CS 380C.:
Advanced Topics in Compilers

Administration

e |nstructor: Keshav Pingali

— Professor (CS, ICES)

— Office: POB 4.126A

— Email: pingali@cs.utexas.edu
e TA: Sridhar Gopinath

— PhD student in CS

— Email:sridhar@cs.utexas.edu

Meeting times

e |ecture:
— TTh 12:30-2:00PM, GDC 2.210

e Office hours:
— Keshav Pingali: Tuesday 3-4 PM, POB 4.126

Prerequisites

Compilers and architecture

— Some background in compilers

— Basic computer architecture
Machine learning

— Basic knowledge of machine learning
Software and math maturity

— Able to implement large programs in C/C++
— Comfortable with abstractions like graph theory

Ability to read research papers and understand
content

Course material

e \Website for course

e All lecture notes, announcements, papers,
assignments, etc. will be posted there

e No assigned book for the course
— post papers and other material as appropriate

http://www.cs.utexas.edu/users/pingali/CS380C/2019/index.html

Coursework

4-5 programming assignments and problem sets
Mid-semester exam

Paper presentations

— Second half of semester

Term project

— Substantial implementation project in area of
compilers

Final exam (at my discretion)

Why do we need
compilation technology?

e Traditional view:

Translation: high-level language (HLL) programs to low-level
machine code

Optimization: reduce number of arithmetic operations by
optimizations like common subexpression elimination

lgnore data structures: too complex to analyze

e Modern view:

Collection of automatic technigues for extracting meaning from
and transforming programs

Useful for debugging, optimization, verification, detecting
malware, translation,

Optimization:
e Restructure (reorganize) computation to optimize locality and parallelism

e Reducing amount of computation is useful but not critical
e Optimizing data structure accesses is critical

Why do we need translators?

e Bridge the “semantic gap”

— Programmers prefer to write programs at a high level of
abstraction

— Modern architectures are very complex, so to get good
performance, we have to worry about a lot of low-level details

— Compilers let programmers write high-level programs and still get
good performance on complex machine architectures
e Application portability
— When a new ISA or architecture comes out, you only need to
reimplement the compiler on that machine
— Application programs should run without (substantial) modification
— Saves programming effort

e Summary: performance + portability of HLL programs

Getting performance

Programs must exploit

— coarse-grain (thread-level) parallelism

— memory hierarchy (L1,L2,L3,..)

— instruction-level parallelism (ILP)

— registers

How important is it to exploit these hardware features?

— If you have n cores and you run on only one, you get at
most 1/n of peak performance, so this is obvious

— Memory hierarchy: typical latencies
e L1 cache:~ 1 cycle
e |2 cache:~ 10 cycles
e Memory: ~ 500-1000 cycles

e |f most memory accesses hit in L1/L2 cache, performance is much
better than if most of accesses go to memory

Microprocessor trend data

40 Years of Microprocessor Trend Data
7
10 ' ' ' ' Transistors
S IR N SR - 4,08 °] (thousands)
:ﬁ"“:‘
10° I N N o, Y RN ST | Single-Thread
: : : A A p 'Y .
g | gdaa 'L Performance
4 : | A“K‘A lrf U (SpecINT x 10°)
107 [‘{}f‘ """""""""""""""""""""" -
. Aapata ﬁ‘ % LT Frequency (MHz)
108 b AA{A..&;#,I T T -
s ee gl Typical Power
102 [b A "*;‘.""e"'!-"“v';";'v;f‘!‘“’?’v‘s? ----------- - (Watts)
A .:il vV "'v" A 0,*
s - | v v ¥ M 220 Number of
101 e SO SO hA AN/ 4 NN I N - .
A s H Ty g SV ge Logical Cores
Iy L v v vV vv : *8
0 . Y y NP 5 nooe
10 _" ‘. ’ ”EQ “MW ‘ E —
i | i |
1970 1980 1990 2000 2010 2020
Year
Original data up to the year 2010 collected and plotted by M. Harowitz, F. Labonte, . Shacham, K. Olukotun, L. Hammond, and C. Batten
New plot and data collected for 2010-2015 by K. Rupp
p Before 2005 o | < After 2005 "

Intel Skylake chip

Front End Instruction)
Cache Tag L1 Instruction Cache
LOP Cache 32KiB 8-Way Instruction
Tag TLB
16 Blcycle
Branch -
Predictor Instruction Fetch & PreDecode
(BPL) (16 B window)
- ¥ ¥ ¥ ¥ 'i 2
Instruction Queue N \ﬁ,ﬁ
(50, 2x25 entries) <
a
o
MicroCode S4Way Decode
SEqF“‘:G“Er Complex|[Simple |[Simple |[Simple |[Simple
TS FELT Decoder || Decoder || Decoder || Decoder || Decader
Tager. v r ar o Stack
Engine
l i
System Decoded Stream Buffer (DSB) e
{pOP Cachel
(1.5k pOPs; 8-Way)
Agent (548 windaw) Mi!
W’J ““m“_“ Allocation Queue (IDQ) (128, 2x64 LOPs) |
.
display,
MOP pOP pOP pOP pOP pOP EranchﬂrdErBuffEr
memow | Register Alias Table (RAT) |ﬁ° (BOB) (qg E”VY)
I
&di® Repare [alocste [REUememt [onus ome nzwma o] |
H
controllers 118 5 .lp ..l> .ip ,l., ,'., .lp .l.,
T =
g iy
S 1 nteger Physical Register Fild Scheduler vector Physical Register File|
LA R m— N
v
S| o
S AN 32B/cycle
@ m O
=L =1
w0 = 0 To L3
= &=
=
) § ()
=<
Exec ution E ng' ne Store Buffer & Forwarding
(56 entries) %
~
ili:\x \ ?1_
3 <
Data TLE | =
Load Buffer] L1 Dﬁ_‘ta Cache
(72 entries) | & 32KiB 8-Way
hd Line Fill Buffers (LFB)
(10 entries)

Memory Subsystem

Block diagram of each core'

Software problem

e Problem:

— Programs obtained by expressing most algorithms in
the straight-forward way perform poorly

— Worrying about performance when coding algorithms
complicates the software process greatly

e |Let us study cache optimization to understand this

e Caches are useful only if programs have
locality of reference

— temporal locality: program references to given memory
address are clustered together in time

— spatial locality: program references clustered in address
space are clustered in time

Example: matrix multiplication

forI=1, N //assume arrays stored in row-major order
forJ=1,N
for K=1,N
C(L,))=CLJ) + A(LK)*B(K.,J)

e All six loop permutations are computationally equivalent
(even modulo round-off error).

e Great algorithmic data reuse: each array element is
touched O(N) times!

e However, execution times of the six versions can be very
different if machine has a cache.

IJK version (large cache)

|
B
forI=1, N A | If
forJ=1,N
forK=1,N ﬁ " e
C()) =CJ)) + A(LK)*B(K,J)

» Large cache scenario: matrices are small enough to fit into cache

— Assume only cold misses, no capacity or conflict misses
— Miss ratio:

« Data size = 3 N?

« Assume line size = b floating-point numbers

e Miss ratio = 3 N?/b*4N3 = 0.75/bN = 0.019 (b = 4,N=10)

IJK version (small cache)

|
B
forI=1, N A | If
forJ=1,N
forK=1,N ﬁ " e
C()) =CJ)) + A(LK)*B(K,J)

Small cache scenario: matrices are large compared to cache/row-
major storage

— Cold and capacity misses (ignore conflict misses)

— Miss ratio:
« C: N?/b misses (good temporal locality)
« A:N3/b misses (good spatial locality)
« B: N3misses (poor temporal and spatial locality)
» Miss ratio = 0.25 (b+1)/b=0.3125 (for b = 4)

MMM Experiments

 Simulated L1 Cache Miss Ratio for Intel Pentium 111
— MMM with N =1...1300
— 16KB 32B/Block 4-way 8-byte elements

Awarage of Miss#|

0.55

0.5 | T

0.45 | I

0.4 '

Farm

0.35 f

—ijk

0.3 | I —— ik
ﬂ'\ jik
0.25 It | 1L 13l a1 Jki
| 1y R L — ki

0.2 I | 'J —Kji
| | — (blank)

0.15 | |'

0.1 A | |

0.05

mmm
mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm
mmm

Quantifying performance differences

forI=1, N //assume arrays stored in row-major order
forJ=1,N
for K=1,N
C(LJ))=C1J)) + ALK)*B(K,J)

« Typical cache parameters:
— L2 cache hit: 10 cycles, cache miss 70 cycles

e Time to execute IKJ version:
2N3 + 70*%0.13*%4N3 + 10*0.87*4N3 = 73.2 N3

* Time to execute JKI version:

2N3 + 70%0.5%4N> + 10*0.5%4N> = 162 N’
 Speed-up =2.2
« Key transformation: loop permutation

0.55

0.5

0.45

0.4

0.35

0.3

0.25

0.z

0.15

0.1

0.05

Even better.....

Break MMM into a bunch of smaller MMMs so that large cache model is true

for each small MMM
=>» large cache model is valid for entire computation
=> miss ratio will be 0.75/bt for entire computation where ty

%
I ! e
7
i / FD:ni'k
i i _
7 i —
| ____‘. _l_ II | [(Ijlank]l

‘ el —
‘ Ti||'| /

/

mmm
mm
= F T 4 A4 A AR A F FoThRELZoe SRR FE®E ¥ EEFSZFEEEEFREEZTENALLEASAEE S E

Loop tiling/blocking

_Jt , B
fort=1,N,t J,
for Jt =1,N,t .
for Kt =1,N.t A r
for I = It,It+t-1
for J = Jt,Jt+t-1 It l t 't
for K = Kt,Kt+t-1 I l-t """" . .
C(L,J) = CLH+ALK)*B(K,J) e i A
K C
 —
Kt

* Break big MMM 1nto sequence of smaller MMMs where
cach smaller MMM multiplies sub-matrices of size txt.

e Parameter t (tile size) must be chosen carefully
— as large as possible
— working set of small matrix multiplication must fit in cache

Speed-up from tiling/blocking

e Miss ratio for block computation
= miss ratio for large cache model
=0.75/bt
=0.001 (b =4, t =200)
e Time to execute tiled version =
2N3 + 70*0.001*4N3+ 10*0.999*4N3 = 42.3N3
e Speed-up over JK| version =4

Observations

Locality optimized code is more complex than high-level algorithm.

Locality optimization changed the order in which operations were
done, not the number of operations

“Fine-grain” view of data structures (arrays) is critical
Loop orders and tile size must be chosen carefully

— cache size is key parameter

— associativity matters

Actual code is even more complex: must optimize for processor
resources

— registers: register tiling

— pipeline: loop unrolling

— Optimized MMM code can be ~1000’s of lines of C code
Wouldn’t it be nice to have all this be done automatically by a
compiler?

— Actually, it is done automatically nowadays...

Performance of MMM code produced by
Intel’s Itanium compiler (-O3)

GFLOPS relative to -O2; bigger is better
92% of Peak

30 Performance

25

20

15

10

factor faster than -02

Goto BLAS obtains close to 99% of peak, so compiler 1s pretty good!

Chart1

		-O1

		-O2

		+ prefetch

		+ interchange

		+ unroll-jam

		+ blocking = -O3

		gcc -O4

factor faster than -O2

GFLOPS relative to -O2; bigger is better

0.75

1

0.9

6.5

20

25.5

0.4

Sheet1

		-O1		0.15		0.75

		-O2		0.2		1

		+ prefetch		0.18		0.9

		+ interchange		1.3		6.5

		+ unroll-jam		4		20

		+ blocking = -O3		4.7		25.5

		gcc -O4		0.08		0.4

Sheet1

		

GFLOPS relative to -O2; bigger is better

Sheet2

		

Sheet3

		

Discussion

Exploiting parallelism, memory hierarchies etc. is very
Important

If program uses only one core out of n cores in processors,
you get at most 1/n of peak performance

Memory hierarchy optimizations are very important
— can improve performance by 10X or more

Key points:

— need to focus on data structure manipulation

— reorganization of computations and data structure layout are key

— few opportunities usually to reduce the number of computations
except in address arithmetic

Organization of modern compiler

L Source program

Front—end

’ ! \

,Our focus
High—level Optimizer ‘

Low—level Optimizer

Low—level representation (3—address code.....)

Augmented low—level representation

Code generator

1
/

\ 4
N 7
B R e i- Assembly-er-maehine code

Front-end

e Goal: convert linear representation of program
to hierarchical representation

— Input: text file
— Qutput: abstract syntax tree + symbol table

e Key modules:

— Lexical analyzer: converts sequence of characters in
text file into sequence of tokens

— Parser: converts sequence of tokens into abstract
syntax tree + symbol table

— Semantic checker: (eg) perform type checking

High-level optimizer

Goal: perform high-level analysis and
optimization of program

Input: AST + symbol table from front-end

Output: Low-level program representation
such as 3-address code

Tasks:

— Procedure/method inlining
— Array/pointer dependence analysis

— Loop transformations: unrolling, permutation,
tiling, jamming,....

Low-level optimizer

Goal: perform scalar optimizations on low-level
representation of program

Input: low-level representation of program such as
3-address code

Output: optimized low-level representation +
additional information such as def-use chains

Tasks:

— Dataflow analysis: live variables, reaching definitions, ...

— Scalar optimizations: constant propagation, partial
redundancy elimination, strength reduction,

Code generator

Goal: produce assembly/machine code from
optimized low-level representation of program

Input: optimized low-level representation of
program from low-level optimizer

Output: assembly/machine code for real or
virtual machine

Tasks:

— Register allocation
— Instruction selection

JIT compilation

e Traditionally, all phases of compilation were completed
before program was executed

e New twist: virtual machines
— Offline compiler:

e Generates code for virtual machine like JVM
— Just-in-time compiler:

e Generates code for real machine from VM code while program is
executing

e Advantages:
— Portability

— JIT compiler can perform optimizations for particular input

My lectures (scalar stuff)

Introduction

— compiler structure, architecture and compilation, sources of improvement
Control flow analysis

— basic blocks & loops, dominators, postdominators, control dependence
Data flow analysis

— lattice theory, iterative frameworks, reaching definitions, liveness
Static-single assignment form (SSA)

— static-single assignment, constant propagation.
Global optimizations

— loop invariant code motion, common subexpression elimination, strength
reduction.

Register allocation
— coloring, allocation, live range splitting.

Instruction scheduling (depending on schedule)
— pipelined and VLIW architectures, list scheduling.

My lectures (data structure stuff)

Array dependence analysis
— integer linear programming, dependence abstractions.

Loop transformations for array programs

— linear loop transformations, loop fusion/fission, enhancing
parallelism and locality

Self-optimizing programs
— empirical search, ATLAS, FFTW

Analysis of pointer-based programs
— points-to and shape analysis

Parallelizing graph programs

— amorphous data parallelism, exploiting amorphous data-
parallelism

Advanced topics for CS 380C

Optimizing machine learning programs
— Training and testing times can be large

* Models are getting more complex
* Lot of training data

— How for we optimize training and testing
times on modern architectures?
Exploiting machine learning in
compilers

— Some work 1n this area but no major
breakthroughs yet

— Active research topic

Course

— See website for partial list of papers we will
study 1in this area

— Papers will be presented by students

— Ideally, your paper presentation and course
project will be linked

Schedule for lectures

e See

e Some lectures will be given by guest
lecturers from my group and from industry

http://www.cs.utexas.edu/users/pingali/CS380C/2019/index.html

Reading assienments

My SIGARCH blogpost:

?
Mike O'Boyle’s survey article on using machine

learning in compilers

— Wang
and O’Boyle, arXiv:1805.03441

Eran Yahav's SIGPLAN blog post on machine
learning in compilers

Lecture slides on SAM

https://www.sigarch.org/the-unreasonable-ineffectiveness-of-machine-learning-in-computer-systems-research/
https://arxiv.org/abs/1805.03441
https://blog.sigplan.org/2019/08/22/from-programs-to-deep-models-part-1/
https://www.cs.utexas.edu/%7Epingali/CS380C/2019/lectures/sam.pdf

	CS 380C:�Advanced Topics in Compilers
	Administration
	Meeting times
	Prerequisites
	Course material
	Coursework
	Why do we need �compilation technology?
	Why do we need translators?
	Getting performance
	Microprocessor trend data
	Intel Skylake chip
	Software problem
	Example: matrix multiplication
	IJK version (large cache)
	IJK version (small cache)
	MMM Experiments
	Quantifying performance differences
	Even better…..
	Loop tiling/blocking
	Speed-up from tiling/blocking
	Observations
	Performance of MMM code produced by �Intel’s Itanium compiler (-O3)
	Discussion
	Organization of modern compiler
	Front-end
	High-level optimizer
	Low-level optimizer
	Code generator
	JIT compilation
	My lectures (scalar stuff)
	My lectures (data structure stuff)
	Advanced topics for CS 380C
	Schedule for lectures
	Reading assignments

