
A Data Locality Optimizing Algorithm

Michael E. Wolf and Monica S. Lam

Computer Systems Laboratory

Stanford University, CA 94305

Abstract

This paper proposes an algorithm that improves the local-
ity of a loop nest by transforming the code via interchange,

reversal, skewing and tiling. The loop transformation rrl-

gorithm is based on two concepts: a mathematical for-

mulation of reuse and locality, and a loop transformation

theory that unifies the various transforms as unimodular

matrix tmnsfonnations.

The algorithm haa been implemented in the SUIF (Stan-

ford University Intermediate Format) compiler, and is suc-

cessful in optimizing codes such as matrix multiplica-

tion, successive over-relaxation (SOR), LU decomposition

without pivoting, and Givens QR factorization. Perfor-

mance evaluation indicates that locatity optimization is es-

pecially crucial for scaling up the performance of parallel

code.

1 Introduction

As processor speed continues to increase faster than me-
mory speed, optimization to use the memory hierarchy
efficiently become ever more important. Blocking [9] or
tiling [18] is a well-known technique that improves the

data locality of numerical algorithms [1, 6, 7, 12, 13].

Tiling can be used for different levels of memory hierarchy

such as physical memory, caches and registers; multi-level

tiling can be used to achieve locality in multiple levels of

the memory hierarchy simultaneously.

To illustrate the importance of tiling, consider the ex-

ample of matrix muhiplicatiorx

for 11 :=1 ton
for 12 :=1 ton

for 13 :=1 ton

~-is research was supported in part by DARPA contract NOOO14-87-K-

0828.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct commercial

advsntoge, the ACM copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Association for Computing Machinery. To copy otherwise, or to
reoublish, reauires a fee and/or s~ecific i)ermission.
@“l991 ACM ()-89791 -4~8-7/91 /0005/0030... $1 .50

Proceedings of the ACM SIGPLAN ’91 Conference on

Programming Language Design and Implementation.

Toronto, Ontario, Canada, June 26-28, 1991

C[11,13] += A[~I,~z] * B[~2,~I+];

In this code, although the same row of C and B are reused
in the next iteration of the middle and outer loop, respec-

tively, the large volume of data used in the intervening
iterations may replace the data from the register file or the
cache before it can be reused. Tiling reordem the execu-
tion sequence such that iterations from loops of the outer
dimensions are exeeuted before completing all the itera-
tions of the inner loop. The tiled matrix multiplication
is

for 112 :=ltonbys

for 113 :=ltonbys

for II :=1 ton
for 12 := 112 to rain(llz+s-l, n)

for 13 := 113 to min(lls+s–1, n)

C[11,~3] += A[~l,~z] * B[~z,~3];

Tiling reduces the number of intervening iterations and

thus data fetched Wsveen data reuses. This allows reused

data to still be in the cache or register file, and hence

reduces memory accesses. The tile size s can be chosen
to allow the maximum reuse for a specitlc level of memory
hierarchy.

The improvement obtained from tiling can be far greater
than from traditional compiler optimization, Figure 1
shows the performance of 500 x 500 matrix multiplica-
tion on an SGI 4D/380 machine, The SGI 4DD80 has
eight MIPS/R3000 processors running at 33 Mhz. Each
processor hm a 64 KB direet-mapped tirst-level cache and
a 256 KB direct-mapped seeond-level cache. We ran four
different experiments: without tiling, tiling to reuse data
in caches, tiling to reuse data in registers [5], and tiling
for both register and caches. For cache tiling, the data me
copied into consecutive locations to avoid cache interfer-
ence [12].

Tiling improves the performance on a single processor
by a factor of 2.75. The effect of tiling on multiple pro-
cessors is even more significant since it not only reduces
the average data access latency but also the required me-
mory bandwidth. Without cache tiling, contention over the

1 I

30

60. -

55. -

50 -

45 .-

40 .-

35 .-

30 -

25 .-

20 .-

15 .-

10 .-

5 -

❑ both tiling

A oachetiling
o register tiling

+ no tiling

o~
012

Processors

Figure 1: Performance of 500x 500 double precision ma-
trix multiplication on the SGI 4D/380. Cache tiles are 64
x 64 iterations and register tiles are 4 x 2.

memory bus limits the speedup to about 4.5 times. Cache
tiling permits speedups of over seven for eight processors,
achieving an impressive speed of 64 MFLOPS when com-
bined with register tiling.

1.1 The Problem

The problem addressed in this paper is the use of loop
tmnsformations such as interchange, skewing and reversal
to improve the locality of a loop nest. Matrix multipli-
cation is a particularly simple example because it is both
legal and advantageous.! to tile the entire nest. In general,
it is not atways possible to tile the entire loop nest. Some
loop nests may not be tilable. Sometimes it is n~essary
to apply transformations such as interchange, skewing and
reversal to produce a set of loops that are both tilable and
advantageous to tile.

For example, consider the example of an abstraction of
hyperbolic PDE code in Figure 2(a). Suppose the array
in this example is larger than the memory hierarchy level
of interesq the entire array must be fetched anew for each
iteration of the outermost loop. Due to dependence, the
loops must lirst be skewed before they can be tiled. This
is also equivalent to finding non-rectangular tiles. Figure 2
contains the entire derivation of the tiled code, which we
will use to illustrate our locality algorithm in the rest of
the paper.

There are two major representations used in loop trans-
formations: distance vectors and direction vectors [2, 17].
Loops whose dependence can be summarized by distance
vectors are special in that it is advantageous, possible and
easy to tile all loops [10, 15]. General loop nests, whose
dependence are represented by direction vectors, may not
be tilable in their entirety. The data locality problem ad-
dressed in this paper is to find the best combination of
loop interchanges, skewing, reversal and tiling that max-
imizes the data locality within loop nests, subject to the
constraints of direction and distance vectors.

Research has been performed on both the legality and
the desirability of loop transformations with respect to data
locality. Early research on optimizing loops with direction
vectors concentrated on the legality of pairwise transfor-
mations, such as when it is legal to interchange a pair of
loops. However, in general, it is necessary to apply a series
of primitive transformations to achieve goals such as par-
allelism and data locality. This has led to work on combi-
nations of primitive transforms. For example, Wolfe [18]
shows how to determine when a lmp nest can be tild,
two-dimensional tiling can be achieved via a pair of trans-
formations known as “strip-mine and interchange” [14]
or “unroll and jam” [51. Wolfe also shows that skewing
can make a pair of loops tilable. Banerjee discusses gen-
eral unimodular transforms for two-deep loop nests [4]. A
technique used in practice to handle general n-dimensional
loop nests is to determine a priori the sequence of loop
transforms to attempt. This technique is inadequate be-
cause certain transformations, such as loop skewing, may
not improve code, but may enable other optimization that
do so. Which of these to perform will depend on which
other optimization will be enabled: the desirability of a
transformation cannot be evaluated locally. Furthermore,
the correct ordering of optimization are highly program
dependent.

On the desirability of tiling, previous work concentrated
on how to determine the cache performance and tune the
loop parameters jlv a given loop nest. Portertield gives an
algorithm for estimating the hit rate of a fully-associative
LRU (least recently used replacement policy) cache of a
given size [14]. Gannon et al. uses reference windows

to determine the minimum memory locations necessary to
maximize reuse in a loop nest [8]. These evaluation func-
tions are useful for comparing the locatity performance af-
ter applying transformations, but do not suggest the trans-
formations to apply when a series of transformations may
first need to be applied before tiling becomes feasible and
useful.

If we were to use these evaluation functions to find
the suitable transformations, we would need to search the
transformation space exhaustively. The previously pro-
posed method of enumerating the all possible combina-
tions of legal tmnsformations is expensive and not even
possible if there are infinitely many combinations, as is
the case when we include skewing.

31

(a): Extract dependence information
1,+

for 11 :=oto5do
-1

for 12 := Oto6do

A[12 +1] := 1/3 * (A[&] + A[12 +11 + A[~2 +21);

D = {(0,1),(1,0),(1,–1)}.

(b): Extract locality information 12
Uniformly generated set= {A IIzI A[12 + 11 A[12 +21 }.

reuse category reuse veetor space potential reuse factor

self-temporal Span{ (l, o)} s

self-spatial Span{ (l, o), (o,l)} 1

group Span{ (l, o), (o,l)} 3

Loops carrying reuse = {11, 12}.

(c): Search transformation space

localized space transformation sources of locality accesses per iteration

Span{ (o, 1)}
10

‘= 01
self-spatial, group 1/1

Span{ (l, o)} not possible — —

Span{(l, o), (o,l)} T= ;: self-temporal, self-spatial, group 1/(1s)

The best legal choice is to tile both 11 and 12.

(d): Skew to make inner loop nest fully permutable ~, +

[1T=:;

D’ = TD = {(0,1),(1,1),(1,0)}

(e): Final code

Figure 2: Example of the locality optimization algorithm on a hyperbolic PDE-style loop nest.

32

1.2 An Overview

This paper focuses on maximizing data locality at the

cache level. Although the basic principles in memory hi-

erarchy optimization are similar for all levels, each level

has slightly different characteristics, requiring slightly dif-

ferent considerations. Caches usually have small set as-

sociativity, so cache data conflicts can cause desired data

to be replaced. We have found that the performance of

tiled cork? fluctuates dramatically with the size of the data

matrix, due to cache interference [12]. We show that this

effect can be mitigated by copying reused data to consecu-

tive locations before the computation, or choosing the tile

size according to the matrix size. Both of these optimiza-

tion can be performed after code transformation, and thus

cache interference need not be considered at code trans-

formation time.

Another major difference between caches and registers

is their capacity. To fit all the data used in a tile into

the faster level of memory hierarchy, transformations that

increase the dimensionality of the tile may reduce the tile

size. However, as we will show, the reduction of memory

accesses can be a factor of Sd when d-dimensional tiles of

lengths s are used. Thus for typicat cache sizes and loop

depths found in practice, increasing the dimensionality of

the tile will reduce the total number of memory access,

even though the length of a tile side may be smaller for

larger dimensional tiles. Thus the choice of tile size can

be postponed until after the application of optimization

to increase the dimensionality of locality.

The problem addressed in this paper is the choice of

loop transforms to increase data locality. We describe a lo-

cality optimization algorithm that applies a combination of

loop interchanges, skewing, reversal and tiling to improve

the data locality of loop nests. The analysis is applica-

ble to array references whose indices are afiine functions

of the loop indices. The transformations are applicable

to loops with not just distance dependence vectors, but

also direction vectors as well. Our locality optimization is

based on two results: a new transformation theory and a

mathematical formulation of data locality.

Our loop transformation theory unifies common loop

transforms including interchange, skewing, reversal and

their combinations, as unimodular matrix transforms. This

unification reduces the legality of all compound transfor-

mations to satisfying the same simple constraints. In this

way, a loop transformation problem can be formulated as

solving for the transformation matrix that maximizes an

objective function, subjected to a set of constraints. This

matrix model has previously been applied only to distance
vectors. We have extended the framework to handle di-

rection vectors as well.

The second result is a formulation of an objective func-

tion for data locality. We introduce the concepts of a reuse

vector space to capture the potential of data locality opti-

mization for a given loop nest. This formulation collapses

the space of transformed code into equivalence classes,

hence allowing pruning of the seatch for the best transfor-

mation.

Our locality algorithm uses the evaluation function and

the legality constraints to reduce the search space of the

transforms. Unfortunately, finding the optimal transforma-

tion still requires a complex algorithm that is exponential

in the loop nest depth. We have devised a heuristic algo-

rithm that works well for common cases found in practice,

We have implemented the algorithm in the SUIF (Stan-

ford University Intermediate Format) compiler, Our al-

gorithm applies unimodular and tiling transforms to loop

nests, handles non-rectangular loop bounds, and generates

non-uniform tiles to handle non-perfectly loop nests, It

is successful in tiling numerical algorithms such as ma-

trix multiplication, successive over-relaxation (SOR), LU

decomposition without pivoting, and Givens QR factor-
ization. For simplicity, we assume here that atl loops are

perfectly nested. ‘fltat is, all computation is nested in the

innermost loop.

In Section 2, we discuss our dependence representation

and the basics of unimodular transformations. How tiling

takes advantage of reuse in an algorithm is discussed in

Section 3. In Section 4, we describe how to identify and

evaluate reuse in a loop nest. We use those results to

formulate an algorithm to improve locality. Finally, we

present some experimental data on tiling for a cache.

2 A Loop Transformation Theory

While individual loop transformations are well understood,

ad hoc techniques have typicatly been used in combining

them to achieve a particular goal. Our loop transformation

theory offers a foundation for deriving compound transftx’-

mations efficiently [16]. We have previously shown the

use of this theory to maximizing the degree of parallelism

in a loop nesu we will demonstrate its applicability to data

locality in this paper.

2.1 The Iteration Space

In this model, a loop nest of depth n corresponds to a finite

convex polyhedron of iteration space 2”, bounded by the

loop bounds. Each iteration in the loop corresponds to a

node in the polyhedron, and is identified by its index vector

F=(P1, PZ,... ,%); pi is the loop index of the i loop in
the nest, counting from the outermost to innermost loop.

The iterations are therefore executed in lexicographic order

of their index vectors. That is, if p; is lexicographicatly
greater than p;, written Z > p;, iteration p; executes after

iteration p;.

Our dependence representation is a generalization of

distance and direction vectors. A de~~dence vector in an

n-nested loop is denoted by a vector d = (dl, dz, . . . , dn).

Each component di is a possibly infinite range of integers,

33

represented by [~, ~], where

&“e2U{-oa}, ~GZU{cm}and d~~~.

A single dependence vector the~fore represents a set of

distance vectors, called its distance vector sefi

S(J) ={(el,..., efi)lei G ii? and c@” ~ ei ~ ~} .

Each of the distance vector defines a set of edges on pairs

of nodes in the iteration space. Iteration pl depends on

iteration p;, and thus must execute after p;, if for some

distance vector ;, fi = p; + Z By definition, since p; ~

p;, Z must therefore be lexicographically greater than O,

or simply, lexicographically~sitive.

The dependence vector d is also a distance vector if

each of its components is a degenerate range consisting

of a singleton value, that is, d~fi = ~. For short, we

simply denote such a range with the value itself. There are

three common ranges found in practicw [1, cm] denoted by

‘+’, [–co, –11 denoted by ‘–’, and [–cm, cm] denoted by

‘+’. They correspond to the previously defined directions

of ’<’,’ >‘, and’ *‘, respectively [17].

We have extended the definition of vector operations to

allow for ranges in each of the component. In this way, we

can manipulate a combination of distances and directions

simply as vectors. This is needed to support the matrix

transform model, discussed below.

Our model differs from the previously used model in

that all our dependence vectors are represented as lexi-

cographically positive vectors. In particular, consider a

strictly sequential pair of loops such as the one below:

for 11 := Otondo
for 12 := Otondo

b := g(b);

The dependence of this program would previously be

represented as (’ * ‘,’ * ‘). In our model, we repre-

sent them as a pair of lexicographically positive vectors,
(O,’+’), (’+’,’+ ‘). The requirement that all dependence

are lexicographically greatly simplifies the legality tests

for loop transformations. The dependence vectors define

a partial order on the nodes in the iteration space, and

any topological ordering on the graph is a legal execution

order, as atl dependence in the loop are satisfied.

2.2 Unimodttlar Loop Transformations

With dependence represented as vectors in the iteration

space, loop transformations such as interchange, skewing

and reversal, can be represented as matrix transformations.

Let us illustrate the concept with the simple example

of an interchange on a loop with distances. A loop inter-

change transformation maps iteration (pl, ~) to iteration

(m,l). In matrix notation, we can write this as

[::1[:1=[:1

M
01

The elementary permutation matrix ~ o thus per-

forms the loop interchange transforma~o; on &e iteration

space.

Since a matrix tmnsformation T is a linear transfor-

mation on the iteration space, T~2 – T~l = T(fi – ~1).

Therefore, if ~ is a distance vector in the origirtal iteration

space, then T~ is a distance vector in the transformed it-

eration space. Thus in loop interchange, the dependence

vector (dl, dz) is mapped into

[::1[:1= [%1
in the transformed space. Therefore if the transformed

dependence vector remains lexicographically positive, the

interchange is legal.

The loop reversal and skewing transform can similarly

be represented as matrices [3, 4, 16]. (An example of

skewing is shown in Figure 2(d).) These matrices are uni-

modular matrices, that is, they are square matrices with

integrat components and a determimnt of one or nega-

tive one. Because of these properties, the product of two

unimodular matrices is unimodukw, and the inveme of a

unimodukr matrix is unimodular, so that combinations of

unimodular loop transformations and inverses of unimodu-

lar loop transformations are also tmimodular loop transfor-

mations. Under this formulation, there is a simple legality

test for all transforms.

Theorem 2.1 . LetD be the set of distance vectors of a

loop nest: A unimo$ular transformation T is legal if and

only if ’dd ED: Td +6.

The elegance of this theory helps reduce the complex-

ity of the implementation. Once the dependence are ex-

tracted, the derivation of the compound transform simply

consists of matrix and vector operations, After the trans-

formation is detemnined, a straightforward algorithm ap-

plies the transformation to the loop bounds and derives the

final code.

3 The Localized Vector Space

It is important to distinguish between reuse and localip.
We say that a data item is reused if the same data is used in

multiple iterations in a loop nest. Thus reuse is a measure

that is inherent in the computation and not depmdent on

the particular way the loops are written. This reuse may

not lead to saving a memory access if intervening iterations

flush the data out of the cache between uses of the data.

For example, reference A [12] in Figure 3 touches dif-

ferent data within the innermost loop, but reuses the same

elements across the outer loop. More precisely, the same

data A [12] is used in iterations (11, 12),1 ~ 11 ~ n. There

is reuse, but the reuse is separated by accesses to n – 1

34

for 11 :=1 tondo
for 12 :=1 tondo

f(A[ll], A[12]);

Figure 3: A simple example.

other data, When n is large, the data is removed from

the cache before it can be reused, and there is no locality,

Therefore, a reuse does not guarantee locality,

Specifically, if the innermost loop contains a large num-

ber of iterations and touches a large number of data, only

the reuse within the innermost loop can be exploited. We

can apply a unimodular transformation to improve the

amount of data reused in the innermost loop. However, as

shown in this example, reuse can sometime occur along

multiple dimensions of the iteration space. To exploit

multi-dimensional reuse, unimodular transformations must

be coupled with tiling.

3.1 Tiling

In general, tiling transforms an n-deep loop nest into

a 2n-deep loop nest where the inner n loops execute a

compiler-determined number of iterations. Figure 4 shows

the code after tiling the example in Figure 2(a), using a

tile size of 2 x 2. The two innermost loops execute the

iterations within each tile, represented as 2 x 2 squares

in the figure. The two outer loops, represented by the

two axes in the figure, execute the 12 tiles. As the outer

loop nests of tiled code controls the execution of the tiles,

we will refer to them as the controlling loops. When

we say tiling, we refer to the partitioning of the iteration

space into rectangular blocks. Non-rectangular blccks are

obtained by first applying unimodular transformations to

the iteration space and then applying tiling.

Like all transformations, it is not always possible to tile.

Loops Ii through Ij in a loop nest can be tiled if they ure

fully permutable [11, 16]. Loops Ii through Ij in a loop

nest are fully permutable if and only if all dependence

vectors are lexicographically positive and for each de-

pendence vector, either (dl,... , di - 1) is lexicographically

positive, or the ith through jth components of ~ are all

non-negative. For example, the components of dependen-

ce in Figure 2(b) are all non-negative, and the two loops

are therefore fully permutable and tilable. Full permutabil-

ity is also very useful for improving parallelism [16], so

parallelism and locality are often compatible goals.

After tiling, both groups of loops, the loops within a

tile and the loops controlling the tiles, remain fully per-

mutable. For example, in Figure 4, loops 11(and 11~ can

be interchanged, and so can 1[and l;. By interchanging

Ii and 1$, the loops II; and 14 can be trivially coalesced to
produce the code in Figure 2(e). This transformation has

previously been known as “strip-mine and interchange”.

“Unroll and jam” is yet another equivalent form to tiling.

Since all loops within a tile are fully permutable, any loop

in an n-dimensional tile can be chosen to be the coalesced

loop.

3.2 Tiling for Locality

When we tile two innermost loops, we execute only a

finite number of iterations in the innermost loop before

executing iterations from the next loop. The tiled code for

the example in Figure 3 is:

for 112 :=ltonbysdo

for II :=1 tondo

for 12 := 112 to max(n,112+s–1) do

f(AIIll, A[121);

We choose the tile size such that the data used within the

tile can be held within the cache, In this example, as long

as s is smaller than the cache size (in words), A [121 will

still be present in the cache when it is reused. Thus tiling
increases the number of dimensions in which reuse can be

exploited. We call the iterations that can exploit reuse the

localized iteration space. In the example above, reuse is

exploited for loops 11 and 12 only, so the localized iteration

space includes only those loops.

The depth of loop nesting and the number of variables

accessed within a loop body are small compared to typical

cache sizes. Therefore we should always be able to choose

suitable tile sizes such that the reused data can be stored

in a cache. Since we do not need the tile size to determine

if reuse is possible, we abstract away the loop bounds of

the localized iteration space, and characterize the localized

iteration space as a localized vector space. Thus we say

that tiling the loop nest of Figure 3 results in a localized

vector space of span{ (O, 1), (1, O)}.

In general, if n is the first loop with a large bound,

counting from innermost to outermost, then reuse occur-

ring within the inner n loops can be exploited. Therefore

the localized vector space of a tiled loop is simply that

of the innermost tile, whether the boundary between the

controlling loops and the loops within the tile he coalesced

or not.

4 Evaluating Reuse and Locality

Since unimodular transformations and tiling can modify

the localized vector space, knowing where there is reuse

in the iteration space can help guide the seamh for the

transformation that delivers the best locality. Also, to

choose between alternate transformations that exploit dif-

ferent reuses in a loop nest, we need a metric to quantify

locality for a specific localized iteration space.

35

Figure 4: Iteration space and dependence of tiled code from Figure 2(a).

4.1 Types of Reuse

Reuse occurs when a reference within a loop accesses the

same data location in different iterations. We call this

self-temporal reuse. Likewise, if a reference accesses data

on the same cache line in different iterations, it is said

to possess self-spatial reuse. Furthermore, different refer-

ences may access the same locations. We say that there

is group-temporal reuse if the references refer to the same

location, and group-spatial reuse if they refer to the same

cache line. Examples of each type of reuse are given be-

low.

Let us first consider reuse within a single reference. In

Figure 3, the reference A [11] has self-temporal reuse in

the innermost loop because it accesses the same element

for all iterations (11, 12), where 1 < 12 ~ n. Similarly,

A [12] has temporal reuse in the outermost loop. In both

cases, the same data is reused n times; that is, the memory

accesses are reduced to 1/n th of the original if the reuse

is exploited.

Besides self-temporal reuse, A [12] also has self-spatial

reuse in the innermost loop, since each cache line is reused

1 times, where 1 is the cache line size. Likewise, A [~]

has self-spatial locality in the outermost loop. Altogether,

each reference has temporal reuse of a factor of n, and

an additional spatial reuse of a factor of 1. Therefore, in

either case each cache line can be reused ni times if the

localized space encompasses all the reuse.

By definition, temporal reuse is a subset of spatial reuse;
reusing the same location is trivially reusing the same

cache line. That is, loops carrying temporal reuse also

carry spatial reuse. While the same data can be reused

arbitrarily many times depending on the program, the ad-

ditional factor of improvement from spatial reuse is limited

to a factor of 1, where 1 is the cache line size.

We now consider group reuse, reuse among different

references. Trivially, identical references within the same

loop nest will result in the same cache behavior as if there

had just been one reference. Now consider, for example,

the references A [12], A [12+1] and A [12+2] in Figure 2.

In addition to any self reuse these references might have,

it is easy to see that they have a factor of three reuse in

the 12 loop.

In contrast, consider the example in Figure 3. In this 2-

dimensional iteration space, the iterations that use the same

data between the two groups are the kth column and the

kth row. As it is, only iterations near the diagonal of the

space can exploit locality. Furthermore, no unimodular or

tiling transformation can place uses of the same data close

to each other. Thus, multiple references to the same array

do not necessmily result in significant locality.

The difference betv$tx?n the A [12], A [12+1], A [12+2]

references and the A [II], A [12] references is that the

former set of references has similar array index functions,

differing only in the constant term. Such references are

known as unijiormly generated references, The concept of

uniformly generated references is also used by Gannon et

al. [8] in estimating their reference windows.

Definition 4.1 Let n be the depth of a loop nest, ~nd d be

the dimensions of an array A, Two references A[f (7)] and

A[j(i)j, where ~ and ~ are indexing functions Z“ - Zd,

are called uniformly generated if

7(7) = Hi’+ G’j and F(i) = Hi’+;~

where H is a linear tran~ormatwn and ;f and Z~ are

constant vectors.

Since little exploitable reuse exists between non-

uniformly generated references, we partition references in

a loop nest into equivalence classes of references that op-

erate on the same array and have the same H. We call

these equivalence classes uniformly generated sets. In the

degenemte case where a uniformly generated set consists

of only one element, we have only self reuse for that ref-

erence. In the example in Figure 2, the indexing functions

of thereferences A[~z], A[~z+l] and A[1z+2] canbe

written as .–-l

[0 ll[;]+[017

[01] [;]+[1],

36

[0 l][;]+[2]

respectively. These references belong to a single uniformly

generated set with an If of [O 1].

4.2 Quantifying Reuse and Locality

So far, we have discussed intuitively where reuse takes

place. We now show how to identify and quantify reuse

within an iteration space. We use vector spaces to repre-

sent the directions in which reuse is found, these are the

directions we wish to include in the localized space. We

evaluate the locality available within a loop nest using the

metric of memory accesses per iteration of the innermost

loop. A reference with no locality will result in one access

per iteration.

4.2.1 Self-Temporal

Consider the self-temporal reuse for a reference A [177+

a, Iterations ?1 and ~ reference the same data eleme~t

whenever Hz+? = Hfi +?, that is, when H(ti – Z) = O.

We say that there is reuse in direction F when HP== 6.

That is, reuse is exploited if F is included in the localized

vector space. The solution to this equation is ker H, a

vector space in 7?”. We call this the selj-temporaf reuse

vector space, R.sT. Thus,

R.sT = ker H.

For example, the reference C [II, J3] in the matrix mul-

triplication in Section 1 produces:

Rs~ = ker H = span{ (O, 1,0)}.

Informally, we say there is self-temporal reuse in loop 12.

Since loop 12 has n iterations, there are n reuses of C in

this loop nest. Similar analysis shows that A [11, 121 has

self-temporal reuse in the Is direction and B [12, IS] has

reuse in the 11 direction.

In this example nest, every reuse vector space is one-

dimensional. In general, the reuse vector space can have

zero or more dimensions. If the dimensionality is zero,

then R,sT = 0 and there is no self-temporal reuse. An ex-

ample of a two-dimensional reuse vector space is the refer-

ence A[ll] within a three-deep nest with loops (11, 12, Is).

In general, if the number of iterations executed along

each dimension of reuse is s, then each element is reused
Sd~(~ST) times.

As discussed in Section 3, a reuse is exploited only if it

occurs within the localized vector space. Thus, a reference

has self-temporal locality if its self-temporal reuse space

R,ST and the localized space L in the code have a non-
null inters~tion. The dimensionality of R ST fl L indicates

the quantity of self-temporal reuse utilized: the number of

memory accesses is, simply,

l/sd~@’T”~),

where s is the number of iterations in each dimension.

Consider again the matrix multiplication code. The

only localized direction in the untiled code is the inner-

most loop, which is span{ (O, O, 1)}. It coincides exactly

with RST (A [11, 12]), resulting in locality for that refer-

ence. Similarly, the empty intersection with the reuse vec-
tor space of references B [12, IS] and C [11, 13] indicates

no temporal locality for these references. In contrast, the

localized vector space of the tiled matrix multiplication

spans all the three loop directions. Trivially, there is a

non-empty intersection with each of the reuse spaces, so

self-temporal reuses are exploited for all references.

All references within a single uniformly generated set

have the same H, and thus the same self-temporal reuse

vector space. Therefore the derivation of the reuse vector

spaces and their intersections with the localized space need

only be performed once per uniformly generated set, not

once per reference. The total number of memory accesses

is the sum over that of each reference. For typical val-

ues of tile sizes chosen for caches, the number of memory

accesses will be dominated by the one with the smallest

values of dim(RST n L). Thus the goal of loop transforms

is to maximize the dimensionality of reusq the exact value

of the tile size s does not affect the choice of the transfor-

mation.

4.2.2 Self-Spatial

Without loss of generality, we assume that data is stored in

row major order. Spatial reuse can occur only if accesses

are made to the same row. Furthermore, the difference

in the row index expression has to be within the cache

line size. For a reference such as A [J, 121, the memory

accesses in the 12 loop will be reduced by a factor of 1,

where 1 is the line size. However, there is no reuse for

A [II, 10*12] if the cache line is less than 10 words. For

any stride k: 1 s k s 1, the potential reuse factor is l/k.

All but the row index must be identical for a reference
A [Hi’+ ?] to possess self-spatial reuse. We let HS be

H with all elements of the last row replaced by O. The

self-spatial reuse vector space is simply

RSS = ker Hs.

As discussed above, tempcmd locality is a special case

of spatial locality. This is reflected in our mathematical

formulation since

ker H c ker H5.

If RSS n L = RST rl L, the reuse occurs on the same word,

the spatial reuse is also temporal, and there is no additional

37

gain due to the prefetching of cache lines. If RSS n L #

R,sT rl L, however, different elements in the same row are

reused. If the transformed array reference is of stride one,

all the data in the cache line is also reused, resulting in a

total of l/(lsdk(RsT”Lj) memory accesses per iteration.

If the stride is k <1, the number of accesses per iteration

is k/(lSdti(RSTnLJ). As an example, the locality for the

original and fully tiled matrix multiplication is tabulated

in Table 1.

4.2.3 Group-Temporal

To illustrate the analysis on group-temporal reuse, we use

the code for a single SOR relaxation step:

for II :=1 tondo

for 12 :=1 tondo

A[ll,lz] := 0.2* (A[ll,lz I+A[ll+l,lz I
+AIII–1,12]+A[11,12 +1]

+A[ll, lz– l]);

There are five distinct references in this innermost loop,

all to the same array. The reuse between these references,

can potentially reduce the number of accesses by a factor

of 5. If all temporal and spatial reuses are exploited, the

total number of memory accesses per iteration is reduced

from 5 to 1/1, where 1 is the cache line size. With the

way the nest is currently written, the localized space con-

sists of only the 12 direction. The reference A [11,12 – 1]
uses the same data as A [11, 12] from the previous itera-

tion, and A [11, 12+1] from the second previous iteration.

However, A [11 – 1, 12] and A [11 + 1,121 must neces-

sarily each access a different set of data. The number of

accesses per iteration is thus 3/1. We now show how to

mathematically calculate and factor in this group-temporal

reuse.

As discussed above, group-temporal reuse need only

be calculated for elements within the same uniformly

generated set. Two distinct references A [Hi+ &] and

A [Hi’+ E..] have group temporal reuse within a localized

space L if and only if

3?7EL:HF=Z1-Z2.

To determine whether such an Fexists, we solve the system

of equations HP= Z1 — ?2 to get a particular solution 7P,
if one exists. The general solution is ker H + FP, and so

there exists a F satisfying the above equation if and only
if

(span{ F,} +ker H) flL #ker Hfl L.

In the SOR example above, H is the identity matrix

and ker H = 0. Thus there is group reuse between two

references in L if and only if rj = 131– 132E L. When the

inner loop is 12, there is reuse between A [11, 12 – 1] and

A[llrlz], since

(0,-1) - (0,0) E spar{(o, l)}.

Reuse does not exist between A [11,12 – 11 and A [11 +

1, 12], since

(0,-1) - (1,0) # Spax{(o,l)}.

In fact, the references fall into three equivalence classes:

{A[1,,12- 11, A[lI,lZI,A[lI,lZ +lI}

{A[lI+l,lz]}

{A[lI,lz]}

Reuse exists and only exists between all pairs of references

within each class. Thus, the effective number of memory

references is simply the number of equivalence classes.

In this case, there are three references instead of five, as

expected.

In general, the vector space in which there is any group-

temporal reuse RGT for a uniformly generated set with

references {A [H;+ cl] ,.. . A [Hi’+ cl 1 } is defined to

be

RGT = span{ i!z,... ,P~} +ker H

where fork =2,..., g, ;~ is a particular solution of

H?=~l–~k.

For a particular localized space L, we get an additional

benefit due to group reuse if and only if RGT (l L #

R.sT n L. To determine the benefit, we must partition

the references into equivalence classes as shown above.

Denoting the number of equivalence classes by gZ’, the

number of memory references for the uniformly generated

set per iteration is 92’, instead of g.

4.2.4 Group-Spatial

Finally, there may also be group-spatial reuse. For exam-

ple, in the following loop nest

for II :=1 tondo

~(A[ll, 01, A[ll,ll);

the two references refer to the

iteration.

same cache line in each

Following a similar analysis as above, the group-spatial

vector space RGS for a uniformly generated set with ref-

erences {A [H7+ c;] ,...3[H~+ &l}isdefied @be

RG,s = span{ ~z,... ,?~} + ker.HS

where HS is H with all elements of the last row replaced

by Oandfork =2,..., n, 7~ is a particular solution of

H$= ~s,~ – &#

where ~S,i denotes ~i with the last row set to O. The

relationships between the various reuse vector spaces are

therefore

RST C Rs,s, RGT c RGS

38

Reference Reuse Untiled (L = span{Z3 j) Tiled (L = span{.?l, Z’,&})

RST Rss RST fl L RSS fI L cost R,ST fl L RSS n L cost
A[11,12] span{z3 } Span{Fz, l?”} span{z3 } span{F3 } 1/s span{e?3} Sp~{.?Z, Z’3} 1/(1s)
B[lZ,13] Span{zl } span{ zl, E3} 0 span {Z3 } 1/1 Span{?’1 } span{ Fl, z3} 1/(1s)
C[11,13] span{?’ } Sp~{;Z,F3} 0 Sprm{a} 1/1 Span{?z } sp~{~z,~s} 1/(1s)

Table 1: Self-temporal and self-spatial locality in tiled and untiled matrix multiplication. We use the vectors .?1, ?2 and 73

to represent (1, O, O), (O, 1, O) and (O, O, 1) respectively.

Two references with index functions Hi+ & and H;+ c;

belong to the same group-spatial equivalence class if and

only if

3~E L ~Hs?= ~5,i – 25,j.

We denote the number of equivalence sets by gs. Thus,
g~ ~ gT ~ g, where g is the number of elements in the

uniformly generated set. Using a probabilistic argument,

the effective number of accesses per iteration for stride

one accesses, with a line size 1, is

9S + (9T – 9S)/~.

4.2.5 Combining Reuses

The union of the group-spatial reuse vector spaces of each

uniformly generated set captures the entire space in which

there is reuse within a loop nest. If we can find a trans-

formation that can generate a localized space that encom-

passes these spaces, then all the reuses will be exploited.

Unfortunately, due to dependence constraints, this may not

be possible. In that case, the locality optimization problem

is to find the transform that delivers the fewest memory

accesses per iteration.

From the discussion above, the memory accesses per

iteration for a particular transformed nest can be calculated

as follows. The total number of memory accesses is the

sum of the accesses for each uniformly generated set. The

general formula for the number of accesses per iteration

for a uniformly generated set, given a localized space L

and line size 1, is

9S “t (9T – !7S)/~
/e~dim(R,snL)

where

{

O RSTnL=RSSIILe=
1 otherwise.

We now study the full example in Figure 2(a) to il-

lustrate the reuse and locality analysis. The reuse vector

spaces of the code are summarized in Figure 2(b). For the

uniformly generated set in the example,

H=[O l], H.s= [() o].

The reuse vector spaces are

R,sT =

RSS =

RGT =

RGS =

ker H = span{ (l, O)}

ker Hs = span{ (O, 1), (1,0)}

span{ (O, 1)} +ker H = span{ (o, 1), (1,0)}

span{ (O, 1)} +kerHS = span{ (O, 1), (1,0)}.

When the localized space L is span{ (O, l)},

RST17L = 0

RSS n L = span{ (O, 1)} # RST

RGT (l L = span{ (O, 1)}

&S f_IL = span{ (O, 1)} = RGT.

Since g~ = 1, the total number of memory accesses per

it.mtion is 1/1. Similar derivation shows the overall num-

ber of accesses per iteration for the localized space of

Span{ (l, o), (o, 1)} to be 1/(1s).

The data locality optimization problem can now be for-
mulated as follows:

Definition 4.2 For a given iteration space with

1. a set of dependence vectors, and

2. unformly generated reference sets

the data locality optimization problem is to fmd the uni-

modular andlor tiling transform, subject to data depen-

dence, that minimizes the number of memory accesses

per iteration.

5 An Algorithm

Our analysis of locality shows that differently transformed
loops can differ in locality only if they have different lo-

calized vector spaces. That is, all transformations that

generate code with the same Iodized vector space can

be put in an equivalence class and need not be examined

individually. The only feature of interest is the innermost

til~ the outer loops can be executed in any legal order

or orientation. Similarly, reordering or skewing the tiled

loops themselves does not affect the vector space and thus

need not be considered.

39

From the reuse analysis, we can identify a subspace that

is desirable to make into the innermost tile. The question

of whether there exists a unimodular transformation that is

legal and creates such an innermost subspace is a difficult

one. An existing atgorithm that attempts to find such a

transform is exponential in the number of loops [151. The

general question of finding a legal transformation that min-

imizes the number of memory accesses as determined by

the intersection of the localized and reused vector spaces

is even harder.

Although tie problem is theoretically difficult, loop

nests found in practice are generally simple, Using charac-

teristics of programs as a guide, we simplify this problem

by (1) reducing the set of equivalent classes, and (2) using

a heuristic algorithm for finding transforms.

5.1 Loops Carrying Reuse

Although reuse vector spaces can theoretically be spanned

by arbitrary vectors, in practice they are typically spanned

by a subset of the elementary basis of the iteration space,

that is, by a a subset of the loop axes. In the code below,

the array A has self-temporal reuse in the vector space

spanned by (O, O, 1); we say that the loop 13 carries reuse.

On the other hand, the B array has a self-temporal reuse in

the (1, – 1, O) direction of the iteration space, which dees
not correspond to either loop 11 or 12 but rather a combi-

nation of them. This latter situation is not as common.

Instead of using an arbitrary reuse vector space directly

to guide the transformation process, we use its smallest

enclosing space spanned by the elementary vectors of the

iteration space. For example, the reuse vector space of

B[ll+lz,~g] is spanned by (l, O,O)and(O,l, O), thedi-
rections of lcmps 11 and 12 respectively. If we succeed in

making the innermost tile include both of these directions,

we will exploit the self-temporal reuse of the reference. In-
formally, this procedure reduces the arbitrary vector spaces

to a set of loops that carry reuse.

With this simplification, a leQp in the source program

either carries reuse or it does not. We partition all trans-

formations into equivalence classes according to the set

of source loop directions included in the localized vector

space. For example, both loQps in Figure 2(a) carry reuse.

Transformations are classified depending on whether the

transformed innermost tile contains only the first loop, the

second or both.

5.2 An Algorithm to Improve Locality

We first prune the search by finding those loop directions

that need not or cannot be included in the localized vector

space. These loops include those that carry no reuse and

can be placed outermost legatly, and those that carry reuse

but must be placed outermost due to legality reasons. For

example, if a three-deep loop has dependence

{(1,’+ ’,’+ ’), (0,1,’+ ’),(0,0,’+’)}

and carry locality in all three loops, there is no need to

try all the different transformations when clearly only one

loop ordering is legal.

On the remaining loops Z, we examine every subset 1

of Z that contains at least some reuse. For each set 1, we

try to find a legal tmnsformation such that the loops in 1

are tiled innermost. Among all the legal transformations,

we select the one with the minimal memory accesses per

iteration. Because the power set of Z is explored, this al-

gorithm is exponential in the number of loops in Z. How-

ever, Z, a subset of the origimd imps, is typically smalt

in practice.

There are two steps in finding a transformation that

makes loops 1 innermost. We tirst attempt to order the

outer loops—the loops in Z but not in 1. Any trans-

formation applied to the loops in T -1 that result in

these loops being outermost and no dependence being

violated by these loops is sufficient [16]. If that step suc-

ceeds, then we attempt to tile the 1 loops innermost, which

means finding a transformation that turns these loops into

a fully permutable loop nest, given the outer nest. Solving

these problems exactly is still exponential in the number

of dependence. We have develo~d a heuristic compound

transformation, known as the SRP transform, which is use-
ful in both steps of the transformation algorithm.

The SRP transformation attempts to make a set of loops

fully permutable by applying combinations of permutation,

skewing and reversal [16]. If it cannot place all loops in a

single fully permutable nest, it simply finds the outermost

nest, and returns all remaining loops and dependence left

to be made lexicographically positive. The atgorithm is

based upon the observations in Theorem 5.1 and Corollary

5.2.

Theorem 5.1 Let N = {11,... , In } be a loop nest with

le~icographically positive dependence ~ E D, and Di =

{d EDl(dl,..., dj_l) ~ 6}. Loop Ij can be made into

a fully permutable nest with loop Ii, where i < j, via
reversal andlor skewing, ZJ

Proofi All dependence vectors for which
(dI,..., di_l) + 6 do not prevent loops Ii and Ij from

being fully permutable and can be ignored. If

40

then we can skew loop Ij by a factor of ~ with respect to

loop Ii where

to make loop Ij fully permutable with loop Ii. If instead

the condition

holds, then we can reverse loop lj and proceed as above.

D

Corollary 5.2 If loop $ has dependence such that 32 c

D : d$h = –cm and Zld c D : ~ = co then the outer-

most fully permutable nest consists only of a combination

of loops not including Ik.

The SRP algorithm takes as input the loops N that have

not been placed outside this nest, and the set of dependen-

ce D that have not been satisfied by loops outside this

loop nest. It first removes from N those serializing loops

as defined by the 1~s of Corollary 5.2. It then uses an iter-

ative step to buildup the fully permutable loop nest F. In

each step, it tries to find a loop from the remaining loops

in N that can be made fully permutable with F via possi-

bly multiple applications of Theorem 5.1. If it succeeds in
finding such a loop, it permutes the loop to be next outer-

most in the fully permutable nest, adding the loop to F and

removing it from N. Then it repeats, searching through

the remaining loops in N for another loop to place in F.

This algorithm is known as SRP because the unimodular

transformation it performs can be expressed as the product

of a skew transformation (S), a reversal transformation@)

and a permutation transformation (P).

We use SRP in both steps of finding a transformation

that makes a loop nest 1 the innermost tile. We first ap-
ply SRP iteratively to those loops not in 1. Each step

through the SRP algorithm attempts to find the next out-

ermost fully permutable lcmp nest, returning all remaining

loops that cannot be made fully permutable and returning

the unsatisfied dependence. We repeatedly call SRP on

the remaining loops until (1) SRP fails to find a single

loop to place outermost, in which case the algorithm fails

to find a legal ordering for this target innermost tile 1, or

(2) there are no remaining loops, in which case the algo-

rithm succeeds. If this step succeeds, we then call SRP

with loops 1, and all remaining dependence to lx satis-

fied. In this case, we succeed only if SRP makes all the

loops fully permutable.

Let us illustrate SRP algorithm using the example in

Figure 2. Suppose we are trying to tile loops 11 and

12. First an outer loop must be chosen. 11 can be the

outer loop, because its dependence components are all non-

negative. Now loop 12 has a dependence component that

is negative, but it can be made non-negative by skewing

with respect to 11 (Figure 2D). Loop 12 is now placed

in the same fully permutable nest as 11; the loop nest is

tilable (Figure 2(e)).

In general, SRP can be applied to loop nests of arbi-

trarily depth where the dependence can include distances

and directions. In the important spex.iat case where atl

the dependence in the loop nest to be ordered are lexi-

cographically positive distance vectors, the algorithm can

place all the loops into a single fully permutable loop nest.

The algorithm is 0(n2d), where n is the loop nest depth

and d is the number of dependence vectors. With the ex-

tension of a simple 2D time-cone solver[16], it becomes

0(n3 d) but can find a transformation that makes any two

loops fully permutable, and therefore tilable, if some such

transformation exists.

If there is little reuse, or if data dependence constrain

the legal ordering possibilities, the atgorithm is fast since Z

is small. The atgorithm is only slow when there are many

carrying reuse loops and few dependence. This algorithm

can be further improved by ordering the search through the

power set of Z using a branch and bound approach.

6 Tiling Experiments

We have implemented the algorithm described in this pa-

per in our SUIF compiler. The compiler currentty gener-

ates working tiled code for one and multiple processors

of the SGI 4D/380. However, the scalar optimizer in our

compiler has not yet been completed, and the numbers ob-

tained with our generated code would not reflect the true

effect of tiling when the code is optimized. Fortunately,

our SUIF compiler also includes a C backend; we can

use the compiler to generate restructured C code, which

can then be compiled by a commercial scalar optimizing

compiler.

The numbers reported below are generated as follows.

We used the compiler to generate tiled C code for a sin-

gle processor. We then performed, by hand, optimization

such as register allocation of array elements[5], moving

loop-invariant address calculation code out of the inner-

most loop, and unrolling the innermost loop. We then

compiled the code using the SGI’S optimizing compiler. To

run the code on multiple processors, we adopt the model

of executing the tiles in a DO-ACROSS manner[16]. This

code has the same structure as the sequential code. We

needed to add only a few lines to the sequential code to

create multiple threads, and initialize, check and increment

a smiitl number of counters within the outer loop.

6.1 LU Decomposition

The original code for LU-decomposition is:

for 11 :=1 tondo

for 12 : = 11+1 to n do

41

25 ~-

20- -

15 .-

10 -

5 .-

D 64x64 tiling

A 32x32 tiling

Q no tiling

oo~
12345678

Processors

Figure 5: Performance of 500 x 500 double precision LU

factorization without pivoting on the SGI 4D/380. No

register tiling was performed.

A[lz, ll] /= A[~lr~l];

for 13 := 11+1 to n do

A[Jz,13] -= A[lzrll]*A[ll,13];

For comparison, we measured the performance of the orig-

inal untiled LU code on one, four and eight processors. For

this Code, we allOCated the element A [&, 11] to a register

in the dumtion of the innermost loop, We parallelized the

middle loop, and ran it self-scheduled, with 15 itemtions

per task. (The results for larger and smaller granuku-ities

are virtually identical.) Figure 5 shows that we only get

a speedup of approximately 2 on eight processors, even

though there is plenty of available parallelism. This is

because the memory bandwidth of the machine is not suf-

ficient to support eight processors that are each reusing so

little of the data in their respective caches.

This LU loop nest has a reuse vector space that spans

all three loops, so our compiler tiles all the loops. The LU

code is not perfectly nested, since the division is outside

of the innermost loop. The generated code is thus more
complicated

for112=ltonbysdo

for113=ltonbysdo

for 11 =1 tondo

for 12 = max(~l +1,11~) to

min(n,112+s–1) do

if113~11+ l~.f13+ s-l then

A[lz,ll] /= A[ll,I1];

for 13 = max(ll +1,113) to

min(nr113+s–1) do

A[Iz,13] -= A[lz,ll]*A[Il,13] ;

As with matrix multiplication, while tiling for cache

reuse is important for one processor, it is crucial for mul-

tiple processors. Tiling improves the uniprocessor exe-

cution by about 20Yo; more significantly, the speedup is

much closer to linear in the number of processors when

tiling is used. We ran experiments with tile sizes 32x 32

and 64x 64. The results coincide with our analysis that the

marginal performance gain due to increases in the tite size

is low. In this example, a 32 x 32 tile, which holds 1/4

the data of a 64 x 64 tile, performed virtually as well as

the larger on a single processor. It actwlly outperformed

the larger tile in the eight processor experiment, mostly

due to load balancing.

6.2 SOR

We also ran experiments with the SOR code in Figure 7(a),

which is a two-dimensional equivalent of the example in

Figure 2(a). Figure 6 shows the performance results for

three versions of this nest, where t is 30 and n + 1, the
size of the matrix, is 500. None of the original loops

is parallelizable, The tirst verson, labeled “DOALL”, is

transformed via wavefronting so that the middle loop is

a DOALL lwp [16] (Figure 7(b)). This transformation

unfortunately destroys the original locality within the code.

Thus, performance is abysmal on a single processor, and

speedup for multiple processors is equally abysmal even

though again there is plenty of available parallelism in the

1$ loop,

401-

❑ 3D tile
A 2D tile
o DOALL middle

oo~
5678

Processors

Figure 6: Behavior of 30 iterations of a 500 x 500 double

precision SOR step on the SGI 4D/380. The tile sizes are

64 x 64 iterations. No register tiling was performed.

The code for the second version, labeled “2D tile”, is

shown in Figure 7(c). This version tiles only the inner-

42

for 11 :=1 totdo

for IZ := Iton–ldo

for 13 := lton–ldo

A[IZ,13] := 0,2*(A[&,~3] + A[~z+l,~3] + A[&-l, ~3] + A[~z,~3+l] + A[~,13–ll);

(b): WOALL” SOR nest

for 1{ := 5 to 2N–2+3t do

doall I; := max(l, (l[–t –2N +2)/2) to min(t, (l~ –3)/2) do

for Ii : = max(l+~~,~{-2~~-n+l) to min(n-l+l~rl~-l–zl~) do

A[14–14,1; –24 -14] := 0.2* (A[4–l; ,l; –214–14] + A[lj–l~+ l,l; -21~-ljl
+ A[lj–l~- 1,1(–21~–lj] + A[lj–l~,l(–21j– 1:+1] + A[lj–l~,l; –21~–lj–ll);

(c): “2-D Tile” SOR nest

for I{ :=1 totdo

for II; := Iton–lbysdo

for I; := lton–ldo

forIj := IIj to mh(n-l, IJ3+s -1) do

AII~,Ij] := 0.2* (A[4] [I~l+AII; +l,ljl+AII; -l, Ijl+AII; ,Ij+ll+A[l; ,lj-ll);

(d): “3-D Tile” SOR nest

for 11{ := 2 ton- l+ibysdo

for 11~ :=2ton–l+tbysdo

for I; :=1 totdo

for I; := II. to min(n-l+t, II~+s -1) do

for Ij := 11~ to min(n–l+t, IIj+s–1) do

A[~;,~;] := 0.2* (A[4-l{][l; –lf] + A[~~-l(+l,lj–lf]
+ A[~~–~~–1,~~–~;] + A[l.–1;,~j–~;+l] + A[l~–l{,lj–l{– l]);

Figure 7: Code for the different SOR versions.

most two loops, The uniprocessor performance is signif-

icantly better than even the eight processor wavefronted

performance. Thus although wavefronting may increase

parallelism, it may reduce locality so much that it is better

to use only one processor. However, the speedup of the

2D tile method is still limited because self-temporal reuse

is not being exploited.

To exploit all the available reuse, all three lwps must

be included in the innermost tile. The SRP algorithm first

skews 12 and 13 with respect to 11 to make tiling legal, and

then tiles to produce the code in Figure 7(d). This “3D tile”
version of the loop nest is best for a single processor, and

also has the best speedup in the multiprocessor version.

7 Conclusions

In this paper, we propose a complete approach to the prob-

lem of improving the cache performance for loop nests.

The approach is to first transform the code via interchange,

reversal, skewing and tiling, then determine the tile size,

taking into account data conflicts due to the set associativ-

ity of the cache [12]. The loop transformation algorithm

is based on two concepts: a mathematical formulation of

reuse and locality, and a matrix-based loop transformation

theory.

While previous work on evaluating locality estimates

the numlxx of memory accesses directly for a given trans-

formed code, we break the evaluation into three parts, We

use a reuse vector space to capture the inherent reuse

within a loop nest we use a localized vector space to

capture a compound transform’s potential to exploit local-

ity; finally we evaluate the locality of a transformed code

by intersecting the reuse vector space with the localized

vector space.

There are four reuse vector spaces: self-temporal, self-

spatial, group-temporal, and group-spatial. These reuse

vector spaces need to be calculated only once for a given

loop nest. We show that while unimochdar transformations

can alter the orientation of the localized vector space, tiling

can increase the dimensionality of this space.

The reuse and localized vector spaces can be used to

prune the search for the best compound transformation,

and not just for evaluating the locality of a given code,

First, all transforms with identical localized vector space

are equivalent with respect to locatity. In addition, trans-

forms with different localized vector spaces may also be

43

equivalent if the intersection between the localized and

the reuse vector spaces is identical. A loop transformation

algorithm need only to compare between transformations

that give different localized and reuse vector space inter-

sections.

Unlike the stepwise transformation approach used in ex-

isting compilers, our loop transformer solves for the com-

pound transformation directly. This is made possible by

our theory that unifies loop interchanges, skews and rever-

sals as unimodukir matrix transformations on dependence

vectors with either direction or distance components. The

algorithm extncts the dependence vectors, determines the

best compound transform using locality objectives to prune

the search, then transforms the loops and their loop bounds

once and for all. This theory makes the implementation

of the algorithm simple and straightforward.

References

[1] W. Abu-Sufah. Improving the Pe~ormance of Vir-

tual Memory Computers. PhD thesis, University of

Illinois at Urbana-Champaign, Nov 1978.

[2] U. Banerjee. Data dependence in ordinary programs.

Technical Report 76-837, University of Illinios at

Urbana-Champaign, Nov 1976.

[3] U. Banerjee. Dependence Analysis for Supercomput-

ing. Kluwer Academic, 1988.

[4] U. Banerjee. Unimodular transformations of double

loops. In 3rd Workshop on Languages and Compilers

for Parallel Computing, Aug 1990,

[5]

[6]

[7]

[8]

[9]

D. Callahan, S, Carr, and K. Kennedy, Improving

register allocation for subscripted variables, In Pro-

ceedings of the ACM SIGPLAN ‘90 Co#erence on

Programming Language Design and Implementation,

June 1990.

J. Dongarra, J. Du Croz, S. Hammarling, and I. Duff,

A set of level 3 basic linear algebra subprograms.

ACM Transactions on Mathematical Software, pages

1–17> March 1990.

K. Gallivan, W. Jrdby, U. Meier, and A. Sameh. The

impact of hierarchical memory systems on linear al-

gebra algorithm design. Technical repofi University

of Illinios, 1987.

D. Gannon, W. Jalby, and K. Gallivan, Strategies

for cache and local memory management by global

program transformation. Journal of Parallel and Dis-

tributed Computing, 5:587-616, 1988.

G. H. Golub and C. F. Van Loan. Matrix Computa-

tions. Johns Hopkins University Press, 1989.

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

F. Irigoin and R. Triolet. Computing dependence

direction vectors and dependence cones. Technical

Report E94, Centre lYAutomatique et Informatique,

1988.

F. Irigoin and R. Triolet. Supemode partitioning. In

Proc. 15th Annual ACM SIGACT-SIGPLAN Sympo-

sium on Principles of Programming Languages, Jan-

Uary 1988.

M. S. Lam, E. E. Rothberg, and M. E. Wolf. The

cache performance and optimization of blocked al-

gorithms. In Proceedings of the Sixth International

Conference on Architectural Support for Program-

ming Languages and Operating Systems, April 1991.

A. C. McKeller and E. G. Coffman. The organization

of matrices and matrix operations in a paged muM-

programming environment. CACM, 12(3):153-165,

1969.

A. Porterlield. Software Methods for Improvement of

Cache Pe~ormance on Supercomputer Applications.

PhD thesis, Rice University, May 1989.

R. Schreiber and J. Dongama. Automatic blocking of

nested loops. 1990.

M. E. Wolf and M. S. Lam, A loop transforma-

tion theory and an algorithm to maximize parallelism.

IEEE Transactions on Parallel and Distributed Sys-

tems, July 1991.

M. J. Wolfe. Techniques for improving the in-

herent parallelism in programs. Technical Report

UIUCDCS-R-78-929, University of Illinois, 1978.

M. J. Wolfe. More iteration space tiling. In Super-

computing ’89, Nov 1989.

44

