Introduction to Parsing
(adapted from CS 164 at Berkeley)

Outline

+ Parser overview

+ Context-free grammars (CFG's)
+ Derivations

+ Syntax-Directed Translation

The Functionality of the Parser

+ Input: sequence of tokens from lexer
* Output: abstract syntax tree of the program

* One-pass compiler: directly generate
assembly code
- This is what you will do in the first assignment
- Bali > SaM code

Example

* Pyth: ifx==y:z=1
else:z=2
+ Parser input: IF ID == ID: ID=INT ELSE: ID = INT

+ Parser output (abstract syntax tree):

IF-THEN-ELSE
e /TN o~

ID ID ID INT ID INT

Why A Tree?

Notation for Programming Languages

+ Each stage of the compiler has two purposes:
- Detect and filter out some class of errors
- Compute some new information or translate the
representation of the program to make things
easier for later stages
+ Recursive structure of tree suits recursive
structure of language definition
+ With tree, later stages can easily find “the
else clause”, e.g., rather than having to scan
through tokens to find it.

+ Grammars:
E —int
E->E+E
E->E*E
E—(E)
+ We can view these rules as rewrite rules

- We start with E and replace occurrences of E with
some right-hand side

-E->E*E->(E)*E—>(E+E)*E—> ..
— (int + int) * int

Context-Free Grammars

Examples of CFGs

+ A CFG consists of
- A set of non-terminals N
+ By convention, written with capital letter in these notes
- Aset of terminals T
+ By convention, either lower case hames or punctuation
- A start symbo/ S (a non-terminal)
- A set of productions
+ Assuming £ e N
E—>e ,or
E->VYY,..Y, where Y;e NUT

Simple arithmetic expressions:
E - int
E->E+E
E->E*E
E—>(E)
- One non-terminal: E
- Several terminals: int, +,*, (,)
+ Called terminals because they are never replaced

- By convention the non-terminal for the first
production is the start one

Key Idea

1. Begin with a string consisting of the start
symbol

2. Replace any non-terminal X in the string by a
right-hand side of some production

X->Y;.Y,

3. Repeat (2) until there are only terminals in
the string

4. The successive strings created in this way
are called sentential forms.

The Language of a CFG (Cont.)

Write
X Xy > " Yy Yy
if

XiwXp= o> oo Y1 Yy

in O or more steps

The Language of a CFG

Let & be a context-free grammar with start
symbol S. Then the language of &Gis:

LE)={aqa..a,| S—"aq;.. a,and every g
is a terminal }

Examples:

S—>0 alsowrittenasS—0]|1
S—>1
Generates the language { "0", "1" }
+ What about S > 1 A
A->0]1
+ What about S > 1A
A>0|1A
* What about S > ¢ | (S)

Derivations and Parse Trees

+ A derivation is a sequence of sentential forms
resulting from the application of a sequence of
productions

S>> .o

* Parse tree: summary of derivation w/o specifying
completely the order in which rules were applied
- Start symbol is the tree's root
- For a production X — Y, .. Y, add children
Y1, ... Y, to node X

Derivation Example

+ Grammar
E->E+E|E*E|(E)]|int
+ String
int * int + int

Derivation in Detail (1)

Derivation in Detail (2)

Derivation in Detail (3)

Derivation in Detail (4)

E
E E
- E+E / /’\ - E+E I E
- E*E+E > E*E+E
N > int*E+E RN
E E E E
|
int
Derivation in Detail (5) Derivation in Detail (6)
E
E E ‘
- E+E - E+E N c
—- E*E+E - E*E+E
— int*E+E /N - int*E+E /l\
— int*int+E E E > int*int+E E E int
‘ ‘ — int *int +int |
int int int int

Notes on Derivations

AST vs. Parse Tree

+ A parse tree has
- Terminals at the leaves
- Non-terminals at the interior nodes

* A left-right traversal of the leaves is the
original input

* The parse tree shows the association of
operations, the input string does not !
- There may be multiple ways to match the input
- Derivations (and parse trees) choose one

+ AST is condensed form of a parse tree
- operators appear at /nternal/ nodes, not at leaves.
- "Chains" of single productions are collapsed.
- Lists are "flattened".
- Syntactic details are omitted
* e.g., parentheses, commas, semi-colons
+ AST is a better structure for later compiler
stages
- omits details having to do with the source language,

- only contains information about the essentia/
structure of the program.

Example: 2 * (4 + 5) Parse tree vs. AST

Summary of Derivations

+ We are not just interested in whether
sel6)
+ Also need derivation (or parse tree) and AST.
+ Parse trees slavishly reflect the grammar.
+ Abstract syntax trees abstract from the grammar,
cutting out detail that interferes with later stages.
+ A derivation defines a parse tree
- But one parse tree may have many derivations
+ Derivations drive translation (to ASTs, etc.)
+ Leftmost and rightmost derivations most important in
parser implementation

Ambiguity

+ Grammar
E->E+E|E*E]| (E)|int

+ Strings
int +int + int

int * int + int

Ambiguity. Example

The string int + int + int has two parse trees

E E
T~ /’\
E + E E + E
7 I S
E 4+ E int int E + E
\ | \ \
int int int int

f

+is left-associative

Ambiguity. Example

The string int * int + int has two parse trees

E E
T
E + E E = E
— T~ [[
E « E int int E + E
| | | |
int int int int

!

* has higher precedence than +

Ambiguity (Cont.)

+ A grammar is ambiguous if it has more than
one parse tree for some string

- Equivalently, there is more than one rightmost or
leftmost derivation for some string

+ Ambiguity is bad
- Leaves meaning of some programs ill-defined

+ Ambiguity is common in programming languages
- Arithmetic expressions
- IF-THEN-ELSE

Dealing with Ambiguity

There are several ways o handle ambiguity

Most direct method is to rewrite the grammar
unambiguously

ESE+T|T
T T*int|int | (E)

Enforces precedence of * over +
Enforces left-associativity of + and *

Ambiguity. Example

The int * int + int has only one parse tree now

Ambiguity

Impossible to convert automatically an ambiguous
grammar to an unambiguous one

Used with care, ambiguity can simplify the grammar
- Sometimes allows more natural definitions

- But we need disambiguation mechanisms
Instead of rewriting the grammar

- Use the more natural (ambiguous) grammar

- Along with disambiguating declarations
Most tools allow precedence and associativity
declarations to disambiguate grammars
Examples ...

Associativity Declarations

+ Consider the grammar E—>E+E|int
+ Ambiguous: two parse trees of int + int + int

E
/"\
E + E
s

+ Left-associativity declaration: %left '+

Summary

- Grammar is specified using a context-free language
(CFL)
+ Derivation: sTarTin? from start symbol, use grammar
rules as rewrite rules to derive input string
- Leftmost and rightmost derivations
+ Parse trees and abstract syntax trees
+ Ambiguous grammars
- Ambiguity should be eliminated by modifying grammar, by
specifying precedence rules etc. depending on how ambiguity
arises in the grammar
+ Remaining question: how do we find the derivation for
a given input string?

