-

Constant propagation is example of

FORWARD-FLOW /ALL-PATHS problem.

Intuitively, data is propagated forward in CF'G, and value is
constant at a point p only if it is the same constant for all paths

from start to p.

General classification of dataflow problems:
ALL PATHS ANY PATH

constant propagation

FORWARD reaching definitions

available expressions

BACKWARD very busy expressions live variables

31

4 N

Available expressions:FORWARD FLOW, ALL PATHS

Definition: An expression 'x op y’ is available at a point p if every
path from START to p contains an evaluation of p after which

there are no assignments to x or y.

Lattice: powerset of all expressions in program ordered by

contalnment

N /

32

E

o T

y=x+1 z=x+1

N

merge

<---- x+1 1is "available" here

&

>
= +
-

Lattice: powerset of all expressions in procedure

EQUATIONS:
EO
é X:=yopz El={yopz} U (EO - Ex)
EO={} El (where Ex i1s all expressions involving X)

confluence operator: meet (intersection)

compute greatest solution

33

Qm@ogsm definitions: FORWARD FLOW, ANY PATH J

A definition d of a variable v is said to reach a point p if there is a
path from START to p which contains d, and which does not
contain any definitions of v after d.

CSTARDS

V

d0 |a:=READ()
| {do} Lattice: powerset of definitions in procedure

dl b :=READ() .
7 (do.d1 Equations:

d2 d:=b-a “
e (do,d1.d2} (START)

{d0,d1,d4} {}
| {d0,d1,d2} i_Din
@ A 4 | x=e Dout= {d} U (Din - dx)

d3 {{d0,dl,d2,d4} " Dout (dx is set of all definitions of x)

d:=b+d
I {d0,d1,d3} Confluence operator: join (union)
dd {d0,d1,d2,d3} Compute least solution
d:==atb print (d)
1d0,d1.d2,d3} Complexity: D*E*D (D is number of definitions)

N y

34

-

Many intermediate representations record reaching definitions

information in graphical form.

def-use chain: edge whose source is a definition of variable v, and

whose destination is a use of v reached by that definition

use-def chain: reverse of def-use chain

— def-use chains

N idodld2)

{do,d1,d2}

{d0.a1,d3}

a4 L

{d0,d1,d2,d3}
|4
d=a+b

,,ywaa (d)

{d0,d1,d2,d3}

CEND>

/

39

4 N

Live variable analysis:BACKWARD FLOW, ANY PATH

A variable x is said to be live at a point p if x is used before being

assigned on some path from p to END (used in register allocation).
Lattice: powerset of variables ordered by containment

Equations:

Y

| EL= {y.z} U(EO- {x})
X =Yy Opz

!

EO

Confluence operator: join (union)

Compute least solution

36

4 N

Very busy expressions: FORWARD FLOW, ALL PATHS

An expression e (= y op z) is said to be very busy at a point p if it
is evaluated on every path from p to END before an assignment to

y Or z.
Lattice: powerset of expressions ordered by containment

Equations:

Rt
(END)
! El= {yopz} U(EO-Ex)

X =Yy 0p z (Ex is set of expressions containing x)

J

EO

Confluence operator: meet (intersection)

Compute greatest solution

37

-

Pragmatics of dataflow analysis:

e Compute and store information at basic block level.

e Use bit vectors to represent sets.

Question: can we speed up dataflow analysis?

Two approaches:

e exploit structure in control flow graph

e exploit sparsity

-

38

Optimizing Dataflow Analaysis

39

4 N

Constant propagation on CFG: O(EV?)
Reaching definitions on CFG: O(EN?)
Available expressions on CFG: O(E A?)

Two approaches to speeding up dataflow analysis:

e exploit structure in the program
e exploit sparsity in the dataflow equations: usually, a dataflow

equation involves only a small number of dataflow variables

N /

40

/

Exploiting program structure

e Work-list algorithm did not enforce any particular order for
processing equations

e Should exploit program structure to avoid revisiting equations

unnecessarily
% - we should schedule e3 after we have processed el and e2;
/ / otherwise e3 will have to be done twice
x=2 x=3 - if this is within a loop nest, can be a big win

41

- N

General approach to exploiting structure: elimination

o Identify regions of CFG that can be preprocessed by collapsing
region into a single node with the same input-output behavior
as region

e Solve dataflow equations iteratively on the collapsed graph.

e Interpolate dataflow solution into collapsed regions.
What should be a region?

e basic-blocks
e basic-blocks, if-then-else, loops
e intervals

Structured programs: limit in which no iteration is required

N /

42

-

region.

Example: reaching definitions in structured language

To summarize the effect of a region, compute gen and kill for

Dataflow equation for region can be written using gen and kill:

in gen[R]: set of definitions in R from which there 1s
a path to exit free of other definitions of the same variable

region kill[R]: set of definitions in program that do not reach
R exit of R even if they reach the beginning of R
out = gen[R] U (in - kill[R])
out

43

=

a=b+c

gen[R] = {d}
kill [R]=Da (all definitions of a)

out[R] = gen[R] U (in[R] - kill[R])

gen[R] = gen[R2] U (gen[R1] - kill[S2])
kill[R] = kill[R2] U kill[R2]

in[R1] = in[R]
in[R2] = gen[R1] U (in[R] - kill[R1])

gen[R] = gen[R1] U gen[R2]
kill[R] =kill[R1] N kill[R2]

in[R1] = in[R2] = in[R]

gen[R] = gen[R1]
kill[R] = kill[R1]

in[R1] =1n[R] U gen[R]

44

4 N

Observations:

e For structured programs, we can solve dataflow problems like
reaching definitions purely by elimination (without any
iteration) (complexity: O(EV)).

e For structured programs, we can even solve the datatlow
problem directly on the abstract syntax tree (no need to build
the control flow graph).

e For less structured programs (like reducible programs), we
must build the control flow graph to identify regions like

intervals, but there is still no need to iterate.

45

ngo&sm sparsity to speed up dataflow analysis

Example: constant propagation

e CFG algorithm for constant propagation used control flow
graph to propagate state vectors.

e Propagating information for all variables in lock-step forces a
lot of useless copying information from one vector to another
(consider a variable that is defined at top of procedure and

used only at bottom).
Solution:

e do constant propagation for each variable separately
e propagate information directly from definitions to uses,

skipping over irrelevant portions of control flow graph

/ms_oim point: in what order should we process variables??

/

46

	CornellDataflowShort.pdf

