jw

Qonvert lexicographic order < into integer equalities/inequalities. /

29



(Tw, Jw) < (Ir,Jr) is equivalent to
ITw<Ir OR ({Iw=1Ir) AND (Jw < Jr))

We end up with two systems of inequalities:

1 < Tw <100
1 < Tw <100

1 <Ir <100
1 <Ir <100

1 < Jw <100
1 < Jw <100

1 < Jr <100
1< Jr <100 OR

Tw=1Ir
Tw<Ir

Jw < Jr
Ir—1= 1w

Ir—1= 1w
Jr+1=Jw

Jr+1=Jw

Dependence exists if either system has a solution.

.

30



-~

FOR I =1, 100

What about affine loop bounds?

FOR J =1, I
X(I,J) = ..X(I-1,J+1)...
1 < Tw<100
1 < Ir <100
1 < Jw<Iw
1 < Jrllr
({w, Jw) < (Ir,Jr)(lexicographicorder)
Ir—1 = Iw
Jr+1 = Jw

31




(v

e can actually handle fairly complicated bounds involving min’s

and max’s.

FOR I =1, 100
FOR J = max(F1(I),F2(I)) , min(G1(I),G2(I))

X(I,J) = ..X(I-1,J+1)...
Fi(Ir) < Jr
F2(Ir) < Jr
Jr < G1(Ir)
Jr < G2(Ir)

Qaveat: F'1, F'2 etc. must be affine functions.

32



-~

Min’s and max’s in loop bounds mayseem weird, but actually they describe
general polyhedral iteration spaces!

For a given |, the J co-ordinate of a point
in the iteration space of the loop nest satisfies
max(L1(1),L2(1)) <= J <= min(U1(l),U2(l))

33



4 A

More important case in practice: variables in upper/lower bounds

FOR I =1, N
FOR J =1, N-1

Solution: Treat N as though it was an unknown in system

[
IN

ITw <N
1 < Jw<N-1

This is equivalent to seeing if there is a solution for any value of N.

Note: if we have more information about the range of N, we can easily

add it as additional inequalities.

N _/

34




4 A

Summary

Problem of determining if a dependence exists between two

iterations of a perfectly nested loop can be framed as ILP problem
of the form

Is there an integer solution to system Ax <b 7

How do we solve this decision problem?

N _/

35




4 A

Is there an integer solution to system Az < b ?
Oldest solution technique: Fourier-Motzkin elimination
Intuition: ” Gaussian elimination for inequalties”

More modern techniques exist, but all known solutions require time

exponential in the number of inequalities

=>

Anything you can do to reduce the number of inequalities is good.
=>

Equalities should not be converted blindly into inequalities but
handled separately.

N _/

36




Presentation sequence:

- one equation, several variables
2X+3y=5

- several equations, several variables
2x+3y+5z=5
3X+4y =3

- equations & inequalities

2x+3y=5
Xx<=5
y <=-9 —

Diophatine equations:
use integer Gaussian
elimination

Solve equalities first
then use Fourier-Motzkin
elimination

37




One equation, many variables:

Thm: The linear Diophatine equation alxl+a2x2+...+anxn=c¢
has integer solutions iff gcd(al,a2,...,an) divides c.

Examples:

(1) 2x=3 No solutions
(2) 2x=6  One solution: x=3
(3) 2x+y=3
GCD(2,1) = 1 which divides 3.
Solutions: x=t,y=(3-2t)
(4) 2x+3y=3
GCD(2,3) = 1 which divides 3.
Letz =x +floor(3/2)y =x+y
Rewrite equationas 2z +y =3
Solutions: z =t —~ X=(3t-3)
y=(3-2t) y=(3-2t)
Intuition: Think of underdetermined systems of eqns over reals.
Caution: Integer constraint => Diophantine system may have no solns

38




/Thm: The linear Diophatine equation alxl+a2x2+...+anxn=c¢
has integer solutions iff gcd(al,a2,...,an) divides c.

Proof: WLOG, assume that all coefficients al,a2,...an are positive.

We prove only the IF case by induction, the proof in the other direction is trivial.
Induction is on min(smallest coefficient, number of variables).

Base case:

If (# of variables = 1) , then equation is al x1 = ¢ which has integer solutions
if al divides c.

If (smallest coefficient = 1), then gcd(al,a2,...,an) = 1 which divides c.

Wilog, assume that al = 1, and observe that the equation has solutions
of the form (c - a2 t2 - a3 t3 -....-an tn, t2, t3, ...tn).

Inductive case:

In terms of this variable, the equation can be rewritten as
(@l) t + (a2 mod al) x2 + ....+ (an mod al) xn =c (1)
where we assume that all terms with zero coefficient have been deleted.

Observe that (1) has integer solutions iff original equation does too.

=>gcd(al, (a2 mod al),..,(an mod al)) divides c.

If al is the smallest co-efficient in (1), we are left with 1 variable base case.
Otherwise, the size of the smallest co-efficient has decreased, so we have

K made progress in the induction.

Suppose smallest coefficientis al, and let t=x1 + floor(a2/al) x2 + ....+ floor(an/al) xn

Now gcd(a,b) = gcd(a mod b, b) => gcd(al,a2,...,an) = gcd(al, (a2 mod al),..,(an mod al))

~

/

39



Summary:

[ Eqn: al xl+a2x2+...+anxn :c]

- Does this have integer solutions?

= Does gcd(al,a2,...,an) divide ¢ ?

40




It is useful to consider solution process in matrix-theoretic terms.

We can write single equation as
T

(358)(xy 2) =6
It is hard to read off solution from this, but for special matrices,
itiseasy.

T
(2 0)(ab) =8
Solutionisa=4,b=t

looks lower triangular, right?
Key concept: column echelon form -
"lower triangular form for underdetermined systems"

For amatrix with asingle row, column echelon form is
(x 0 0 0.0

~

41



3Xx+5y+8z2=6

Substitution: t=x+y + 2z
New equation:

gt+2y+22=6

Substitution: u = y+z+t
New equation:

2u+t=6

Solution:
u=pl
t =(6-2pl)

Backsubstitution:
y =p2

t =(6-2pl)

z = (3pl-p2-6)
Backsubstitution:
X = (18-8pl+p2)

y =p2
z = (3pl-p2-6)

(358)

/

010

(358) /1 -1 -2 Ul

U1*uz2cu3

-13 -1
0 01

Solution to original system: /12-5a.b
-6+3a-b
b

Solution: (6 a b)T
Product of matrices = <

U1*U2*U3*(6 ab)'

42




/ Systems of Diophatine Equations:

Example:

2x+3y+4z =5
X- y+2z =5

129
250 ] |y
z

Key idea: use integer Gaussian elimination

eeiME
1-12 1Y 5

y4

It is not easy to determine if this Diophatine system has solutions.

Easy special case: lower triangular matrix

Question: Can we convert general integer matrix into
equivalent lower triangular system?

X=5
y=3

z = arbitrary integer

[ INTEGER GAUSSIAN ELIMINATION j

.

43




-~

Integer gaussian Elimination

- Use row/column operations to get matrix into triangular form
- For us, column operations are more important because we
usually have more unknowns than equations

Overall strategy: Given Ax =Db
Find matrices U1, U2,...Uk such that

A*U1*U2*...*Uk is lower triangular (say L)
Solve Lx’ = b (easy)
Compute x = (U1*U2*...*Uk)*x

Proof:
(A*U1*U2...*UK)X' = b
=> A(U1*U2*...*UK)X' = b
=> x = (U1*U2...*UK)X’

44




Caution: Not all column operations preserve integer solutions.

2 3| X = 0 Solution: x=-8,y =7
6 7| VY| 1

[1 3
0 2
2 0] X _1' 5 which has no integer solutions!
6 -4 ||y 1

Intuition: With some column operations, recovering solution
of original system requires solving lower triangular system
using rationals.

Question: Can we stay purely in the integer domain?

One solution: Use only unimodular column operations

45




Unimodular Column Operations:

(a) Interchange two columns ) Check
Let X,y satisfy first eqn.
[2 ;’] [3 2] Let x',y’ satisfy second eqn.

0 1 7 6 | |
1 0 X=y, ¥y=X
(b) Negate a column Check
R R )
6 7 6 -7

b+
0 -1
(c) Add an integer multiple of one column to another

Check

{x :x’+ny’J
y =y

46




-~

Example:

2 3 4
1-12

1 0 0 X
250 Y




-~

Facts:

1. The three unimodular column operations

- interchanging two columns
- negating a column
- adding an integer multiple of one column to another

on the matrix A of the system Ax =D
preserve integer solutions, as do sequences of these operations.

2. Unimodular column operations can be used to reduce
a matrix A into lower triangular form.

3. A unimodular matrix  has integer entries and a determinant
of +1 or -1.

4. The product of two unimodular matrices is also unimodular.

.

48






/ Algorithm:  Given a system of Diophantine equations Ax = b

1. Use unimodular column operations to reduce matrix A
to lower triangular form L.

2. If Lx’ = b has integer solutions, so does the original system.

3. If explicit form of solutions is desired, let U be the product
of unimodular matrices corresponding to the column operations.

X = U X where X’ is the solution of the system Lx' = b

Detail: Instead of lower triangular matrix, you should
to compute ‘column echelon form’ of matrix.

Column echelon form: Let rj be the row containing the first non-zero
in column j.
(i) r(+1) > rj if column j is not entirely zero.
(i) column (j+1) is zero if column j is.
x 00 is lower triangular but not column echelon.
x 00 Point: writing down the solution for this system requires additional

X X X work with the last equation (1 equation, 2 variables). This work is
precisely what is required to produce the column echelon form.

\ Note: Even in regular Gaussian elimination, we want column echelon form rather than /

50



Systems of Inequalities




-~

Goals:

Given system of inequalities of the form Ax <b

e determine if system has an integer solution

e enumerate all integer solutions

N




-~

Running example:

dr + 4y > 16
dx + Ty < 56
4 — Ty < 20
20 — 3y > —9

Upper bounds for z: (2) and (3)
Lower bounds for z: (1) and (4)

N

Upper bounds for y: (2) and (4)
Lower bounds for y: (1) and (3)

N




-~

MATLAB graphs:

7

4x+7y=56

4x-7y=20

10




-~

Code for enumerating integer points in polyhedron: (see graph)

Outer loop: Y, Inner loop: X

DO Y=[4/37],|74/13]
DO X=[max(16/3 — 4y/3,—9/2 + 3y/2)], |min(5+ Ty/4,14 — Ty /4) |

Outer loop: X, Inner loop: Y

DO X=1, 9
DO Y=[max(4 — 3y/4, (4z — 20)/7)], | (min(8 — 4z /5, (2x +9)/3)]

How do we can determine loop bounds?

N




/Fourier—l\/[otzkin elimination: variable elimination technique for \

inequalities

3x + 4y > 16
dx + Ty < 56
dr — Ty < 20
2r — 3y > —9

Let us project out x.

First, express all inequalities as upper or lower bounds on x.

r > 16/3 —4y/3
r < 14— Ty/4
r < b+4Ty/4

> —9/2+3y/2

K x

~—~~
—
= O
~—~— N —

~~
—
\N
~—~—




-~

~

For any y, if there is an x that satisfies all inequalities, then every

lower bound on x must be less than or equal to every upper bound

on x.

Generate a new system of inequalities from each pair (upper,lower)

bounds.

b+ Ty/4
54 Ty/4
14— 7y/4
14 —Ty/4

VAR AV A VAR AV/

16/3 — 4y /3(Inequalities3, 1)
—9/2 4 3y /2(Inequalities3, 4)
16/3 — 4y /3(Inequalities2, 1)
—9/2 4 3y /2(Inequalities2, 4)




/Simplify: \

'V

4/37
—38
104/5
74/13

SRS
IN IV

VAN

max(4/37,-38) <y <min(104/5,74/13)
=>
4/37 <y <74/13

\This means there are rational solutions to original system of inequalities./

8



4 N

We can now express solutions in closed form as follows:

4/37 < y<4/37
max(16/3 —4y/3,—-9/2+3y/2) < x < min(db+ Ty/4,14 — Ty/4)

VAN

N /




/Fourier—l\/[otzkin elimination: iterative algorithm
Iterative step:

e obtain reduced system by projecting out a variable

e if reduced system has a rational solution, so does the original

Termination: no variables left

a1 *y +az2 *xz+.... < ci(no x)
by xx < co+ by xy+ b3 x z + ...(upper bound)
dixx > c3+daxy+ds*z+...(lower bound)

New system of inequalities:

e All inequalities that do not involve x
e Each pair (lower,upper) bounds gives rise to one inequality:

K biles +dexy+dsxz+..] <difca+baxy+bs*xz+..]

Projection along variable x: Divide inequalities into three categories

~

/

10



-~

Theorem: If (yq, 21, ...) satisfies the reduced system, then
(x1,Yy1, 21...) satisfies the original system, where x; is a rational

number between

min(1/by(ce + bay1 + b3z1 + ...), .....) (over all upper bounds)
and

max(1/dy(cs + doy1 + dsz1 + ...), ....) (over all lower bounds)

Proof: trivial

.

11



/VV hat can we conclude about integer solutions?

the original system.

does too.

{educed system implies integer solution to original system.

T
S S S

+ o+ L+ + o+

Corollary: If reduced system has no integer solutions, neither does

Not true: Reduced system has integer solutions => original system

Key problem: Multiplying one inequality by b; and other by d; is

not guaranteed to preserve ”integrality” (cf. equalities)

Exact projection: If all upper bound coefficients b; or all lower

bound coefficients d; happen to be 1, then integer solution to

- no integers in original polyhedron
- projected system contains integers

~

/

12



-~

Theorem: If (y1, 21, ...) is an integer vector that satisfies the
reduced system in FM elimination, then (z1,y1, 21...) satisfies the

original system if there exists an integer x; between
imax(1/di(cs + dayr + dszy + ...), ....)| (over all lower bounds)
and

|min(1/b1(co + boyy + b3z + ...), .....)| (over all upper bounds).

Proof: trivial

.

13



4 N

Enumeration: Given a system Ax < b, we can use Fourier-Motzkin
elimination to generate a loop nest to enumerate all integer points
that satisty system as follows:

e pick an order to eliminate variables (this will be the order of

variables from innermost loop to outermost loop)

e climinate variables in that order to generate upper and lower

bounds for loops as shown in theorem in previous slide

Remark: if polyhedron has no integer points, then the lower bound
of some loop in the loop nest will be bigger than the upper bound
of that loop

- /

14




4 N

Existence: Given a system Az < b, we can use Fourier-Motzkin

elimination to project down to a single variable.

e If the reduced system has no integer solutions, then original
system has no integer solutions either.

e If the reduced system has integer solutions and all projections
were exact, then original system has integer solutions too.

e If reduced system has integer solutions and some projections
were no exact, be conservative and assume that original system

has integer solutions.

- /

15




Gﬂore accurate algorithm for determining existence

4x-7y=20

8

9

10

~

Just because there are integers between 4/37 and 74/13, we cannot

assume there are integers in feasible region.

However, if gap between lower and upper bounds is greater than or

equal to 1 for some integer value of y, there must be an integer in

@asible region.

/

16



-~

Dark shadow: region of y for which gap between upper and lower

bounds of x is guaranteed to be greater than or equal to 1.
Determining dark shadow region:

Ordinary FM elimination:

r<u,z>l=>u>I

Dark shadow:

r<u,x>l=>u>01+1

N

~

17



-~

For our example, dark shadow projection along x gives system

54 Ty/4
54+ Ty/4
14 — Ty/4
14 — Ty/4

'V

16/3 — 4y /3 + 1(Inequalities3, 1)
—9/2 + 3y/2 + 1(Inequalities3, 4)
16/3 — 4y /3 + 1(Inequalities2, 1)
—9/2 4 3y /2 4 1(Inequalities2, 4)

AVARNAVARRAVS

=>
66/13 > y > 16/37

There is an integer value of y in this range => integer in polyhedron.

N

~

/

18



More accurate estimate of dark shadow

x = 1/b1(c2+b2y+b3z+...)

| | \ x = 1/d1(c3+d2y+d3z+...)
gap is some

multiple of 1/b1 gap is some multiple of 1/d1

For integer values of y1,z1,...., there is no integer value x1 between
lower and upper bounds if

1/d1(c3+d2y1+d3z1+...) - 1/b1(c2+b2yl+b3z1+...) +1/bl+1/d1 <=1

This means there is an integer between upper and lower bounds if

1/d1(c3+d2y1+d3z1+...) - 1/b1(c2+b2yl+b3z1+...) +1/bl+1/d1 > 1

To convert this to >=, notice that smallest change of |hs value is 1/b1d1.

So the inequality is

1/d1(c3+d2y1+d3z1+...) - 1/bl(c2+b2yl+b3z1+...) +1/b1+1/d1 >= 1 + 1/b1d1
=>

1/d1(c3+d2yl1+d3z1+...) - 1/b1(c2+b2yl+b3z1+...) >= (1 - 1/b1)(1 - 1/d1)

19




Note: If (by = 1) or (d =

shadow constraint

1), dark shadow constraint = real

20




Example:

3r > 16 — 4y
dr < 20+ Ty

Real shadow: (20 + Ty) *x 3 > 4(16 — 4y)
Dark shadow: (20 4 7y) * 3 — 4(16 — 4y) > 12
Dark shadow (improved): (20 4 7y) * 3 — 4(16 —4y) > 6

N

21



4 N

What if dark shadow has no integers?

There may still be integer points nestled closely between an upper

and lower bound.

+ +  + + + + +
dark —|_ ..~ <
shadow |

projected system

22



-~

Conservative approach:

e if dark shadow has integer points, deduce correctly that
original system has integer solutions
e if dark shadow has no integer points, declare conservatively

that original system may have integer solutions

Another alternative: if dark shadow has no integer points, try

enumeration

.

23



~

One enumeration idea: splintering

dark |
shadow

X

Scan the corners with hyperplanes, looking for integer points.

Generate a succession of problems in which each lower bound is replaced
with a sequence of hyperplanes. How many hyperplanes are needed?

Equation for lower bound: x = 1/b1(c2+b2y+b3z+....)

Hyperplanes:
x = 1/b1(c2+b2y+b3z+....)
X = 1/b1(c2+b2y+b3z+....)+ 1/bl
x = 1/b1(c2+b2y+b3z+....)+ 2/bl
x = 1/b1(c2+b2y+b3z+....)+ 3/bl

>-<';ulnllbl(c2+b2y+b32+....)+ 1 (in dark shadow region; if this is integer, so is

24



-~

.

Engineering

e Use matrices and vectors to represent inequalities.

[ -3 —4

4 7
4

Y

e lower bounds and upper bounds for a variable can be

VAN

—16
06
20

9

determined by inspecting signs of entries in column for that

variable

e casy to tell if exact projection is being carried out
e Fourier-Motzkin elimination is carried out by row

operations on pairs of lower and upper bounds. For

example, eliminating x:

/

26



(o 5\ | 104]

0 -—-37 T —4
<

0 13 Y 74

\o -1/ | 38

Dark shadow and real shadow computations should be carried
out simultaneously to share work (only vector on rhs is
different)

Handle equalities first to reduce number of equations. Find
(parameterized) solution to equalities and substitute solution
into inequalities.

Keep co-efficients small by dividing an inequality by gecd of
co-efficients if gcd is not 1.

Check for redundant and contradictory constraints.

Do exact projections wherever possible. J

27



4 N

e Eliminate equations with semi-constrained variables (no upper
or no lower bound).

DO 10 I =1, N
X(I) = ...X(1-1)...

Flow dependence:
Iw = Ir - 1
1 <= 1Iw <= Ir <= N

N only has an lower bound (N >= Ir) which can always be satisfied
given any values of (Ir,Iw). So eliminate the constraint from

consideration.

N /

28




	depAnalysis
	inequalities



