CS 380C: Advanced Topics in Compilers

Administration

- Instructor: Keshav Pingali
 - Professor (CS, ICES)
 - Office: POB 4.126A
 - Email: pingali@cs.utexas.edu
- TA: Sridhar Gopinath
 - PhD student in CS
 - Email:sridhar@cs.utexas.edu

Meeting times

- Lecture:
 - TTh 12:30-2:00PM, GDC 2.210
- Office hours:
 - Keshav Pingali: Tuesday 3-4 PM, POB 4.126

<u>Prerequisites</u>

- Compilers and architecture
 - Some background in compilers
 - Basic computer architecture
- Machine learning
 - Basic knowledge of machine learning
- Software and math maturity
 - Able to implement large programs in C/C++
 - Comfortable with abstractions like graph theory
- Ability to read research papers and understand content

Course material

- Website for course
 - http://www.cs.utexas.edu/users/pingali/CS380C/2019/index.html
- All lecture notes, announcements, papers, assignments, etc. will be posted there
- No assigned book for the course
 - post papers and other material as appropriate

Coursework

- 4-5 programming assignments and problem sets
- Mid-semester exam
- Paper presentations
 - Second half of semester
- Term project
 - Substantial implementation project in area of compilers
- Final exam (at my discretion)

Why do we need compilation technology?

Traditional view:

- Translation: high-level language (HLL) programs to low-level machine code
- Optimization: reduce number of arithmetic operations by optimizations like common subexpression elimination
- Ignore data structures: too complex to analyze

Modern view:

- Collection of automatic techniques for extracting meaning from and transforming programs
- Useful for debugging, optimization, verification, detecting malware, translation,
- Optimization:
 - Restructure (reorganize) computation to optimize locality and parallelism
 - Reducing amount of computation is useful but not critical
 - Optimizing data structure accesses is critical

Why do we need translators?

Bridge the "semantic gap"

- Programmers prefer to write programs at a high level of abstraction
- Modern architectures are very complex, so to get good performance, we have to worry about a lot of low-level details
- Compilers let programmers write high-level programs and still get good performance on complex machine architectures

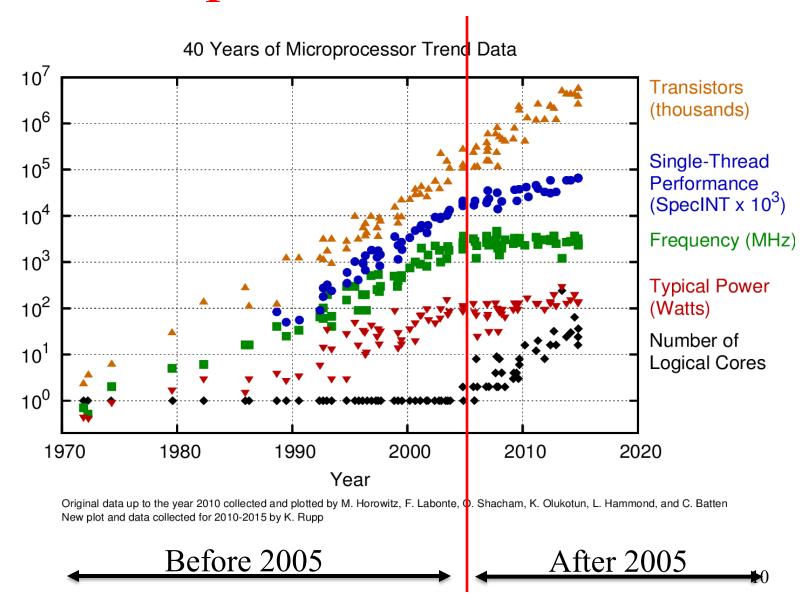
Application portability

- When a new ISA or architecture comes out, you only need to reimplement the compiler on that machine
- Application programs should run without (substantial) modification
- Saves programming effort
- Summary: performance + portability of HLL programs

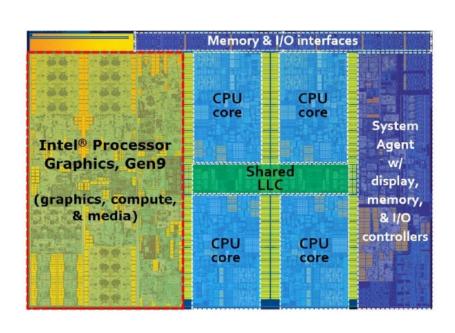
Getting performance

- Programs must exploit
 - coarse-grain (thread-level) parallelism
 - memory hierarchy (L1,L2,L3,..)
 - instruction-level parallelism (ILP)
 - registers
 - **–**
- How important is it to exploit these hardware features?
 - If you have n cores and you run on only one, you get at most 1/n of peak performance, so this is obvious
 - Memory hierarchy: typical latencies
 - L1 cache: ~ 1 cycle
 - L2 cache: ~ 10 cycles
 - Memory: ~ 500-1000 cycles
 - If most memory accesses hit in L1/L2 cache, performance is much better than if most of accesses go to memory

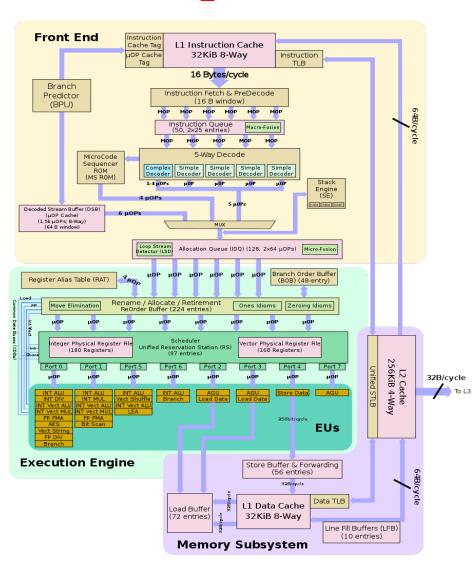
Microprocessor trend data



Intel Skylake chip



Chip



Block diagram of each core¹¹

Software problem

Problem:

- Programs obtained by expressing most algorithms in the straight-forward way perform poorly
- Worrying about performance when coding algorithms complicates the software process greatly
- Let us study cache optimization to understand this
- Caches are useful only if programs have locality of reference
 - temporal locality: program references to given memory address are clustered together in time
 - spatial locality: program references clustered in address space are clustered in time

Example: matrix multiplication

```
for I = 1, N //assume arrays stored in row-major order for J = 1, N for K = 1, N C(I,J) = C(I,J) + A(I,K)*B(K,J)
```

- All six loop permutations are computationally equivalent (even modulo round-off error).
- Great algorithmic data reuse: each array element is touched O(N) times!
- However, execution times of the six versions can be very different if machine has a cache.

IJK version (large cache)

B

for
$$I = 1$$
, N
for $J = 1$, N
for $K = 1$, N

$$C(I,J) = C(I,J) + A(I,K)*B(K,J)$$

- Large cache scenario: matrices are small enough to fit into cache
 - Assume only cold misses, no capacity or conflict misses
 - Miss ratio:
 - Data size = $3 N^2$
 - Assume line size = b floating-point numbers
 - Miss ratio = $3 N^2/b*4N^3 = 0.75/bN = 0.019$ (b = 4,N=10)

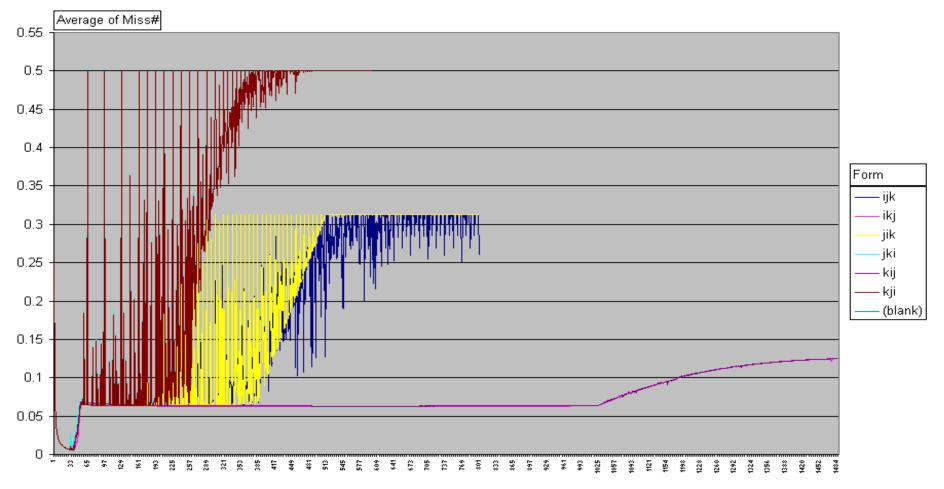
IJK version (small cache)

for
$$I = 1$$
, N
for $J = 1$, N
for $K = 1$, N
 $C(I,J) = C(I,J) + A(I,K)*B(K,J)$

- Small cache scenario: matrices are large compared to cache/row-major storage
 - Cold and capacity misses (ignore conflict misses)
 - Miss ratio:
 - C: N²/b misses (good temporal locality)
 - A: N³/b misses (good spatial locality)
 - B: N³ misses (poor temporal and spatial locality)
 - Miss ratio $\rightarrow 0.25 (b+1)/b = 0.3125 (for b = 4)$

MMM Experiments

- Simulated L1 Cache Miss Ratio for Intel Pentium III
 - MMM with N = 1...1300
 - 16KB 32B/Block 4-way 8-byte elements



Quantifying performance differences

```
for I = 1, N //assume arrays stored in row-major order for J = 1, N for K = 1, N C(I,J) = C(I,J) + A(I,K)*B(K,J)
```

- Typical cache parameters:
 - L2 cache hit: 10 cycles, cache miss 70 cycles
- Time to execute IKJ version:

$$2N^3 + 70*0.13*4N^3 + 10*0.87*4N^3 = 73.2 N^3$$

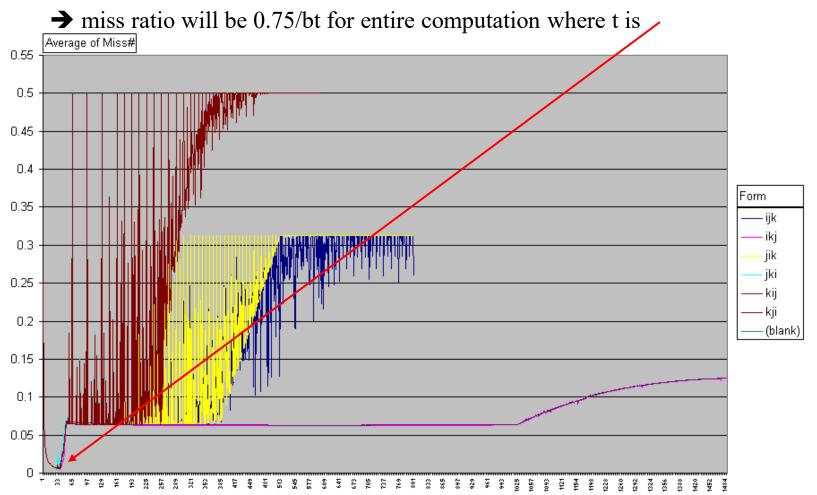
• Time to execute JKI version:

$$2N^3 + 70*0.5*4N^3 + 10*0.5*4N^3 = 162 N^3$$

- Speed-up = 2.2
- Key transformation: loop permutation

Even better.....

- Break MMM into a bunch of smaller MMMs so that large cache model is true for each small MMM
 - → large cache model is valid for entire computation



Loop tiling/blocking

```
for It = 1,N,t

for Jt = 1,N,t

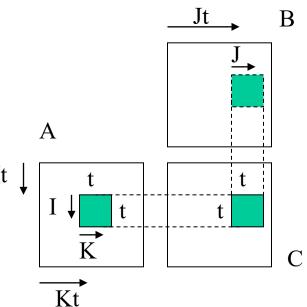
for Kt = 1,N,t

for J = It,Jt+t-1

for J = Jt,Jt+t-1

for J = Kt,Kt+t-1

J = C(J,J)+A(J,K)*B(K,J)
```



- Break big MMM into sequence of smaller MMMs where each smaller MMM multiplies sub-matrices of size txt.
- Parameter t (tile size) must be chosen carefully
 - as large as possible
 - working set of small matrix multiplication must fit in cache

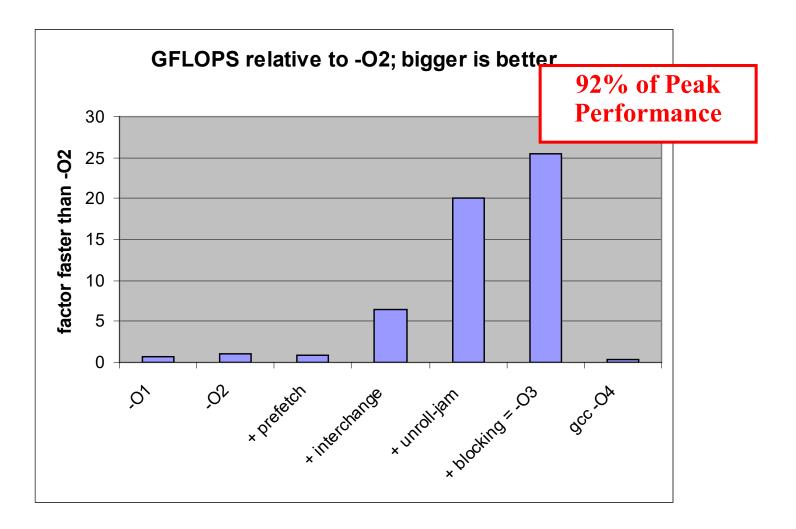
Speed-up from tiling/blocking

- Miss ratio for block computation
 - = miss ratio for large cache model
 - = 0.75/bt
 - = 0.001 (b = 4, t = 200)
- Time to execute tiled version = $2N^3 + 70*0.001*4N^3 + 10*0.999*4N^3 = 42.3N^3$
- Speed-up over JKI version = 4

Observations

- Locality optimized code is more complex than high-level algorithm.
- Locality optimization changed the order in which operations were done, not the number of operations
- "Fine-grain" view of data structures (arrays) is critical
- Loop orders and tile size must be chosen carefully
 - cache size is key parameter
 - associativity matters
- Actual code is even more complex: must optimize for processor resources
 - registers: register tiling
 - pipeline: loop unrolling
 - Optimized MMM code can be ~1000's of lines of C code
- Wouldn't it be nice to have all this be done automatically by a compiler?
 - Actually, it is done automatically nowadays...

Performance of MMM code produced by Intel's Itanium compiler (-O3)

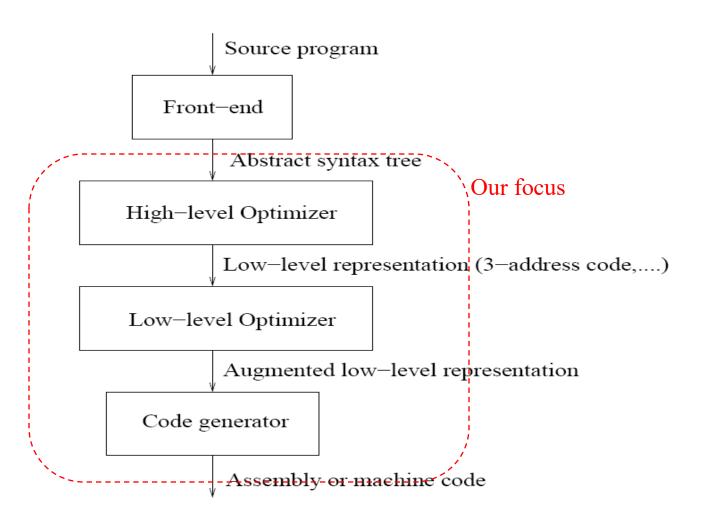


Goto BLAS obtains close to 99% of peak, so compiler is pretty good!

Discussion

- Exploiting parallelism, memory hierarchies etc. is very important
- If program uses only one core out of n cores in processors, you get at most 1/n of peak performance
- Memory hierarchy optimizations are very important
 - can improve performance by 10X or more
- Key points:
 - need to focus on data structure manipulation
 - reorganization of computations and data structure layout are key
 - few opportunities usually to reduce the number of computations except in address arithmetic

Organization of modern compiler



Front-end

- Goal: convert linear representation of program to hierarchical representation
 - Input: text file
 - Output: abstract syntax tree + symbol table
- Key modules:
 - Lexical analyzer: converts sequence of characters in text file into sequence of tokens
 - Parser: converts sequence of tokens into abstract syntax tree + symbol table
 - Semantic checker: (eg) perform type checking

High-level optimizer

- Goal: perform high-level analysis and optimization of program
- Input: AST + symbol table from front-end
- Output: Low-level program representation such as 3-address code
- Tasks:
 - Procedure/method inlining
 - Array/pointer dependence analysis
 - Loop transformations: unrolling, permutation, tiling, jamming,....

Low-level optimizer

- Goal: perform scalar optimizations on low-level representation of program
- Input: low-level representation of program such as 3-address code
- Output: optimized low-level representation + additional information such as def-use chains
- Tasks:
 - Dataflow analysis: live variables, reaching definitions, ...
 - Scalar optimizations: constant propagation, partial redundancy elimination, strength reduction,

Code generator

- Goal: produce assembly/machine code from optimized low-level representation of program
- Input: optimized low-level representation of program from low-level optimizer
- Output: assembly/machine code for real or virtual machine
- Tasks:
 - Register allocation
 - Instruction selection

JIT compilation

- Traditionally, all phases of compilation were completed before program was executed
- New twist: virtual machines
 - Offline compiler:
 - Generates code for virtual machine like JVM
 - Just-in-time compiler:
 - Generates code for real machine from VM code while program is executing
- Advantages:
 - Portability
 - IT compiler can perform optimizations for particular input

My lectures (scalar stuff)

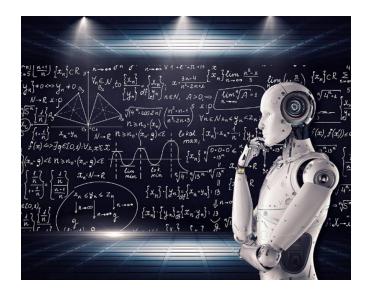
- Introduction
 - compiler structure, architecture and compilation, sources of improvement
- Control flow analysis
 - basic blocks & loops, dominators, postdominators, control dependence
- Data flow analysis
 - lattice theory, iterative frameworks, reaching definitions, liveness
- Static-single assignment form (SSA)
 - static-single assignment, constant propagation.
- Global optimizations
 - loop invariant code motion, common subexpression elimination, strength reduction.
- Register allocation
 - coloring, allocation, live range splitting.
- Instruction scheduling (depending on schedule)
 - pipelined and VLIW architectures, list scheduling.

My lectures (data structure stuff)

- Array dependence analysis
 - integer linear programming, dependence abstractions.
- Loop transformations for array programs
 - linear loop transformations, loop fusion/fission, enhancing parallelism and locality
- Self-optimizing programs
 - empirical search, ATLAS, FFTW
- Analysis of pointer-based programs
 - points-to and shape analysis
- Parallelizing graph programs
 - amorphous data parallelism, exploiting amorphous dataparallelism

Advanced topics for CS 380C

- Optimizing machine learning programs
 - Training and testing times can be large
 - Models are getting more complex
 - Lot of training data
 - How for we optimize training and testing times on modern architectures?
- Exploiting machine learning in compilers
 - Some work in this area but no major breakthroughs yet
 - Active research topic
- Course
 - See website for partial list of papers we will study in this area
 - Papers will be presented by students
 - Ideally, your paper presentation and course project will be linked



Schedule for lectures

- See
 - http://www.cs.utexas.edu/users/pingali/CS380C/2019/index.html
- Some lectures will be given by guest lecturers from my group and from industry

Reading assignments

- My SIGARCH blogpost:
 - Why has machine learning not had more impact on systems?
- Mike O'Boyle's survey article on using machine learning in compilers
 - Machine learning in compiler optimization Wang and O'Boyle, arXiv:1805.03441
- Eran Yahav's SIGPLAN blog post on machine learning in compilers
 - From-programs-to-deep-models-part-1
- Lecture slides on SAM
 - Simple stack machine