CS 380C:
Advanced Topics in Compilers

Administration

¢ Instructor: Keshav Pingali
— Professor (CS, ICES)
— Office: POB 4.126A
— Email: pingali@cs.utexas.edu
e TAs: Sepideh Maleki, Bozhi You
— PhD students in my group
— Emails:smaleki,youbozhi@cs.utexas.edu

Meeting times

e Lecture:

— M 10AM-1PM, online

— Short break of 5 minutes around 11:30AM
e Office hours:

— Keshav Pingali: Monday 3-4PM, online
— TA office hours: TBD

Prerequisites

e Compilers and architecture
— Some background in compilers
— Basic computer architecture
e Machine learning
— Basic knowledge of machine learning
Software and math maturity
— Able to implement large programs in C/C++

— Comfortable with abstractions like graph theory
Ability to read research papers and understand

content

Course material

¢ Website for course

¢ All lecture notes, announcements, papers,
assignments, etc. will be posted there

¢ No assigned book for the course
— post papers and other material as appropriate

Coursework

4-5 programming assignments and problem sets
Mid-semester exam

Paper presentations

— Second half of semester

Term project

— Substantial implementation project in area of
compilers

Final exam (at my discretion)

Why do we need
compilation technology?

Traditional view:
— Translation: high-level language (HLL) programs to low-level
machine code
— Optimization: reduce number of arithmetic operations by
optimizations like common subexpression elimination
— Ignore data structures: too complex to analyze
Modern view:
— Collection of automatic techniques for extracting meaning from
and transforming programs
— Useful for debugging, optimization, verification, detecting
malware, translation,
— Optimization:
* Restructure (reorganize) computation to optimize locality and parallelism
* Reducing amount of computation is useful but not critical
¢ Optimizing data structure accesses is critical

Why do we need translators?

¢ Bridge the “semantic gap”
— Programmers prefer to write programs at a high level of
abstraction

— Modern architectures are very complex, so to get good
performance, we have to worry about a lot of low-level details

— Compilers let programmers write high-level programs and still get
good performance on complex machine architectures

¢ Application portability

— When a new ISA or architecture comes out, you only need to
reimplement the compiler on that machine

— Application programs should run without (substantial) modification

— Saves programming effort

e Summary: performance + portability of HLL programs

Microprocessor trend data

Intel Skylake chip

40 Years of Microprocessor Trend Data
10’ T 4 Transistors
i | tthousanas)
10° Single-Thread
Performance
10* (SpecINT x 10%) System
Frequency (MHz) W
108 F _ display,
Typical Power memory,
102 * (Watts) L
, 4 Number of
L T 7 Logical Cores
10° -i : .
1970 1980 1990 2000 2010 2020 Execution Engine
Year
Original data up io ihe year 2010 collecied and plotied by M. Horowiiz, F. Latante, §. Shacham, K. Olukatun, L. Hammond, and C. Batten
kb Anpirt et
Before 2005 After 2005 . 0
Block diagram of each coré
9 10
Getting performance Software problem
Programs must exploit
— coarse-grain (thread-level) parallelism e Problem:
- memory hierarchy (Ll,L?,L?:,..) — Programs obtained by expressing most algorithms in
- |ns§ruct|0n—|evel parallelism (ILP) the straight-forward way perform poorly
- registers — Worrying about performance when coding algorithms
T complicates the software process greatly
How important is it to exploit these hardware features? L .
P P e Let us study cache optimization to understand this
— If you have n cores and you run on only one, you get at)
most 1/n of peak performance, so this is obvious e Caches are useful only if programs have
— Memory hierarchy: typical latencies locality of reference
. t; E:E:Z:i;‘g’jes — temporal locality: program references to given memory
« Memory: ~ 500-1000 cycles address are clustered together in time
* If most memory accesses hit in L1/L2 cache, performance is much — spatial locality: program references clustered in address
better than if most of accesses go to memory space are clustered in time
11 12

Example: matrix multiplication

forI=1,N //assume arrays stored in row-major order
forJ=1,N
forK=1,N
C(LJ) = C(1,J) + AILK)*B(K,J)

o All six loop permutations are computationally equivalent
(even modulo round-off error).

e Great algorithmic data reuse: each array element is
touched O(N) times!

¢ However, execution times of the six versions can be very
different if machine has a cache.

1JK version (large cache)

\
forI=1,N A K B
forJ=1,N
forK=1,N Cxal | " |C
C(1,J) = C(LJ) + A(LK)*B(K,J)

+ Large cache scenario: matrices are small enough to fit into cache
— Assume only cold misses, no capacity or conflict misses
— Miss ratio:
« Data size =3 N?
+ Assume line size = b floating-point numbers
+ Miss ratio = 3 N?/b*4N3 = 0.75/bN = 0.019 (b = 4,N=10)

13 14
MMM Experiments
1JK version (small cache) . Simulated L1 Cache Miss Rtio for Intl Pentium 11
— MMM with N=1_ 1300
— 16KB 32B Block 4-vay &-byte cdlements
B + op T
forI=1,N X
A 05
forJ=1,N e
_ B
forK=1,N i} CKo C .
C(L)) = C(LJ)) + A(ILK)*B(K.,J) - T.k
* Small cache scenario: matrices are large compared to cache/row- o "
major storage 0% G
— Cold and capacity misses (ignore conflict misses) 0z *:: N
— Miss ratio: 018 o
+ C: N%b misses (good temporal locality) o
« A:N3/b misses (good spatial locality)
+ B: N3misses (poor temporal and spatial locality) oS
* Miss ratio = 0.25 (b+1)/b =0.3125 (for b =4) N SE1fifiTissfisFiE AL BE2q¢E3
o]
15 16

Quantifying performance differences

forI=1,N //assume arrays stored in row-major order
forJ=1,N
forK=1,N
C(LJ) = C(L)) + A(LK)*B(K.J)

* Typical cache parameters:
— L2 cache hit: 10 cycles, cache miss 70 cycles
* Time to execute IKJ version:
2N3 + 70*0.13*4N3 + 10*%0.87*%4N? =73.2 N3
* Time to execute JKI version:
2N3 + 70%0.5%4N3 + 10*0.5%4N> = 162 N3
e Speed-up=2.2

Even better.....

Break MMM into a bunch of smaller MMMs so that large cache model is true
for each small MMM

=> large cache model is valid for entire computation

=> miss ratio will be 0.75/bt for entire computation where t is

[Bverags of Wissa]

+ Key transformation: loop permutation W: \J~
17 18
Loop tiling/blocking
i, B Speed-up from tiling/blocking
for It=1,N, t I,
for Jt = 1Nt .
for Kt = 1,N,t A . M . f bl k .
for I = It Iet.1 iss ratio for block computation
for J = Jt,Jt+t-1 Tt l t t . .
for K = KtKt+-1 U 1 = miss ratio for large cache model
C(1,) = CLI+A(LK)*B(K,J) =
K c =0.75/bt
K =0.001 (b =4, t = 200)
* Break big MMM into sequence of smaller MMMs where e Time to execute tiled version =
each smaller MMM multiplies sub-matrices of size txt. IN? + 70%0.001*AN? + 10%0 999%AN3 = 42, 3N3
» Parameter t (tile size) must be chosen carefully
— as large as possible L4 Speed—up over JK| version =4
— working set of small matrix multiplication must fit in cache
19 20

Observations

¢ Locality optimized code is more complex than high-level algorithm.

¢ Locality optimization changed the order in which operations were
done, not the number of operations

¢ “Fine-grain” view of data structures (arrays) is critical
¢ Loop orders and tile size must be chosen carefully

— cache size is key parameter

— associativity matters

e Actual code is even more complex: must optimize for processor
resources

— registers: register tiling
— pipeline: loop unrolling
— Optimized MMM code can be ~1000’s of lines of C code

¢ Wouldn’t it be nice to have all this be done automatically by a
compiler?

— Actually, it is done automatically nowadays...

Performance of MMM code produced by
Intel’s Itanium compiler (-03)

GFLOPS relative to -02; bigger is better ‘
92% of Peak
30 Performance

factor faster than -02
&

5]
0= /= = T T T
N 9 S
) o & & & 9 c,d"
@ & S S ©
3 & B S §
o8 x &

Goto BLAS obtains close to 99% of peak, so compiler is pretty good!

21

22

Summary

e Exploiting parallelism, memory hierarchies etc. is very
important

e |f program uses only one core out of n cores in processors,
you get at most 1/n of peak performance

e Memory hierarchy optimizations are very important
— can improve performance by 10X or more

e Key points:
— need to focus on data structure manipulation
— reorganization of computations and data structure layout are key

— few opportunities usually to reduce the number of computations
except in address arithmetic

Organization of modern compiler

Source program

“Our focus
High—level Optimizer

L Low-level representation; (3—address code,)

Low-level Optimizer

Augmented low—level representation

Code generator H

77777777777777 - Assembly-er-machine Code

23

24

Front-end

e Goal: convert linear representation of program
to hierarchical representation
— Input: text file
— QOutput: abstract syntax tree + symbol table

¢ Key modules:

— Lexical analyzer: converts sequence of characters in
text file into sequence of tokens

— Parser: converts sequence of tokens into abstract
syntax tree + symbol table

— Semantic checker: (eg) perform type checking

High-level optimizer

Goal: perform high-level analysis and
optimization of program

Input: AST + symbol table from front-end
Output: Low-level program representation
such as 3-address code

Tasks:

— Procedure/method inlining

— Array/pointer dependence analysis

— Loop transformations: unrolling, permutation,
tiling, jamming,....

25 26
" Code generator
Low-level optimizer 2
S e Goal: produce assembly/machine code from
e Goal: perform scalar optimizations on low-level optimized low-level representation of program
representation of program e Input: optimized low-level representation of
* Input: low-level representation of program such as program from low-level optimizer
3-address code e Output: assembly/machine code for real or
e Output: optimized low-level representation + virtual machine
additional information such as def-use chains e Tasks:
* Tasks: — Register allocation
— Dataflow analysis: live variables, reaching definitions, ... — Instruction selection
— Scalar optimizations: constant propagation, partial
redundancy elimination, strength reduction, ...
27 28

JIT compilation

e Traditionally, all phases of compilation were completed
before program was executed
e New twist: virtual machines
— Offline compiler:
* Generates code for virtual machine like JVM
— Just-in-time compiler:

* Generates code for real machine from VM code while program is
executing

e Advantages:
— Portability
— JIT compiler can perform optimizations for particular input

My lectures (scalar stuff)

* Introduction
— compiler structure, architecture and compilation, sources of improvement
« Control flow analysis
— basic blocks & loops, dominators, postdominators, control dependence
* Data flow analysis
— lattice theory, iterative frameworks, reaching definitions, liveness
* Static-single assignment form (SSA)
— static-single assignment, constant propagation.
* Global optimizations

— loop invariant code motion, common subexpression elimination, strength
reduction.

* Registerallocation
— coloring, allocation, live range splitting.

* Instruction scheduling (depending on schedule)
— pipelined and VLIW architectures, list scheduling.

29

30

My lectures (data structure stuff)

Array dependence analysis
— integer linear programming, dependence abstractions.
¢ Loop transformations for array programs

— linear loop transformations, loop fusion/fission, enhancing
parallelism and locality

¢ Self-optimizing programs
— empirical search, ATLAS, FFTW

¢ Analysis of pointer-based programs
— points-to and shape analysis

e Parallelizing graph programs

— amorphous data parallelism, exploiting amorphous data-
parallelism

Advanced topics for CS 380C

¢ Optimizing machine learning programs
— Training and testing times can be large
* Models are getting more complex
¢ Lot of training data
— How for we optimize training and testing
times on modern architectures?
e Exploiting machine learning in compilers

— Some work in this area but no major
breakthroughs yet

— Active research topic
e Course

See website for partial list of papers we will
study in this area

Papers will be presented by students

— Ideally, your paper presentation and course
project will be linked

31

32

e See

Schedule for lectures

e Some lectures will be given by guest

lecturers from my group and from industry

Reading assignments for next class

e Lecture slides on SAM

e My SIGARCH blogpost:

?

e Mike O’Boyle’s survey article on using machine
learning in compilers

Wang and O’Boyle, arXiv:1805.03441

e Eran Yahav’s SIGPLAN blog post on machine
learning in compilers

33

34

