CS 380C:
Advanced Topics in Compilers

Administration

¢ Instructor: Keshav Pingali
— Professor (CS, ICES)
— Office: POB 4.126A
— Email: pingali@cs.utexas.edu
e TAs: Sepideh Maleki, Bozhi You
— PhD students in my group
— Emails:smaleki,youbozhi@cs.utexas.edu

Meeting times

e Lecture:

— M 10AM-1PM, online

— Short break of 5 minutes around 11:30AM
e Office hours:

— Keshav Pingali: Monday 3-4PM, online
— TA office hours: TBD

Prerequisites

e Compilers and architecture
— Some background in compilers
— Basic computer architecture
e Machine learning
— Basic knowledge of machine learning
Software and math maturity
— Able to implement large programs in C/C++

— Comfortable with abstractions like graph theory
Ability to read research papers and understand

content




Course material

¢ Website for course

¢ All lecture notes, announcements, papers,
assignments, etc. will be posted there

¢ No assigned book for the course
— post papers and other material as appropriate

Coursework

4-5 programming assignments and problem sets
Mid-semester exam

Paper presentations

— Second half of semester

Term project

— Substantial implementation project in area of
compilers

Final exam (at my discretion)

Why do we need
compilation technology?

Traditional view:
— Translation: high-level language (HLL) programs to low-level
machine code
— Optimization: reduce number of arithmetic operations by
optimizations like common subexpression elimination
— Ignore data structures: too complex to analyze
Modern view:
— Collection of automatic techniques for extracting meaning from
and transforming programs
— Useful for debugging, optimization, verification, detecting
malware, translation, .....
— Optimization:
* Restructure (reorganize) computation to optimize locality and parallelism
* Reducing amount of computation is useful but not critical
¢ Optimizing data structure accesses is critical

Why do we need translators?

¢ Bridge the “semantic gap”
— Programmers prefer to write programs at a high level of
abstraction

— Modern architectures are very complex, so to get good
performance, we have to worry about a lot of low-level details

— Compilers let programmers write high-level programs and still get
good performance on complex machine architectures

¢ Application portability

— When a new ISA or architecture comes out, you only need to
reimplement the compiler on that machine

— Application programs should run without (substantial) modification

— Saves programming effort

e Summary: performance + portability of HLL programs




Microprocessor trend data

Intel Skylake chip
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Getting performance Software problem
Programs must exploit
— coarse-grain (thread-level) parallelism e Problem:
- memory hierarchy (Ll,L?,L?:,..) — Programs obtained by expressing most algorithms in
- |ns§ruct|0n—|evel parallelism (ILP) the straight-forward way perform poorly
- registers — Worrying about performance when coding algorithms
T complicates the software process greatly
How important is it to exploit these hardware features? L .
P P e Let us study cache optimization to understand this
— If you have n cores and you run on only one, you get at )
most 1/n of peak performance, so this is obvious e Caches are useful only if programs have
— Memory hierarchy: typical latencies locality of reference
. t; E:E:Z:i;‘g’jes — temporal locality: program references to given memory
« Memory: ~ 500-1000 cycles address are clustered together in time
* If most memory accesses hit in L1/L2 cache, performance is much — spatial locality: program references clustered in address
better than if most of accesses go to memory space are clustered in time
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Example: matrix multiplication

forI=1,N //assume arrays stored in row-major order
forJ=1,N
forK=1,N
C(LJ) = C(1,J) + AILK)*B(K,J)

o All six loop permutations are computationally equivalent
(even modulo round-off error).

e Great algorithmic data reuse: each array element is
touched O(N) times!

¢ However, execution times of the six versions can be very
different if machine has a cache.

1JK version (large cache)

\
forI=1,N A K B
forJ=1,N
forK=1,N Cxal | " |C
C(1,J) = C(LJ) + A(LK)*B(K,J)

+ Large cache scenario: matrices are small enough to fit into cache
— Assume only cold misses, no capacity or conflict misses
— Miss ratio:
« Data size =3 N?
+ Assume line size = b floating-point numbers
+ Miss ratio = 3 N?/b*4N3 = 0.75/bN = 0.019 (b = 4,N=10)
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MMM Experiments
1JK version (small cache) . Simulated L1 Cache Miss Rtio for Intl Pentium 11
— MMM with N=1_ 1300
— 16KB 32B Block 4-vay &-byte cdlements
B + op T
forI=1,N X
A 05
forJ=1,N e
_ B
forK=1,N i} CKo C .
C(L)) = C(LJ)) + A(ILK)*B(K.,J) - T.k
* Small cache scenario: matrices are large compared to cache/row- o "
major storage 0% G
— Cold and capacity misses (ignore conflict misses) 0z *:: N
— Miss ratio: 018 o
+ C: N%b misses (good temporal locality) o
« A:N3/b misses (good spatial locality)
+ B: N3misses (poor temporal and spatial locality) oS
* Miss ratio = 0.25 (b+1)/b =0.3125 (for b =4) N SE1fifiTissfisFiE AL BE2q¢E3
o]
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Quantifying performance differences

forI=1,N //assume arrays stored in row-major order
forJ=1,N
forK=1,N
C(LJ) = C(L)) + A(LK)*B(K.J)

* Typical cache parameters:
— L2 cache hit: 10 cycles, cache miss 70 cycles
* Time to execute IKJ version:
2N3 + 70*0.13*4N3 + 10*%0.87*%4N? =73.2 N3
* Time to execute JKI version:
2N3 + 70%0.5%4N3 + 10*0.5%4N> = 162 N3
e Speed-up=2.2

Even better.....

Break MMM into a bunch of smaller MMMs so that large cache model is true
for each small MMM

=> large cache model is valid for entire computation

=> miss ratio will be 0.75/bt for entire computation where t is

[Bverags of Wissa]

+ Key transformation: loop permutation W: \J~
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Loop tiling/blocking
i, B Speed-up from tiling/blocking
for It=1,N, t I,
for Jt = 1Nt .
for Kt = 1,N,t A . M . f bl k .
for I = It Iet.1 iss ratio for block computation
for J = Jt,Jt+t-1 Tt l t t . .
for K = KtKt+-1 U 1 = miss ratio for large cache model
C(1,) = CLI+A(LK)*B(K,J) =
K c =0.75/bt
K =0.001 (b =4, t = 200)
* Break big MMM into sequence of smaller MMMs where e Time to execute tiled version =
each smaller MMM multiplies sub-matrices of size txt. IN? + 70%0.001*AN? + 10%0 999%AN3 = 42, 3N3
» Parameter t (tile size) must be chosen carefully
— as large as possible L4 Speed—up over JK| version =4
— working set of small matrix multiplication must fit in cache
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Observations

¢ Locality optimized code is more complex than high-level algorithm.

¢ Locality optimization changed the order in which operations were
done, not the number of operations

¢ “Fine-grain” view of data structures (arrays) is critical
¢ Loop orders and tile size must be chosen carefully

— cache size is key parameter

— associativity matters

e Actual code is even more complex: must optimize for processor
resources

— registers: register tiling
— pipeline: loop unrolling
— Optimized MMM code can be ~1000’s of lines of C code

¢ Wouldn’t it be nice to have all this be done automatically by a
compiler?

— Actually, it is done automatically nowadays...

Performance of MMM code produced by
Intel’s Itanium compiler (-03)
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Goto BLAS obtains close to 99% of peak, so compiler is pretty good!

21

22

Summary

e Exploiting parallelism, memory hierarchies etc. is very
important

e |f program uses only one core out of n cores in processors,
you get at most 1/n of peak performance

e Memory hierarchy optimizations are very important
— can improve performance by 10X or more

e Key points:
— need to focus on data structure manipulation
— reorganization of computations and data structure layout are key

— few opportunities usually to reduce the number of computations
except in address arithmetic

Organization of modern compiler

Source program

“Our focus
High—level Optimizer

L Low-level representation; (3—address code, ....)

Low-level Optimizer

Augmented low—level representation

Code generator H

77777777777777 - Assembly-er-machine Code
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Front-end

e Goal: convert linear representation of program
to hierarchical representation
— Input: text file
— QOutput: abstract syntax tree + symbol table

¢ Key modules:

— Lexical analyzer: converts sequence of characters in
text file into sequence of tokens

— Parser: converts sequence of tokens into abstract
syntax tree + symbol table

— Semantic checker: (eg) perform type checking

High-level optimizer

Goal: perform high-level analysis and
optimization of program

Input: AST + symbol table from front-end
Output: Low-level program representation
such as 3-address code

Tasks:

— Procedure/method inlining

— Array/pointer dependence analysis

— Loop transformations: unrolling, permutation,
tiling, jamming,....
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" Code generator
Low-level optimizer 2
S e Goal: produce assembly/machine code from
e Goal: perform scalar optimizations on low-level optimized low-level representation of program
representation of program e Input: optimized low-level representation of
* Input: low-level representation of program such as program from low-level optimizer
3-address code e Output: assembly/machine code for real or
e Output: optimized low-level representation + virtual machine
additional information such as def-use chains e Tasks:
* Tasks: — Register allocation
— Dataflow analysis: live variables, reaching definitions, ... — Instruction selection
— Scalar optimizations: constant propagation, partial
redundancy elimination, strength reduction, ...
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JIT compilation

e Traditionally, all phases of compilation were completed
before program was executed
e New twist: virtual machines
— Offline compiler:
* Generates code for virtual machine like JVM
— Just-in-time compiler:

* Generates code for real machine from VM code while program is
executing

e Advantages:
— Portability
— JIT compiler can perform optimizations for particular input

My lectures (scalar stuff)

* Introduction
— compiler structure, architecture and compilation, sources of improvement
« Control flow analysis
— basic blocks & loops, dominators, postdominators, control dependence
* Data flow analysis
— lattice theory, iterative frameworks, reaching definitions, liveness
* Static-single assignment form (SSA)
— static-single assignment, constant propagation.
* Global optimizations

— loop invariant code motion, common subexpression elimination, strength
reduction.

* Registerallocation
— coloring, allocation, live range splitting.

* Instruction scheduling (depending on schedule)
— pipelined and VLIW architectures, list scheduling.
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My lectures (data structure stuff)

Array dependence analysis
— integer linear programming, dependence abstractions.
¢ Loop transformations for array programs

— linear loop transformations, loop fusion/fission, enhancing
parallelism and locality

¢ Self-optimizing programs
— empirical search, ATLAS, FFTW

¢ Analysis of pointer-based programs
— points-to and shape analysis

e Parallelizing graph programs

— amorphous data parallelism, exploiting amorphous data-
parallelism

Advanced topics for CS 380C

¢ Optimizing machine learning programs
— Training and testing times can be large
* Models are getting more complex
¢ Lot of training data
— How for we optimize training and testing
times on modern architectures?
e Exploiting machine learning in compilers

— Some work in this area but no major
breakthroughs yet

— Active research topic
e Course

See website for partial list of papers we will
study in this area

Papers will be presented by students

— Ideally, your paper presentation and course
project will be linked
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e See

Schedule for lectures

e Some lectures will be given by guest

lecturers from my group and from industry

Reading assignments for next class

e Lecture slides on SAM

e My SIGARCH blogpost:

?

e Mike O’Boyle’s survey article on using machine
learning in compilers

Wang and O’Boyle, arXiv:1805.03441

e Eran Yahav’s SIGPLAN blog post on machine
learning in compilers
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