Dependences
and
Transformations

Overview

 Dependence
e Binary relation between iteration space points
e Can be computed using ILP calculator

 Dependence abstractions
* Distance vectors
* Direction vectors
e Dependence matrix

e Unimodular transformations
 Permutation, skewing, reversal and compositions
e Representation using unimodular matrices

e Synthesizing unimodular transformations
e Converting a loop into a fully permutable loop nest

Dependence

(e

'onsider single loop case first:

DO I =1, 100
X(2I+1) =X(I)...

Flow dependences between iterations:
Iteration 1 writes to X(3) which is read by iteration 3.

Iteration 2 writes to X(5) which is read by iteration 5.

Iteration 49 writes to X(99) which is read by iteration 99.

If we ignore the array locations and just think about dependence

between iterations, we can draw this geometrically as follows:

Dependence arrows always go forward in iteration space. (eg. there

cannot be a dependence from iteration 5 to iteration 2)

.

/

4 N

Intuitively, dependence arrows tell us constraints on

transformations.

L o= I
0 1 2 3 4 5 6 7 8 9 10

Suppose a transformed program does iteration 2 before iteration 1.

OK!

Transformed program does iteration 3 before iteration 1. Illegal!

\ /

Formal view of dependence
- ™

Formal view of a dependence: relation between points in the

iteration space.

DO I =1, 100
X(2I+1) =X(D)...

Flow dependence = {({w,2lw + 1)1 < [w < 49}

(Note: this is a convex set)

In the spirit of dependence, we will often write this as follows:

Flow dependence = {({w — 21w + 1)|1 < [w < 49}

o

4 A

2D loop nest

DO 10 I = 1,100
DO 10 J = 1,100
10 X(I,J) = X(I-1,J+1) + 1

Dependence: relation of the form (Iy,J1) — (12, J2).

Picture 1n 1teration space:

J \.

5 iy k!

4 source target
Py 9

3 (1rJn) (12,J2)

2

1

Dependence arrows are lexicographically positive

- N

Legal and illegal dependence arrows:

L

— legal dependence arrows

---= illegal dependence arrows

If (A — B)is a dependence arrow, then A must be

lexicographically less than or equal to B.

o /

-

Dependence relation can be computed using ILP calculator

DO 10 I = 1,100
DO 10 J = 1,100
10 X(I,J) = X(I-1,J+1) + 1
Flow dependence constraints: (1., J,) — (I, J,)
o | < Tw, Ir Jw,Jr <100
e (lw,Juw)=<(Ir,Jr)
o [,=1 —1
o J,=J +1

Use ILP calculator to determine the following relation:

D={{w,Jw)— ({w+1,Jw—1D|(1 <Tw<99) A (2 < Jw < 100)}

o

Dependence abstractions

* |[n practice, working with the full dependence relation
for a loop nest is expensive and difficult

e Usually, we use an abstraction of dependence relation
e Summary information about dependence

e Summary is an over-approximation of actual dependence
relation

 Two abstractions are popular
e Distance vectors

* Direction vectors
e Dependence matrix: collection of distance/direction vectors

-

Distance/direction: Summarize dependence relation

Look at dependence relation from earlier slides:
1(1,2) = (2,1),(1,3) — (2,2),..(2,2) — (3,1)...}

Difference between dependent iterations = (1, —1). That is,

L I I S Y R

(L, Jw) — (I, J,) € dependence relation, implies
[?‘ — I-u.l =1
Jr — J-u.l = —1

We will say that the distance vectoris (1,—1).

~

Note: From distance vector, we can easily recover the full relation.

In this case, distance vector is an exact summary of relation.

o

/('onlputing distance vectors for a dependence

DO I =1, 100
X(2I+1) =X(I)...

Flow dependence:
1 < Tw<Ir <100
2lw+1 = Ir
Flow dependence = {({w,2/w + 1)|1 < [w < 49}
Computing distance vectors without computing dependence set:
Introduce a new variable A = Ir — Iw and project onto A
1 < Jw<Ir <100
2Iw+1 = Ir
A = Ir—1w

\Solutionz A ={d]2 <d <50}

-

Example:2D loop nest

DO 10 I = 1,100
DO 10 J = 1,100
10 X(I,J) = X(I-1,J+1) + 1

Flow dependence constraints: (1, Ju) — (I, J;)
Distance vector: (A1,Q2) = (I, — Ly, Jr — Ju)
o 1 < Jw,Ir, Jw,Jr <100

® (Iu;, Jm) ~< (I'r"; !L_I)
® IU.? = [1 —1
o J,=J,+1

o (A1,80) = (I =Ly Jr — Ju)

Solution: (A;,As) = (1,—1)

o

/Direction vectors Example: \

DO 10 I = 1,100
10 X(2I+1) = X(I) + 1

Flow dependence equation: 2/, +1 = I,.
Dependence relation: {(1 — 3),(2 —5),(3 —=7),...} (1).

No fixed distance between dependent iterations!

But all distances are +ve, so use direction vector instead.
Here, direction = (+).

Intuition: (+) direction = some distances in range [1, oo)
In general, direction = (+) or (0) or (-).

Also written by some authors as (<), (=), or (>).
Direction vectors are not exact.

(eg):if we try to recover dependence relation from direction (+), we

get bigger relation than (1):

\{(1—>2)(1—>3),...,(1—>100),(2—>3),(Q—>4),...} /

/Directions for Nested Loops
Assume loop nest is (I,J).
If (I1,J1) — (I2,J2) € dependence relation, then
Distance = (Iy — Iy, Jo — Jy)
Direction = (sign(I> — I), sign(Jo — J1))

J
Legal direction vectors:
(+) (0.5
. + -}‘ . (+9-,) (090)
* {00 (+,0)
+0)
/ N 04) The following direction vectors cannot exist:
. . .-"fll T
' +}[(Oa-) (-9+.)
h (~0)
) | (-a-)

\Vedid dependence vectors are lexicographically positive.

/

/How to compute Directions: Use IP engine

DO 10 I = 1, 100
X(£(I)) = ...
10 = ...X(g(I))..

Focus on flow dependences:

fly) =g(1)

1 <7, <100

1 <1, <100
First, use inequalities shown above to test if dependence exists in
any direction (called (*) direction).

If IP engine says there are no solutions, no dependence.
Otherwise, determine the direction(s) of dependence.

Test for direction (+): add inequality I, < I,
Test for direction (0): add inequality I, = I,
\ In a single loop, direction (—) cannot occur.

/Computing Directions: Nested Loops

Same idea as single loop: hierarchical testing

(*, %)
~_
(+,%) (0, *) (-, %) ' illegal
/\\ \, directions
/ |
] |

(+.1) (+.0) (+.-) 0.4 ((},(}}\Q /

I

Figure 1: Hierarchical Testing for Nested Loop

Key ideas:

(1) Refine direction vectors top down.
(eg),no dependence in (x,) direction

= 1o need to do more tests.

\(‘2) Do not test for impossible directions like (—, x).

Example

DO I = 1,N
DO J = 1,N
X(I,J) = ...X(I,I)...
UNE A +

J‘\l —= anti-dependence

Tt T * — flow dependence

I G [0} {0y [0
\+ ,I \of \#

+ o+ £+ o+ N
/ anti flow

/L'inoar system for anti-dependence:
L, =1,
Jop =1,
1<I1,.1..Jy,,J- <N
(I, J) = (L, Jw)
Al= (I, —1,)
A2 =(J,—J)
Projecting onto Al and A2, we get
Al =0
0<A2<(N-1)

So directions for anti-dependence are

0 and O

\0 +

Dependence matrix

Dependence matrix for a loop nest

Matrix containing all dependence distance/direction vectors for all

dependences of loop nest.

In our example, the dependence matrix is

(2 °)

Using dependence matrices

J \Y%

oo 00000 °
oo 0000 o0
oo 000 o0 e
oo 00 oo 00
o0 0 o0 000
o0 (RN NN
° 'EEEEREEREEK

I U

-

DO I= I,N o N\[1] [u DOU=1,N
DO J=1IN 1 0/ 11 Y DOV =1U

11 12 - o 11] 2
— 5 T T

J1 J2 71 12

Dependence distance = {[2‘“ } Distance between iterations =
2-J1

) 12 -11 J2 -J1
T 12 T 11 =T - — .
12 J1 J2 -J1 12 -11

Check for legality: interchange positions in distance/direction vector & check for lex +ve

If transformation P is legal and original dependence matrix is D, new dependence matrix is T*D.

Using dependence matrices

Correctness of general permutation
Transformation matrix: 7'

Dependence matrix: D

Matrix in which each column is a distance/direction vector
Legality: T.D > 0

Dependence matrix of transtormed program: 1D

Conclusions

Traditional position: exact dependence testing (using IP engine) is

too expensive
Recent experience:

(i) exact dependence testing is OK provided we first check for easy

cases (ZIV strong SIV, weak SIV)
(i) IP engine is called for 3-4% of tests for direction vectors

(iii) Cost of exact dependence testing: 3-5% of compile time

Unimodular transformations

Overview

e Unimodular transformations

e Can be represented by unimodular matrix
* Integer matrix with determinant of 1 or -1

* Integer equivalent of orthogonal matrix in numerical linear
algebra

e Permutation, skewing, reversal
e Compositions of these transformations

e Synthesizing unimodular transformations for
locality
e Making a loop nest fully permutable to enable tiling

Loop permutation

| V
oo 00000)
T ENREENE)
A o0 0
oo e o0 e 0o oo
e oo 'EE R R
o0 e 00000
° EEEEREEREE
I U
DO 1= I,N o NN U DOU=1,N
DO J=1N 1ol Vv DOV=1,U

. e 5
T 11 T 12
J1 J2

11 2]
—
J1 12
12 -11 } Distance between iterations

Dependence distance {
12 -171
12 1 T 12-11 | _|J2-11
IJQ - 1 J2 -1 2-11

Check for legality: interchange positions in distance/direction vector & check for lex +ve

\ If transformation P is legal and original dependence matrix is D, new dependence matrix is T*D. /

//

[Loop Skewing: a linear loop transformation

.
M o
v [Iy N |
J o e ee e o0 e
e e e -, o0 o @
&.- 1o il [u o-e 00
l\lll '. | = =8 &
\\- o e V11 V o0
e e e .
:\l"
I u

/

Skewing of inner loop by outer loop: (1 (k 1s some fixed mnteger)

0)
k 1/
Skewing of inner loop by an outer loop: always legal

New dependence vectors: compute T*D

In this example, D= [1 } T*D = LIJ

This skewing has changed dependence vector but 1t has not brought dependent iterations

\ closer together....

/

/' Skewing outer loop by inner loop

.

—

v

.

I -
|.; N 9
o 11| |v
Outer loop skewing: |'I (IJ]f'|
1 |

Skewing of outer loop by inner loop: not necessarily legal

In this example, D= [1}
-1

™D = {ﬂ} incorrect

1

Dependent iterations are closer together (good) but program 1s illegal (bad).

How do we fix this??

-

Loop Reversal:a linear loop transformation

5- R _q

0 I U 0
U= [-1][1]
DO 1= I.N | DOU= -N,-1
XD =142 X(-U)y=-U+2 |

Transtormation matrix = [-1]

Another example: 2-D loop, reverse inner loop |:U:|: |:1 nj |:I:|
v 0 - J

Legality of loop reversal: Apply transtormation matrix to all dependences & verify lex +ve

Code generation: easy

N

Transformation: skewing followed by reversal

In final program, dependent iterations are
close together!

Composition of linear transformations
= another linear transformation!

Composite trans formation matrix is

|’| 0\ [1 1 f1 1)

x —
0 -1 ,-l L0 1.;' 0 - .;'

K\de for composite transformations

1‘.’.'

G

How do we synthesize this composite transformation??

4 N

Some facts about permutation/reversal/skewing

e Transformation matrices for permutation /reversal/skewing are
unimodular.
e Any composition of these transformations can be represented
by a unimodular matrix.
e Any unimodular matrix can be decomposed into product of
permutation/reversal /skewing matrices.
e Legality of composite transformation 1" check that 7D = 0.
(Proof: T3 % (To* (Ty D)) = (T3« 15« Ty) = D.)
e Code generation algorithm:
e Original bounds: A« 1 <¥b
e ITransformation: U =71 % [

e New bounds: compute from A+ 7T 'U < b

N /

4 N

Synthesizing composite transformations using matrix-based

approaches

e Rather than reason about sequences of transformations, we can
reason about the single matrix that represents the composite
transformation.

e Enabling abstraction: dependence matrix

N /

-

In general, tiling is not legal.

N2

Tiling s illegal!

Tiling is legal if loops are fully permutable (all permutations of

loops are legal).
Tiling is legal if all entries in dependence matrix are non-negative.
e Can we always convert a perfectly nested loop into a fully

permutable loop nest?

e When we can. how do we do it?

N

4 N

Theorem: If all dependence vectors are distance vectors, we can

convert entire loop nest into a fully permutable loop nest.

Example: wavelront

Dependence matrix is { ! \
)

Dependence matrix of transformed program must have all positive

entries.

So first row of transformation can be (1 0).

Second row of transformation (m 1) (for any m > 0).

(General idea: skew inner loops by outer loops sufficiently to make

all negative entries non-negative.

N /

@ TR

Transformation to make first row with negative entries into row

with non-negative entries

| -m -n -k | : first row
| | with negative entries

(a) for each negative entry in the first row with negative entries,

find the first positive number n the corresponding column
assume the rows for these positive entries are a,b etc as shown above

(b) skew the row with negative entnies by appropnate multiples of
rows ab....
For our example, multiple of row a = ceiling(n/p2)
multiple of row b = ceiling(max(m/p1.k/p3))

Transformation: ,"I I \
| 00 ..0ceiling(n'p2) 0 0 cetling(max(m/p1.k/p3))0..]

.

-

(General algorithm for making loop nest fully permutable:

If all entries in dependence matrix are non-negative, done.

Otherwise.

1. Apply algorithm on previous slide to first row with
non-negative entries.

2. Generate new dependence matrix.

3. If no negative entries. done.

4. Otherwise, go step (1).

-

Result of tiling transformed wavefront

]] [EEE - t//.
3 Q\ Q\ '\ '\ K » 1 U- 5 - - .7 "/- -
4 “e/ e e [e e (10} 4| |e—ete e o »
3 '\\\\\\\ * \l 1,.-'| 3 e s
2 o/ [w e e - 2 " e 0.
1 I\\ k :\ 1 - . ® @ - @
I I
1 2 3 4 5 1 2 3 4 5
Original loop Tiled fully permutable loop

Tiling generates a 4-deep loop nest.

Not as nice as height reduction solution, but it will work fine for
locality enhancement except at tile boundaries (but boundary

points small compared to number of interior points).

N

/

What happens with direction vectors?
In general, we cannot make loop nest fully permutable.
+
Example: D =
+
Best we can do is to make some of the loops fully permutable.

We try to make outermost loops fully permutable, so we would
interchange the second and third loops. and then tile the first two

loops only.

éode Generation for Transformed Loop Nest \
Two problems: (1) Loop bounds (2) Change of variables in body
(1) New bounds:
Original bounds: A *x I < b where A is in echelon form
Transformation: U =T x [

Note: for loop permutation, 1" is a permutation matrix

=> Inverse 1s integer matrix
So bounds on U can be written as A« T U < b

Perform Fourier-Motzkin elimination on this system of

inequalities to obtain bounds on U.
(2) Change of variables:
I=T"'U

\Replace old variables by new using this formula /

5

Example:

DO I= 1,N
DOJ=IN
X(LJ)=5

|
zZ <o Z 4

[]
[BN)
o 06 0o
o 6 606 ©
o 6 6 60 ©
o 6 6 6 0 ©
O 6 © 6 6 0 O
DOU=1,N
DOV=1U
X(V,U)=5
1 0| [0 1] [U]
1 o] L1 0 \
1 -1
0 1

<

Fourier-Motzkin
elimination

-

1 -1 0
| 0 1] [N_|
0 -1 [U] |

0 1 Vi 7| N

-1 1 0
1 9] N

Projecting out V from system gives
1= U = N
Bounds for V are

1 =V = min(UN)

These are loop bounds given by FM elimination.
With a little extra work, we can simplify the upper bound of V to U.

/

4 N

Key points:

e Loop bounds determination in transformed code is mechanical.
e Polyhedral algebra technology can handle very general bounds
with max’s in lower bounds and min’s in upper bounds.

e No need for pattern matching etc for triangular bounds and the
like.

summary

 Dependence relation
e Binary relation between points in iteration space
e Can be computed using ILP calculator

* Dependence abstractions
e Summary of dependence relation
* Not as accurate but easier to compute and use

e Distance/direction vectors
e Put them together in dependence matrix

e Unimodular transformations
e Can be represented using unimodular matrix
e permutation, skewing, reversal, compositions of these

* Synthesize unimodular transformations using dependence
matrix as driver

e Making a loop nest fully permutable

	Dependences�and�Transformations
	Overview
	Dependence
	Slide Number 4
	Formal view of dependence
	Slide Number 6
	Dependence arrows are lexicographically positive
	Slide Number 8
	Dependence abstractions
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Example
	Slide Number 18
	Dependence matrix
	Using dependence matrices
	Using dependence matrices
	Slide Number 22
	Unimodular transformations
	Overview
	Loop permutation
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Summary

