
CS 380C: Assignment 2
Problem set on Fixpoint Equations

Fall 2020

Due: 11 PM, September 27, 2020

In this assignment, the word domain refers to a finite set S with a partial order
≤ (⊆ S × S) under which there is a least element. We will write D = (S,≤) to
represent the domain.

1. Consider the domain D that is the powerset of the set {a,b,c}, in which elements
are ordered by subset ordering, and {} is the least element.

(a) Draw a Hasse diagram of this partially ordered set. You do not have to
show transitive edges.

(b) Write down a function D→ D that is monotonic but not extensive.

(c) Write down a function D→ D that is extensive but not monotonic.

(d) Write down a function D→ D that is both extensive and monotonic.

(e) Write down a function f : D → D for which the equation x = f(x) has
no solutions. Explain why your function is not monotonic.

(f) Write down a function f : D → D for which the equation x = f(x) has
multiple solutions.

2. Let D = (S,≤) be a domain, and let f : D → D be monotonic. Let set L ⊆ S
be the set of solutions to the equation x = f(x). Show that (L,≤) is itself a
domain.

3. Let D = (S ,⊆) be the domain consisting of the powerset of a set S ordered by
subset ordering, and let a, b ∈ S. Consider the function f : S → S defined as
follows: f(T) = if (a ∈ T) then (T ∪ {b}) else T . Argue that f is monotonic.

How about the function g(T) = (T − {a}) ?

4. If D is a domain and f:D→D and g:D→D are monotonic, show that the function
h(x) = f(g(x)) is monotonic.

1

5. Let D be a domain and let f:D→D and g:D→D be monotonic and extensive
functions.

(a) Show that any solution to the following system of simultaneous equations:
x = f(x)
x = g(x)
is a solution to the equation x = f(g(x)) and vice versa.

(b) From this and the result of (4), argue that this system of simultaneous equa-
tions always has a least solution, and describe how to compute it.

(c) Do the results of (a) and (b) always hold if f and g are monotonic but not
extensive?

(d) Do the results of (a) and (b) always hold if f and g are extensive but not
monotonic?

6. Let < denote the set of real numbers [0,1] ordered in the usual way by the ≤
relation. This is a totally ordered set whose least element is 0, and whose greatest
element is 1. Consider a function f:<→<.

(a) Suppose f is extensive. Give an informal description of what its graph may
(and may not) look like, using a few pictures.

(b) Suppose f is monotonic. Give an informal description of what its graph
may (and may not) look like, using a few pictures. Hint: the word ”deriva-
tive” might be useful here.

(c) Complete the following sentence: the fixpoints of f , if they exist, must lie
on the line .

(d) Give an example of a function f:<→< without any fixpoints. Give an ex-
ample of such a function that has one or more fixpoints.

(e) Another famous fixpoint theorem is known humorously as the “hairy ball
theorem.” Read up about it and write a few sentences about this theorem.

(f) (Extra credit) Is monotonicity of f enough to guarantee that it has a least
fixpoint? If so, give a proof. Hint: This is a difficult problem and its
solution uses the Tarski fixpoint theorem, which we did not cover in class.

7. Answer the following questions briefly.

• What is the difference between a grammar and a language?

• What is an ambiguous grammar? Give an example of an ambiguous gram-
mar and explain using an example why it is ambiguous.

• Can all context-free grammars be parsed using recursive-descent parsing?
Explain using a simple grammar as a counter-example.

• What algorithm would you use to parse general context-free grammars?

2

8. SLL(1) grammars can be generalized in a natural way to SLL(k) grammars for
which we use k lookahead symbols to make parsing decisions. The theory of
SLL(k) parsers is based on two relations called FIRSTk and FOLLOWk that
generalize the FIRST and FOLLOW relations that we discussed in class.
Some of the concepts used in the definitions below are defined at the end of
this problem set. In the rest of this problem, assume that we are given a context-
free grammar G=<N,T, P, S> and that k is a fixed integer. The augmented
grammar is G′=<N ′, T ′, P ′, S′> (see definition below).

• If α is a string of terminals and/or terminals, FIRSTk(α) is defined to be
the set of k-prefixes of strings that can be produced from α by applying the
productions of the grammar. One way to think about this is the following.
If A is a non-terminal, FIRSTk(A) is defined as the set of k-prefixes of
strings that can be derived from A using the grammar productions. The
definition of FIRSTk can be extended to strings of terminals and non-
terminals as follows.

FIRSTk(ε) = {ε}
FIRSTk(t ∈ T) = {t}
FIRSTk(u1u2...un) = FIRSTk(u1) +k ...+k FIRSTk(un)

Let M be the finite lattice whose elements are sets of terminal strings of
length at most k, ordered by containment with the empty set being the least
element. FIRSTk sets for non-terminals can be computed as the least
solution inM of this equational system:

∀A ∈ N FIRSTk(A) =
⋃
A→α

FIRSTk(α)

• FOLLOWk sets can be defined analogously. Let L be the lattice whose
elements are sets of terminal strings of length exactly k for the augmented
grammar, ordered by containment with the empty set being the least ele-
ment. FOLLOWk sets for non-terminals other than S′ can be computed
as the least solution in L of this equational system:

FOLLOWk(S) = {$k}

∀B ∈ (N ′ − {S, S′}).FOLLOWk(B) =
⋃

A→αBγ

FIRSTk(γ) +k FOLLOWk(A)

i. Explain briefly the intuition behind the equations for computing FIRSTk
and FOLLOWk. How do these definitions avoid the need for computing
NULLABLE non-terminals, as we did in class?

ii. Consider the grammar

S → yLab|yLbc|M
L→ a|ε
M →MM |x

3

Write down the equational systems for the FIRST2 and FOLLOW2 sets
for the non-terminals of the grammar. Solve these equations to compute
these sets.

The following definitions are needed for the last problem.

• Given a string s of terminal symbols, the k-prefix of s, written as (s)k, is the
string consists of the first k symbols of s. If the length of the string is less than
k, then the k-prefix is just the string itself. For example,

(abc)2 = ab

(abc)1 = a

(abc)4 = abc

• The operator +k takes two terminal strings and returns the k-prefix of their con-
catenation. This operator can be lifted to sets of strings in the obvious way. For
example,

a+2 bcd = ab

a+2 ε = a

{ε, t, tu, abc}+2 {ε, x, xy, xya}={ε, x, xy, t, tx, tu, ab}

• Lookahead computation is simplified if we pad the input string with k $ symbols
at the end; this ensures that we always have at least k symbols of lookahead even
when we are near the end of the string. This can be described formally by defin-
ing an augmented grammarG′=<N ′=N ∪ {S′}, T ′=T ∪ {$}, P ′=P ∪ {S′→S$k}, S′>.
Intuitively, we add a new non-terminal S′, a new terminal symbol $, and a pro-
duction S′ → S$k to the grammar, and make the new start symbol S′.

4

