
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110

Overlapping Host-to-Device Copy and Computation
using Hidden Unified Memory

Anonymous Author(s)

Abstract
In this paper, we propose a runtime, called HUM, which hides
host-to-device memory copy time without any code modi-
fication. It overlaps the host-to-device memory copy with
host computation or CUDA kernel computation by exploit-
ing Unified Memory and fault mechanisms. HUM provides
wrapper functions of CUDA commands and executes host-to-
device memory copy commands in an asynchronous manner.
We also propose two runtime techniques. One checks if it
is correct to make the synchronous host-to-device mem-
ory copy command asynchronous. If not, HUM makes the
host computation or the kernel computation waits until the
memory copy completes. The other subdivides consecutive
host-to-device memory copy commands into smaller mem-
ory copy requests and schedules the requests from different
commands in a round-robin manner. As a result, the kernel
execution can be scheduled as early as possible to maximize
the overlap. We evaluate HUM using 51 applications from
Parboil, Rodinia, and CUDACode Samples and compare their
performance under HUMwith that of hand-optimized imple-
mentations. The evaluation result shows that executing the
applications under HUM is, on average, 1.21 times faster than
executing them under original CUDA. The speedup is com-
parable to the average speedup 1.22 of the hand-optimized
implementations for Unified Memory.

Keywords GPU, CUDA, Unified memory, Runtime, Data
transfer and computation overlap, Device driver

1 Introduction
Heterogeneous computing uses different types of processors
together to gain performance and energy efficiency. The pro-
cessors include CPUs, GPUs, FPGAs, DSPs and accelerators
of other types. GPU is one of the most popular accelerators
and many programming models have been proposed to use
it efficiently. CUDA[24] is one of the popular programming
models for GPUs.

CUDA Unified Memory (UM) is a memory pool that has a
single address space and can be accessed by both the host
and the GPU[29]. A UM object is allocated by invoking
cudaMallocManaged() in a CUDA program. When UM is
used, a CUDA program does not need to explicitly move
data between the host and the device. In other words, there
is no need to use cudaMemcpy() or cudaMemcpyAsync() in
PPoPP’20, February 22–26, 2020, San Diego, California, USA
2020. ACM ISBN . . . $15.00
https://doi.org/

the CUDA program. The UM system exploits the page fault
engine in the GPU[27], and it automatically migrates ac-
cessed pages between the host and the GPU. UM significantly
lessens the burden of a programmer to manage data distri-
bution across the host and the GPU. However, using UM
solely does not guarantee good performance. To fully exploit
UM and improve performance, the programmer needs to
add user hints to the source code to prefetch pages that are
going to be accessed during the kernel execution. For exam-
ple, to give the user hint, the programmer manually inserts
cudaMemPrefetchAsync() before the kernel is executed to
prefetch memory to a specified destination GPU.
By exploiting CUDA UM and fault mechanisms in both

the CPU and the GPU, overlapping data transfers and com-
putation can be well controlled. This can be a solution to one
of the major challenges in heterogeneous computing: hiding
the memory transfer time between the host and the device
as much as possible. In this paper, we propose a runtime,
called HUM (Hidden Unified Memory), as a solution of this
problem. It automatically hides the host-to-device memory
copy (in short, H2Dmemcpy hereafter) time by overlapping
it with host computation or kernel computation.
Here, the host computation is the execution of the

host code that does not depend on H2Dmemcpy com-
mands. It includes CPU computation, host memory
allocation/deallocation, file I/O, etc. To copy data from
the host memory to the device memory, CUDA pro-
vides both synchronous (blocking) commands (e.g.,
cudaMemcpy()) and asynchronous (non-blocking) com-
mands (e.g.,cudaMemcpyAsync()). The asynchronous
function call is asynchronous with respect to the host,
hence the call may return before the copy completes while
the synchronous function call returns after the copy has
completed.

Overlapping H2Dmemcpy and host computation. For
the best application performance, the programmer is recom-
mended to use asynchronous memory copy commands to
perform useful CPU tasks in parallel with the memory copy.
However, it is difficult for the programmer to safely replace
a synchronous memory copy command with an asynchro-
nous one. By exploiting UM and the page fault engine, when
a H2Dmemcpy command is synchronous, HUM makes it
non-blocking (asynchronous). As a result, the H2Dmemcpy
and some CPU computation are overlapped. To guarantee
safety for the overlap, HUM exploits the segmentation fault
mechanism in the host side at run time. When the host tries

1

https://doi.org/

111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165

PPoPP’20, February 22–26, 2020, San Diego, California, USA Anon.

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

to access a page in the source host memory object of the
H2Dmemcpy command that has not been copied to the de-
vice memory space yet, a segmentation fault occurs. HUM
catches it and makes the host wait until the H2Dmemcpy
operation on that page completes. Then, the host side com-
putation continues.

Overlapping H2Dmemcpy and kernel computation.
While UM supports automatic overlapping of kernel ex-
ecution and data transfers between the host and the de-
vice, it requires a programmer to explicitly use UM alloca-
tion commands (e.g., cudaMallocManaged()) in the source
code. In addition, to fine-tune the transfers, user hints
(e.g., cudaMemPrefetchAsync()) are also required. However,
HUM does not require any explicit UM command and user
hint. By exploiting the GPU page fault mechanism and UM,
HUM automatically overlaps the H2Dmemcpy and the ker-
nel computation without regards to if the copy command is
synchronous or asynchronous. Even if the copy command
is asynchronous, it is still beneficial to use HUM for perfor-
mance.

To the best of our knowledge, HUM is the first work that
automatically hides the H2Dmemcpy time by overlapping it
with host computation or kernel computation without any
explicit UM command and any modification of the source
code. Major contributions of this paper are summarized as
follows:
• We propose a runtime, called HUM, which exploits
CUDA UM and fault mechanisms of both the host and
the GPU. It automatically hides the H2Dmemcpy time
by overlapping it with the host or kernel computation.
We describe its design and implementation.

• We propose a runtime technique that exploits the host
side page protection mechanism and checks if it is cor-
rect to make a synchronous H2Dmemcpy command
asynchronous.

• We propose a runtime technique that subdivides con-
secutive H2Dmemcpy commands into smaller memory
copy requests and executes the requests from different
commands in a round-robin manner. As a result, the ker-
nel execution can be scheduled as early as possible to
maximize its overlap with the H2Dmemcpy commands.

• We evaluate HUM using 51 CUDA benchmark appli-
cations from Parboil[34], Rodinia[3], and CUDA Code
Samples[23]. The evaluation result shows that execut-
ing the applications under HUM is, on average, 1.21x
faster than executing them under original CUDA. The
speedup is comparable to the average speedup of 1.22
that is obtained by manually porting and optimizing the
applications with Unified Memory.

2 Related Work
There are some previous studies related to CUDA Uni-
fied Memory (UM)[1, 19, 20]. Landaverde et al.[19] and Li

et al.[20] evaluate the performance of UM using Parboil[34]
and Rodinia[3] benchmark suites. As Parboil and Rodinia do
not provide UM version, they make the UM version of the
benchmark applications on their own and compare their
performance with the existing non-UM version. The re-
sults from both studies show that the UM version is slower
than the non-UM version. One of the reasons of the slow-
ness is that both studies use GPUs of the NVIDIA Kepler
architecture[21] that does not fully support UM. The NVIDIA
Pascal architecture[27] and its successors[22, 28] fully sup-
port UM. The Kepler architecture is two generations earlier
than the NVIDIA Pascal architecture. Kepler architecture
does not support GPU page faults. Moreover, in the Kepler
architecture, all pages in the host UM space have to be mi-
grated to the GPU UM space before a kernel is executed even
if some pages are not actually accessed by the kernel.

Awan et al. propose OC-DNN[1] that exploits UMonGPUs
of NVIDIA Pascal and Volta architectures[22, 27]. They port
one of the well-known DNN frameworks, Caffe[32], to UM
and optimize it manually by adding various CUDA user-hint
API functions. OC-DNN provides comparable performance
to Caffe for popular Deep Neural Networks (DNNs), such
as AlexNet[18], GoogLeNet[35], VGG-19[33], and ResNet-
50[13]. HUM exploits CUDA UM to automatically overlap
the host-to-device memory copy and the computation of the
host or the device without exposing UM to the programmer
and without hurting performance.
Many studies have been performed to detect memory

reuse[4, 14, 15, 37]. All these previous studies focus on
data-reuse analysis at compile time. Cong et al.[4] and Is-
senin et al.[14, 15] statically analyze data reuse and try to
hide memory latency by placing frequently reused data in
scratchpad memory. HUM is different from those previous
approaches in that it detects modifications to previously de-
fined data. Moreover, it performs the detection at run time
and exploits the segmentation fault mechanism.

Many techniques for overlapping host-GPU data transfers
and GPU kernel computation have been proposed[2, 9, 16,
17, 30, 31]. While they require a user to manually overlap the
data transfers and the kernel computations, our framework
automatically does it without any code modification.
Overlapping communication and CPU/GPU computa-

tion in a cluster has also been widely studied[5–7, 10, 36].
White III and Dongarra[36] show the effect of overlap-
ping CPU/GPU computation, inter-node communication,
and CPU-GPU communication. Danalis et al.[5], Fishgold
et al.[7], and Danalis et al.[6] introduce compiler techniques
that transform MPI code to overlap inter-node communica-
tion and CPU computation. Gysi et al.[10] propose a frame-
work that automatically overlaps inter-node communication
and GPU computation. HUM focuses on automatic overlap-
ping of data transfers and GPU computation in a node by
exploiting Unified Memory.

2

221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275

Overlapping Host-to-Device Copy and Computation PPoPP’20, February 22–26, 2020, San Diego, California, USA

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

CPU side GPU side

PC
I-E

Page
table

for UM

Page 1
Page 2

0x3900d0000
0x3900d1000

0x3900d0000
0x3900d1000

Physical memory for UM

GPU UM
space

Page
table

for UM

Physical memory for UM

Host UM
space

UM space

(a) After the host has accessed page 1 and page 2.

CPU side GPU side

PC
I-E

Page
table

for UM

Page 10x3900d0000
0x3900d1000

0x3900d0000
0x3900d1000

Physical memory for UM

GPU UM
space

Page
table

for UM

Physical memory for UM

Host UM
space

UM space

Page 2

(b) After the GPU has accessed page 2.

Figure 1. CUDA unified memory.

3 CUDA Unified Memory
CUDAUnified Memory (UM) provides ease-of-programming
by enabling CUDA programs to access the host memory and
the GPU memory without the need to manually copy data
from one to the other. UM behaves as if the programmer had
a single address space between the host and the GPU[12]. It
allows a CUDA application to allocate memory objects that
can be read or written from both the host and the GPU. The
NVIDIA Pascal architecture and later NVIDIA GPU architec-
tures fully support UM.

As shown in Figure 1(a), physical memory spaces are allo-
cated to UM in both the host side and the GPU side. Pages
in the host side space are pinned. UM page tables in the
host side and the GPU side are managed by the CUDA run-
time. To allocate a UM object, the CUDA program invokes
cudaMallocManaged(), an allocation function that returns
a pointer to the memory object. The pointer is accessible
from both the host and the GPU. However, the memory
object may not be physically allocated when the call to
cudaMallocManaged() returns. In other words, the pages
and page table entries of the memory object may not be
created until it is accessed by the GPU or the CPU.

Pages in a UM object are automatically migrated between
the host and the GPU on demand. This automatic page mi-
gration exploits page faults. The host reads and writes pages
in the host memory and the GPU reads and writes pages in
the device memory. The CUDA runtime takes care of the

page migration, hence there is no need to call cudaMemcpy()
or cudaMemcpyAsync() at all.
For example, suppose that a UM object has been allo-

cated by cudaMallocManaged() and that the host has ac-
cessed two pages of the object, page 1 (at virtual address
0x3900d0000) and page 2 (at virtual address 0x3900d1000).
Figure 1(a) shows the current status of page tables and phys-
ical memory spaces of UM. Now, suppose that the GPU ac-
cesses page 2 at virtual address 0x3900d1000. Since page 2
is not residing in the GPU side, a page fault occurs and a
page fault interrupt signal is raised. The page fault is handled
by the NVIDIA display driver. It catches the signal and mi-
grates the faulted page, page 2, between the host UM space
and the GPU UM space as shown in Figure 1(b). Then, it
makes the GPU replay the access. To avoid excessive page
faults, the NVIDIA driver uses some heuristics for the page
migration[12].

The GPU memory can be oversubscribed with UM alloca-
tions, i.e., if allocated by cudaMallocManaged(). The size of
oversubscription is typically limited to the size of the host
physical memory. Another benefit of using UM is that it
guarantees data consistency between the host memory and
the GPU memory.
HUM exploits the same page fault mechanism to detect

the case when a CUDA kernel accesses a UM page that has
not been transferred from the host UM space to the GPU UM
space.

Table 1. Representative CUDA commands used in this paper.
cudaError_t cudaMalloc(void** devPtr, size_t size) allo-
cates size bytes on the device and then returns in *devPtr a pointer
to the allocated memory. It is a synchronous function.
cudaError_t cudaMemcpy(void* dst, const void* src,
size_t count, cudaMemcpyKind kind) copies count bytes from
the memory area pointed to by src to the memory area pointed
to by dst, where kind specifies the direction of the copy. We are
interested in cudaMemcpyHostToDevice as the value of kind in this
paper.
cudaError_t cudaMemcpyAsync(void* dst, const void* src,
size_t count, cudaMemcpyKind kind, ...) behaves the same
as cudaMemcpy() except that it is asynchronous with respect to the
host.
cudaError_t cudaMallocManaged(void** devPtr, size_t
size, ...) allocates size bytes on the device and returns in
*devPtr a pointer to the allocated memory that is automatically
managed by the UM system.
cudaError_t cudaMemPrefetchAsync(const void* devPtr,
size_t count, int dstDevice, ...) prefetches UM memory to
the specified destination device. devPtr is the base pointer of the
UM memory space to be prefetched and dstDevice is the destina-
tion device. count specifies the number of bytes to prefetch. It is
asynchronous with respect to the host.

Representative CUDA commands[25] used in this paper
are summarized in Table 1. The way of handling other CUDA
memory management commands by HUM is similar to the
way of handling those listed above.

3

331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385

PPoPP’20, February 22–26, 2020, San Diego, California, USA Anon.

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

CUDA Program

NVIDIA driver HUM driver

User space

Kernel space

CUDA runtime

HUM Runtime

Figure 2. Components of HUM.

4 Design and Implementation
In this section, we present the design and implementation of
HUM.HUM exploits the page fault mechanism of UM to auto-
matically overlaps host-to-device memory copy (H2Dmemcpy)
and host computation or H2Dmemcpy and kernel computation
without any code modification.

As shown in Figure 2, HUM consists of two components:
HUM runtime and HUM driver. The NVIDIA driver[26] is a
part of the CUDA framework that bridges the CUDA runtime
and NVIDIA GPUs. It resides in the kernel address space.
Similar to the NVIDIA driver, the HUM driver resides in
the kernel address space. It intercepts signals going into the
NVIDIA driver and takes some actions. Then, it calls appro-
priate NVIDIA driver functions for the signals if needed. The
HUM runtime provides wrapper functions of CUDA API
functions and interacts with the HUM driver and the CUDA
runtime.
In CUDA, a stream is a sequence of commands that exe-

cute in issue-order on the GPU[11]. Commands in different
streams may execute out of order with respect to one an-
other or concurrently. When a CUDA program generates a
request to create a new stream, the HUM runtime creates
a stream object that is a wrapper of a new CUDA stream
and provides it to the CUDA program. The HUM stream
object is managed by HUM, and a host thread in the HUM
runtime, called the command scheduler, periodically visits all
existing streams in a round-robin manner. The HUM runtime
also has several worker threads. When the command at the
front of each stream is ready to execute, the command sched-
uler takes it from the stream and dispatches it to a worker
thread. The worker thread executes the command (note that
the command is actually the wrapper function of a CUDA
command) and enqueues the CUDA command to the CUDA
stream managed by the CUDA runtime. Finally, the CUDA
runtime executes the command.

4.1 Overlapping H2Dmemcpy and Computation
Synchronous H2Dmemcpy. Figure 3 shows some exam-
ples of thememory copy commands. In Figure 3(a), the CUDA
program allocates a host memory space, say hA, pointed to
by hostA using malloc() in line 2 and a device memory
space, say dA, pointed to by devA in line 3. It writes some
data to hA in line 4. Then, it copies the contents of hA to dA
by invoking synchronous cudaMemcpy() in line 5. After the
memory copy has completed and some host computation has

1: ...
2: hostA = malloc(size);
3: cudaMalloc(&devA, size);
4: ... // write to hostA
5: cudaMemcpy(devA, hostA, size, cudaMemcpyHostToDevice);
6: ... // some CPU computation
7: MyKernel<<<...>>>(devA);
8: ...

(a) Overlapping H2Dmemcpy and CPU computation and
overlapping H2Dmemcpy and kernel computation.

MyKernel
in line 7

Time

cudaMemcpy()
in line 5

CPU computation
in line 6

(b) Executing the code in (a) under CUDA.

MyKernel
in line 7

Time

cudaMemcpy()
in line 5

CPU computation
in line 6

(c) Executing the code in (a) under HUM.

1: ...
2: hostA = malloc(size);
3: cudaMalloc(&devA, size);
4: ... // write to hostA
5: cudaMemcpyAsync(devA, hostA, size, cudaMemcpyHostToDevice);
6: ... // some CPU computation
7: MyKernel<<<...>>>(devA);
8: ...

(d) Overlapping H2Dmemcpy and kernel computation.

MyKernel
in line 7

Time

cudaMemcpyAsync()
in line 5

CPU computation
in line 6

(e) Executing the code in (d) under CUDA.

MyKernel
in line 7

Time

cudaMemcpyAsync()
in line 5

CPU computation
in line 6

(f) Executing the code in (d) under HUM.

Figure 3. Overlapping H2Dmemcpy and computation.

been performed in line 6, a kernel MyKernel that accesses
dA is launched in line 7. Figure 3(b) shows the timeline of
executing the code in Figure 3(a) under CUDA.
When the same code is executed under HUM,

cudaMemcpy() returns immediately after initiating
the memory copy even though the copy has not completed.
This enables overlapping the memory copy in line 5 and
the host computation in line 6. It may further overlaps
the memory copy in line 5 and the kernel execution in
line 7. Figure 3(c) shows the timeline of executing the
code in Figure 3(a) under HUM. Compared to the timeline
under CUDA in Figure 3(b), cudaMemcpy() in line 5 is fully
overlapped with the CPU computation in line 6 and partially

4

441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495

Overlapping Host-to-Device Copy and Computation PPoPP’20, February 22–26, 2020, San Diego, California, USA

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

overlapped with the kernel computation in line 7. As a
result, the total execution time is significantly reduced.
Even though the kernel starts its execution before the

memory copy in line 5 completes, the kernel correctly exe-
cutes under HUM. The reason is that a page fault is raised
at the device side when the kernel accesses a page that has
not been copied yet to the device side. The page fault is han-
dled by the HUM driver and it makes the kernel waits until
the faulted page is copied to the device side. Then the page
access request from the kernel is replayed.
However, if the host computation in line 6 modifies hA,

the memory copy in line 5 and the host computation in line
6 may not be overlapped to guarantee data consistency and
correctness. In this case, the timeline of executing the code
in Figure 3(a) under HUM is the same as that under CUDA
in Figure 3(b). The HUM runtime detects such a case using a
simple runtime technique. The technique will be described
later in Section 4.2.

Asynchronous H2Dmemcpy. In Figure 3(d), the CUDA
program calls asynchronous cudaMemcpyAsync() in line 5,
hence the memory copy is performed in the background.
As a result, the host side computation in line 6 can be over-
lapped with the memory copy in line 5. However, the kernel
launched at line 7 cannot be overlapped with the memory
copy in line 5 because all tasks placed in one stream are
executed sequentially (the default behavior of CUDA). Fig-
ure 3(e) shows the timeline of executing the code in Fig-
ure 3(d) under CUDA.

When the same code is executed under HUM, even if the
asynchronous memory copy in line 5 has not finished yet, the
GPU may start executing the kernel in line 7. This enables
overlapping the H2Dmemcpy and the kernel computation for
the same reason as the case of overlapping the synchronous
H2Dmemcpy and computation mentioned above. Figure 3(f)
shows the timeline of executing the code in Figure 3(d) under
HUM. As a result, we see that the total execution time is
significantly reduced.
Note that even though the HUM runtime over-

laps the H2Dmemcpy and the host or kernel compu-
tation, it preserves the CUDA semantics of synchro-
nization commands, such as cudaDeviceSynchronize().
cudaDeviceSynchronize() in the HUM runtime is also a
wrapper function and invokes the original CUDA command.

4.2 Data Consistency and Correctness
Consider the CUDA program in Figure 4. After performing
cudaMemcpy() to copy the contents of the memory object,
say hA, pointed to by host_A to the device memory object,
say dA, pointed to by dev_A in line 5, the program modifies
the contents of hA or frees hA in line 7. Under the CUDA
semantics, this program has no problem at all. However, it
may cause a problem under HUM. The data transfer caused
by cudaMemcpy() to the device may still continue when the

01: ...
02: host_A = malloc(size);
03: cudaMalloc(&dev_A, size);
04: ... // write to host_A
05: cudaMemcpy(dev_A, host_A, size, cudaMemcpyHostToDevice);
06: ...
07: ... // write to host_A or free host_A
08: ...
09: MyKernel<<<...>>>(dev_A);
10: ...

Figure 4. A problematic scenario.

contents of hA is modified in line 7. Thus, the device may
receive some pages that contain the modified contents. As a
result, the kernel may access inconsistent and incorrect data.
To solve this problem, the HUM runtime exploits

the access protection of pages using a POSIX function
mprotect()[8] that changes the access protection of the
memory pages of the calling process. When the H2Dmemcpy
caused by cudaMemcpy() or cudaMemcpyAsync() is initi-
ated, the HUM runtime changes the protection of pages in
the source host memory object to read-only. For example, the
protection of the pages in the object pointed to by host_A
in Figure 4 is changed to read-only when the H2Dmemcpy
of cudaMemcpy() is initiated.
When the CUDA program in Figure 4 modifies a page in

hA in line 7 in a manner (e.g., write) that violates the pro-
tection, the linux kernel generates a SIGSEGV signal. The
signal handler installed by the HUM runtime handles the
signal. When it receives the signal, it waits until the memory
copy for the page completes. After completion, it restores
the protection of the page in hA to writable. Then, the modifi-
cation to the page in hA starts. This method allows the HUM
runtime to execute H2Dmemcpy commands in an asynchro-
nous manner without any data consistency violation or any
segmentation fault.

4.3 HUM Driver
Intercepting interrupts. To overlap H2Dmemcpy and ker-
nel execution, HUM makes the GPU pend when the page
accessed by the GPU has not been transferred to the GPU
yet. In this case, a GPU page fault occurs in HUM. The HUM
driver handles the page fault. The HUM driver hooks the
interrupt handler of the NVIDIA display driver and inter-
cepts the page fault signal. In Linux for the x86 architecture,
the interrupt descriptor table (IDT) contains all information
about interrupts, such as interrupt number, interrupt name,
address of the interrupt handler, interrupt flags, etc. When
the HUM driver is installed, HUM looks up the existing IDT
entries and finds the entry for the NVIDIA interrupt handler.
HUM replaces the entry with the information of its own
interrupt handler.

Handling page faults. Figure 5 shows the actions occurring
when the HUM interrupt handler handles a page fault in the
GPU side. When the HUM interrupt handler receives an

5

551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605

PPoPP’20, February 22–26, 2020, San Diego, California, USA Anon.

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

Call the NVIDIA
interrupt handler

An interrupt signal raised
from the GPU

No

Check the fault buffer
in the GPU

Make the GPU replay the
faulted accesses

Yes Are the faulted
pages in the GPU

side?

Are there
pending faults?

Yes

No

Figure 5. Actions of the HUM interrupt handler.

interrupt signal, it checks the fault buffer in the GPU if there
is a pending GPU page fault. The fault buffer is a circular
queue implemented in the GPU by NVIDIA. It stores page
faults information from the GPU. If there is no pending fault
in the fault buffer, the HUM interrupt handler invokes the
original NVIDIA interrupt handler because the interrupt is
not a page fault and there is nothing to do for the HUM
interrupt handler. Otherwise, if there are pending faults in
the fault buffer, the HUM interrupt handler waits until all
the faulted pages arrive and are mapped to the GPU. Then,
the HUM driver sends a replay signal to the GPU so that the
GPU replay the faulted memory accesses.

4.4 HUM H2Dmemcpy Mechanism
When the GPU accesses a page that has not been copied
from the host side to the GPU side, the HUM runtime makes
the GPU waits until the page arrives. As a result, a kernel
can be executed even the transfer of the data to be accessed
by the kernel is still ongoing. However, to implement the
H2Dmemcpy in HUM, we may not use cudaMemcpy() and
cudaMemcpyAsync() because they cause a serious interrupt
handling problem.

Problems of CUDA memory copy commands. For ex-
ample, suppose that the HUM driver uses cudaMemcpy() to
copy data from the host to the device and that the GPU is
trying to read a page that has not been yet copied to the GPU
side. Then, a read page fault is raised and the HUM driver
catches it. The HUM driver waits until the page comes to
the GPU side. When the page arrives, calling cudaMemcpy()
triggers a write page fault because the page has not been
mapped to the GPU yet. The HUM driver catches the write
page fault and maps a blank page to the GPU UM space.
Then, it sends a replay signal to the GPU. This makes the
GPU reads stale data in the blank page. In turn, the page
arrived updates the GPU UM space. Since interrupts caused
by memory requests are processed sequentially one by one
in the GPU, the kernel reads the stale data in the blank page
first, and the page update by the memory copy follows this
read. To get the correct result, the memory copy should have
completed before the kernel reads the stale page. However,

PCI-E

GPU side

CPU side

…SM SM SM

Host memory
space allocated
by malloc

GPU UM space
(page table +
physical memory)
Host UM space
(page table +
physical memory)

UM
space

Figure 6. How the HUM H2Dmemcpy function works.

changing the order of interrupt processing is not supported
by the current NVIDIA driver.

HUM H2Dmemcpy functions. To solve this problem, the
HUM driver has its own H2Dmemcpy function. Figure 6
shows how the HUM H2Dmemcpy function works. A CUDA
program first writes data to the host memory space that
is generally allocated through malloc() (1). Suppose that
the program uses cudaMemcpy() or cudaMemcpyAsync()
to perform the H2Dmemcpy. As mentioned before, the
HUM runtime implements wrappers of cudaMemcpy() and
cudaMemcpyAsync(). In the wrappers, the HUM runtime
calls the HUM driver rather than calling the original CUDA
cudaMemcpy() or cudaMemcpyAsync().

The HUM driver first copies the data from the host mem-
ory space to the host UM space (2 in Figure 6). Then, it in-
vokes the page migration function provided by the NVIDIA
driver to migrate the pages in the host UM space to the GPU
UM space (3). To use the migration function, source pages
of the migration must reside in the host UM space. The page
migration function is synchronous and migrates maximum
512 pages at a time, i.e., maximum 2 MB at a time. When the
migration completes, the pages are mapped to the GPU, and
the GPU can access the pages without any page fault (4).

When there is a H2Dmemcpy request of sizeM MB (M >
2), the HUM driver divides the request into multiple requests
of size 2 MB. We take the maximum size because frequent
memory-copy requests cause heavy copy initiation overhead.

01: ...
02: host_A = malloc(size);
03: host_B = malloc(size);
04: host_C = malloc(size);
05: ... // write to host_A and host_B
06: cudaMalloc(&dev_A, size);
07: cudaMalloc(&dev_B, size);
08: cudaMalloc(&dev_C, size);
09: ...
10: cudaMemcpyAsync(dev_A, host_A, size,
11: cudaMemcpyHostToDevice);
12: cudaMemcpyAsync(dev_B, host_B, size,
13: cudaMemcpyHostToDevice);
14: ...
15: vec_add<<<...>>>(dev_A, dev_B, dev_C);
16: ...

Figure 7. Vector addition program.

6

661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715

Overlapping Host-to-Device Copy and Computation PPoPP’20, February 22–26, 2020, San Diego, California, USA

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

Kernel
Time

Memcpy A Memcpy B
(a)

Kernel

Memcpy A Memcpy B

Time
(b)

Kernel
Time

(c)

Figure 8. Executing the vector addition program in Figure 7.
(a) Under normal CUDA semantics. (b) Under HUMdiscussed
so far. (c) Optimization under HUM.

4.5 Parallelizing Memory Copy Commands
Consider a vector addition CUDA program in Figure 7. It
adds two vectorsA and B, and the result is stored in vectorC .
Figure 8 shows timelines of executing the program. Since the
memory copy command and the kernel execution command
are issued in the same stream to guarantee correctness, they
are sequentially executed as shown in Figure 8(a) under
CUDA semantics.
The timeline of executing the vector addition program

under the HUM design discussed so far is shown in Fig-
ure 8(b). HUM may execute the kernel as early as possible
when the memory copy for vector B has initiated. As a re-
sult, the time when the kernel completes under HUM maybe
much earlier than that under normal CUDA. Since the page
migration function provided by NVIDIA driver used in the
HUM H2Dmemcpy function is synchronous, the memory
copy for vector B has to be initiated after the memory copy
for vector A has completed.

Using the HUM H2Dmemcpy function, the time spent on
memory copying is much larger than using cudaMemcpy() or
cudaMemcpyAsync(). This is because HUM copies the data
twice: from the host memory space to the host UM space,
and then to the GPU UM space.
To reduce the copy time from the host memory to the

host UM space (2 in Figure 6), HUM exploits multiple host
threads for the memory copy. The multiple threads simulta-
neously copy different parts of the source host memory to
the host UM space. HUM divides the source host memory
object into multiple 2MB chunks and each thread takes care
of copying a 2MB memory chunk to the host UM space at a
time.

4.6 Scheduling Memory Copy Commands
When more than one CUDA H2Dmemcpy commands are is-
sued consecutively from a CUDA program, the HUM runtime
copies their divided 2MB chunks from the host UM space to
the device UM space in a round-robin manner. In the HUM
runtime, there is a pool of page migration queues (PMQs) to
queue the page migration requests of 2MB chunks. Moreover,

there exists a different PMQ for each CUDA H2Dmemcpy
command issued.

For a H2Dmemcpy command from the CUDA program, af-
ter dividing the source host memory object into 2MB chunks
and copying them to the host UM spacewithmultiple threads,
the page migration request of each chunk from the host UM
space to the GPU UM space is inserted in the associated
PMQ. A host thread called the page migration thread (PMT)
is taking care of visiting non-empty PMQs in the pool in a
round-robin manner. The PMT processes the page migra-
tion request at the head of each PMQ by calling the page
migration function provided by the NVIDIA driver.

In this case, there must not exist any dependence between
destination locations of the consecutively issued CUDA
H2Dmemcpy commands. However, such dependences are
hardly found in real CUDA applications. Since the HUM
runtime has all information about the CUDA H2Dmemcpy
commands issued from a CUDA program, the HUM runtime
can easily check the dependence at run time.

By doing so, we can schedule the kernel launch as early as
possible. As a result, the kernel may access required pages
sooner and its execution may finish earlier. This case is il-
lustrated in Figure 8(c). The kernel execution can be initi-
ated after the execution of the H2Dmemcpy command of
the vector B has been initiated. In general, with regards to
H2Dmemcpy commands, the execution of a kernel command
K under HUM can be initiated as early as possible at the time
point that satisfies all of the following conditions:
• The last command preceding K in the same stream is
a CUDA H2Dmemcpy command, say C , on which K ’s
arguments depend.

• The execution of C has been initiated.
• All target pages of C in the device UM space have been
unmapped once to the GPU after the initiation of exe-
cuting C .

Table 2. System configuration.
CPU 2 × Intel 2.10 Ghz 16-core Xeon Gold 6130

Main memory 256GB DDR4
OS CentOS 7.6.1810 (kernel 3.10.0-957)
GPU 4 × NVIDIA Tesla V100 PCIe

(16GB device memory for each GPU)
GPU driver NVIDIA display driver 410.48

CUDA version 10.0

5 Evaluation
In this section, we evaluate HUM with various GPU applica-
tions and analyze the results. We compare the performance
of HUM with that of manual optimizations.

5.1 Methodology
System configuration. We use NVIDIA Tesla V100 GPUs
(Volta architecture)[22] for our experiment. Detailed system
configuration is summarized in Table 2.

7

771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825

PPoPP’20, February 22–26, 2020, San Diego, California, USA Anon.

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825

PPoPP’20, February 22–26, 2020, San Diego, California, USA Anon.

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

Table 3. Characteristics of applications.
Su

it
e

N
o.

Name Sy
nc

or
as
yn

c

C
P
U
/H

2D
ov

er
la
p

C
P
U
/H

2D
ov

er
la
p
(H

U
M
)

Pa
rb

oi
l

1 bfs S N Y
2 cutcp S N Y
3 histo S N Y
4 lbm S N N
5 mri-gridding S N Y
6 mri-q S N Y
7 sad S N Y
8 sgemm S N Y
9 spmv S N Y
10 stencil S N Y
11 tpacf S N N

12 backprop S N Y
13 b+tree S N Y
14 cfd S N N
15 dwt2d S N Y
16 gaussian S N Y
17 heartwall S N Y

Su
it
e

N
o.

Name Sy
nc

or
as
yn

c

C
P
U
/H

2D
ov

er
la
p

C
P
U
/H

2D
ov

er
la
p
(H

U
M
)

R
od

in
ia

18 hotspot S N Y
19 hotspot3D S N Y
20 huffman S and A N Y
21 hybridsort S N Y
22 kmeans S N Y
23 lavaMD S N Y
24 leukocyte S N N
25 lud S N Y
26 mummergpu S N Y
27 myocyte S N Y
28 nn S N Y
29 nw S N Y
30 particlefilter S N Y
31 pathfinder S N Y
32 srad S N Y
33 streamcluster S N Y

34 alignedTypes S N Y

Su
it
e

N
o.

Name Sy
nc

or
as
yn

c

C
P
U
/H

2D
ov

er
la
p

C
P
U
/H

2D
ov

er
la
p
(H

U
M
)

C
U
D
A
C
od

e
Sa

m
pl
es

35 BlackScholes S N Y
36 eigenvalues S N Y
37 fastWalshTransform S N Y
38 matrixMul S N Y
39 MC_SingleAsianOptionP S N Y
40 mergeSort S N Y
41 MonteCarloMultiGPU A Y Y
42 nbody S N Y
43 reduction S N Y
44 scalarProd S N Y
45 scan S N Y
46 SobolQRNG S N Y
47 sortingNetworks S N Y
48 threadFenceReduction S N Y
49 transpose S N Y
50 vectorAdd S N Y
51 warpAggregatedAtomicsCG S N Y

Benchmark applications. We use 51 applications from var-
ious sources: 11 applications from Parboil[34], 22 applica-
tions from Rodinia[3], and 18 applications from CUDA Code
Samples[23]. While we use all the applications from Parboil
and Rodinia, we choose only 18 out of 170 applications in
CUDA Code Samples. We exclude 152 applications in CUDA
Code Samples because of the following reasons:
• They use CUDA graphics or driver API,
• They have neither CUDA kernel execution nor
H2Dmemcpy,

• They use additional CUDA libraries (cuBLAS, cuFFT,
cuSPARSE, cuSOLVER, nvGRAPH),

• They appear in Parboil or Rodinia, or
• Their kernel execution times are too small (less than
1ms) to see the effect of overlapping H2Dmemcpy and
CUDA kernel computation.

Table 3 shows the characteristics of applications in each
benchmark suites. The column Sync or async shows the type
of H2Dmemcpy commands each application uses. The col-
umn CPU/H2D overlap shows if the application is designed
to overlap CPU computation and H2Dmemcpy. The column
CPU/H2D overlap (HUM) shows if HUM can overlap the
CPU computation and the H2Dmemcpy.
Most of the applications use synchronous H2Dmemcpy

and hence, they are unable to overlap CPU computation and
H2Dmemcpy when running under normal CUDA. On the
other hand, HUM can overlap the CPU computation and the
H2Dmemcpy in most of the cases except some applications
that modify the contents of the source host memory object
of the H2Dmemcpy or frees it after the H2Dmemcpy (lbm
and tpacf in Parboil, cfd and leukocyte in Rodinia).
We use the largest dataset that fits in the GPU memory

for each application, hence, most of the datasets used for the
experiment are hundreds of megabytes to a few gigabytes.

As the goal of HUM is performance improvement without
any code modification, no source code of the applications is
modified.

5.2 Results
Speedup. Figure 9 shows the speedup of each application
with various optimization schemes on a single V100 GPU.
The speedup is obtained over running the original version of
each application (this setup is called CUDA hereafter). The
optimization schemes are described as follows:
• CUDA-async is a manually optimized version where
synchronous memory copy functions in the original ap-
plication is transformed to corresponding asynchronous
ones when the transformation is safe.

• CUDA-UM is a naive UM implementation of each ap-
plication. We change all cudaMalloc() functions to
cudaMallocManaged(). Then, we remove all CUDA
memory copy functions, such as cudaMemcpy() and
cudaMemcpyAsync(), because datawill be automatically
transferred between the host and the device by CUDA
UM.

• CUDA-UM-opt is a manually optimized ver-
sion of CUDA-UM using user hints (e.g.,
cudaMemPrefetchAsync() and cudaMemAdvise()).
We add cudaMemPrefetchAsync() as early as possible
before the CUDA kernel launch so that memory
copy and kernel computation can be overlapped.
cudaMemPrefetchAsync() is also used to map blank
pages to the GPU if the pages are first accessed for
write by the GPU. This prevents excessive write page
faults in the GPU side. We add cudaMemAdvise() to
avoid page migration if the pages are read by both the
CPU and the GPU without any write (i.e., read-only
accesses).

8

Figure 9. Characteristics of applications.

Benchmark applications. We use 51 applications from var-
ious sources: 11 applications from Parboil[34], 22 applica-
tions from Rodinia[3], and 18 applications from CUDA Code
Samples[23]. While we use all the applications from Parboil
and Rodinia, we choose only 18 out of 170 applications in
CUDA Code Samples. We exclude 152 applications in CUDA
Code Samples because of the following reasons:
• They use CUDA graphics or driver API,
• They have neither CUDA kernel execution nor
H2Dmemcpy,

• They use additional CUDA libraries (cuBLAS, cuFFT,
cuSPARSE, cuSOLVER, nvGRAPH),

• They appear in Parboil or Rodinia, or
• Their kernel execution times are too small (less than
1ms) to see the effect of overlapping H2Dmemcpy and
CUDA kernel computation.

Figure 9 shows the characteristics of applications in each
benchmark suites. The column Sync or async shows the type
of H2Dmemcpy commands each application uses. The col-
umn CPU/H2D overlap shows if the application is designed
to overlap CPU computation and H2Dmemcpy. The column
CPU/H2D overlap (HUM) shows if HUM can overlap the
CPU computation and the H2Dmemcpy.
Most of the applications use synchronous H2Dmemcpy

and hence, they are unable to overlap CPU computation and
H2Dmemcpy when running under normal CUDA. On the
other hand, HUM can overlap the CPU computation and the
H2Dmemcpy in most of the cases except some applications
that modify the contents of the source host memory object
of the H2Dmemcpy or frees it after the H2Dmemcpy (lbm
and tpacf in Parboil, cfd and leukocyte in Rodinia).
We use the largest dataset that fits in the GPU memory

for each application, hence, most of the datasets used for the
experiment are hundreds of megabytes to a few gigabytes.

As the goal of HUM is performance improvement without
any code modification, no source code of the applications is
modified.

5.2 Results
Speedup. Figure 10 shows the speedup of each application
with various optimization schemes on a single V100 GPU.
The speedup is obtained over running the original version of
each application (this setup is called CUDA hereafter). The
optimization schemes are described as follows:
• CUDA-async is a manually optimized version where
synchronous memory copy functions in the original ap-
plication is transformed to corresponding asynchronous
ones when the transformation is safe.

• CUDA-UM is a naive UM implementation of each ap-
plication. We change all cudaMalloc() functions to
cudaMallocManaged(). Then, we remove all CUDA
memory copy functions, such as cudaMemcpy() and
cudaMemcpyAsync(), because datawill be automatically
transferred between the host and the device by CUDA
UM.

• CUDA-UM-opt is a manually optimized ver-
sion of CUDA-UM using user hints (e.g.,
cudaMemPrefetchAsync() and cudaMemAdvise()).
We add cudaMemPrefetchAsync() as early as possible
before the CUDA kernel launch so that memory
copy and kernel computation can be overlapped.
cudaMemPrefetchAsync() is also used to map blank
pages to the GPU if the pages are first accessed for
write by the GPU. This prevents excessive write page
faults in the GPU side. We add cudaMemAdvise() to
avoid page migration if the pages are read by both the
CPU and the GPU without any write (i.e., read-only
accesses).

8

881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935

Overlapping Host-to-Device Copy and Computation PPoPP’20, February 22–26, 2020, San Diego, California, USA

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8

b
fs

c
u
tc

p

h
is

to

lb
m

m
ri

-g
ri
d

d
in

g

m
ri

-q

s
a
d

s
g
e

m
m

s
p
m

v

s
te

n
c
il

tp
a
c
f

G
E

O
M

E
A

N
-P

a
rb

o
il

a
lig

n
e

d
T

y
p

e
s

B
la

c
k
S

c
h
o
le

s

e
ig

e
n

v
a

lu
e

s

fa
s
tW

a
ls

h
T

ra
n
s
fo

rm

m
a

tr
ix

M
u
l

M
C
_
S
in
g
le
A
s
ia
n
…

m
e

rg
e

S
o
rt

M
o

n
te

C
a
rl

o
M

u
lt
iG

P
U

n
b
o

d
y

re
d
u
c
ti
o
n

s
c
a

la
rP

ro
d

s
c
a

n

S
o

b
o

lQ
R

N
G

s
o
rt

in
g

N
e
tw

o
rk

s

th
re
a
d
F
e
n
c
e
…

tr
a

n
s
p
o

s
e

v
e
c
to

rA
d

d

w
a
rp
A
g
g
re
g
a
te
d
…

G
E
O
M
E
A
N
-C
U
D
A
…

Parboil CUDA Code Samples

S
P

E
E

D
U

P
CUDA-async CUDA-UM CUDA-UM-opt HUM-no-sched HUM

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0

b
a
c
k
p

ro
p

b
+

tr
e

e

c
fd

d
w

t2
d

g
a
u

s
s
ia

n

h
e
a

rt
w

a
ll

h
o
ts

p
o

t

h
o
ts

p
o

t3
D

h
u
ff

m
a
n

h
y
b

ri
d
s
o
rt

k
m

e
a
n

s

la
v
a

M
D

le
u

k
o
c
y
te

lu
d

m
u
m

m
e
rg

p
u

m
y
o

c
y
te n
n

n
w

p
a
rt

ic
le

fi
lt
e
r

p
a
th

fi
n

d
e

r

s
ra

d

s
tr

e
a

m
c
lu

s
te

r

G
E

O
M

E
A

N
-R

o
d

in
ia

Rodinia

S
P

E
E

D
U

P

CUDA-async CUDA-UM CUDA-UM-opt HUM-no-sched HUM

Figure 10. Speedup of each application with a single V100 GPU.

• HUM-no-sched runs the applications under HUM with-
out any H2Dmemcpy command scheduling described
in Section 4.6.

• HUM runs the applications under HUM with all the
HUM techniques described in Section 4.

The number of memory-copy threads mentioned in Sec-
tion 4.6 is set to eight in both HUM-no-sched and HUM.
When we measure the total execution time, we exclude the
file I/O time in each application to clearly see the effect of
overlapping.

For all applications, CUDA-UM-opt and HUM outperform
CUDA, CUDA-async, and CUDA-UM. Some applications
show marginal speedup under HUM and CUDA-UM-opt.
This happens when the H2Dmemcpy time takes a very lit-
tle portion of the total execution time. For example, the
host computation time dominates the total execution time
of cutcp in Parboil. The kernel execution time dominates
the total execution time of mri-q in Parboil, gaussian and
particlefilter in Rodinia,MonteCarloMultiGPU, nbody, scan,
and transpose in CUDA Code Samples. The D2Hmemcpy
time dominates the total execution time of sad in Parboil,
SobolQRNG in CUDA Code Samples.
On the other hand, some applications show very good

speedup under HUM and CUDA-UM-opt. The applications
sgemm and spmv in Parboil, b+tree, hybridsort, and leuko-
cyte in Rodinia have enough kernel computation time to hide

the H2Dmemcpy time. The application huffman in Rodinia
mainly benefits from overlapping the H2Dmemcpy and the
host computation.

CUDA-UM-opt is much better thanHUM in BlackScholes,
vectorAdd, and warpAggergatedgAtomicsCG in CUDA Code
Samples. This is due to the prefetching heuristics used in the
NVIDIA driver for page migration. When a GPU page fault
occurs, the NVIDIA driver actively prefetches some pages
around the faulted page from the host UM space to the GPU
UM space according to the prefetching heuristics (note that
the heuristics are not publicly known).
CUDA-async is a little bit better than CUDA for Parboil

on average, but there is no difference between CUDA-async
and CUDA for Rodinia and CUDA Code Samples on average.
This is because few applications in Rodinia and CUDA Code
Samples have some host computation to hide between the
H2Dmemcpy command and the kernel launch command.
CUDA-UM is a little bit better, on average, than CUDA-

async for Parboil and Rodinia because of the prefetching
heuristics used in the NVIDIA driver for the Unified Memory.
CUDA-UM is muchworse thanCUDA-async for CUDACode
Samples on average because of SobolQRNG. In SobolQRNG,
CUDA-UM is 88 times slower than CUDA-async. The 4GB
write-only data accessed by the kernel in SobolQRNG incur
a lot of page faults in the GPU side for CUDA-UM. This
does not happen for CUDA-UM-opt because to avoid the

9

991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045

PPoPP’20, February 22–26, 2020, San Diego, California, USA Anon.

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

write page faults, CUDA-UM-opt maps the data pages to
the GPU using cudaMemPrefetchAsync() before the kernel
execution is initiated.
While CUDA-UM-opt achieves the average speedup of

1.22x for all applications, the average speedup of HUM is
1.21x (1.20x for Parboil, 1.26x for Rodinia, and 1.13x for
CUDA Code Samples). Thus, the speedup under HUM is
comparable to that of CUDA-UM-opt.

Effect of H2Dmemcpy command scheduling. HUM-no-
sched is slower than HUM consistently. Even HUM-no-
sched is slower than CUDA for some applications. One such
a case is when the memory-copy time dominates the execu-
tion time. When the kernel computation time is not large
enough, overlapping the H2Dmemcpy and the kernel compu-
tation cannot fully amortize the slowdown in H2Dmemcpy
due to copying the memory object twice from the source
host memory space to the host UM space, and then from
the host UM space to the device UM space. tpacf in Parboil,
nn, pathfinder, and srad in Rodinia, BlackScholes, merge-
Sort, scalarProd, and threadFenceReduction in CUDA Code
Samples fall in this category.
Another case is when the CUDA kernel launch is not

scheduled as early as possible. spmv in Parboil, b+tree in
Rodinia, matrixMul and vectorAdd in CUDA Code Samples
fall in this category. For example, as mentioned in Section 4.6,
in vectorAdd, there are two memory objects to transfer from
the host to the device (vector A and vector B). Without the
memory-copy command scheduling, the kernel execution
cannot be scheduled until the entire vectorA has been copied
to the device.

0.95

1

1.05

1.1

1.15

1.2

1.25

Parboil Rodinia CUDA Code
Samples

Total

S
P

E
E

D
U

P

2 threads 4 threads 8 threads

12 threads 16 threads

Figure 11.Average speedup obtained by varying the number
of memory-copy threads.

The number of memory-copy threads. As mentioned in
Section 4.5, HUM uses multiple threads to copy the source
host memory object to the host UM space to execute a
H2Dmemcpy command. To find the optimal number of
threads, we vary the number of memory-copy threads from 1
to 16 and measure the overall performance. Figure 11 shows
the average speedup obtained over one thread for each bench-
mark suite. We see that, on average, eight is the optimal
number of memory-copy threads.

0

0.5

1

1.5

2

2.5

3

3.5

4

CUDA HUM CUDA HUM CUDA HUM CUDA HUM CUDA HUM

sgemm matrixMul MC_Single… MonteCarlo… vectorAdd

S
P

E
E

D
U

P

1 GPU 2 GPUs 4 GPUs

Figure 12. Speedup on multiple GPUs.

Multi-GPU environments. To show that HUMworks well
with multi-GPU environments, we choose the applications
whose speedup under HUMwith a single GPU is greater than
1.10 and whose workload can be easily distributed across
multiple GPUs. These applications include sgemm in Parboil,
and matrixMul, MC_SingleAsianOptionP, and vectorAdd in
CUDA Code Samples. We implement the multi-GPU version
of them. In addition, we choose MonteCarloMultiGPU in
CUDA Code Samples because it is originally designed to
support multiple GPUs.
Figure 11 shows the speedup obtained by varying the

number of GPUs for these applications. We do not vary the
workload for multiple GPUs, hence Figure 11 shows the re-
sult of strong scaling for both CUDA andHUM. The speedup
is obtained over the case of a single GPU for each of CUDA
and HUM. The result indicates that HUM achieves scalable
performance in the multi-GPU environment. The major rea-
son for this strong scaling is that page faults occurred in
different GPUs are handled by different host threads.

6 Conclusions
HUM hides the host-to-device memory copy time by auto-
matically overlapping it with the host computation or the
kernel computation. It exploits CUDA Unified Memory and
fault mechanisms of both the host and the GPU. HUM’s Uni-
fied Memory is hidden to the programmer and there is no
need to modify the source code.
Since CUDA is proprietary and not open source, it is im-

possible to modify the CUDA runtime and the CUDA display
driver. Thus, we implement the proposed techniques in the
HUM runtime and driver that exploit the CUDA runtime and
driver. The techniques can be easily incorporated into the
CUDA runtime and the CUDA display driver.
With 51 applications from Parboil, Rodinia, and CUDA

Code Samples benchmark suites, we evaluate HUM.We com-
pare their performance under HUM with that of their hand-
optimized implementations. The evaluation result shows
that HUM is quite effective and practical. On average, HUM
achieves 1.20x for applications in Parboil, 1.26x for Rodinia,
and 1.13x for CUDA Code Samples. The average speedup of
all applications under HUM is 1.21, which is comparable to
the average speedup 1.22 of the hand-optimized implemen-
tations for Unified Memory.

10

1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155

Overlapping Host-to-Device Copy and Computation PPoPP’20, February 22–26, 2020, San Diego, California, USA

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

References
[1] Ammar Ahmad Awan, Ching-Hsiang Chu, Hari Subramoni, Xiaoyi

Lu, and Dhabaleswar K. Panda. 2018. OC-DNN: Exploiting Advanced
Unified Memory Capabilities in CUDA 9 and Volta GPUs for Out-of-
Core DNN Training. In 2018 IEEE 25th International Conference on
High Performance Computing (HiPC). 143–152. https://doi.org/10.1109/
HiPC.2018.00024

[2] Massimo Bernaschi, Mauro Bisson, and Davide Rossetti. 2013. Bench-
marking of communication techniques for GPUs. J. Parallel and Distrib.
Comput. 73, 2 (2013), 250 – 255. https://doi.org/10.1016/j.jpdc.2012.09.
006

[3] Shuai Che, Michael Boyer, Jiayuan Meng, David Tarjan, Jeremy W.
Sheaffer, Sang-Ha Lee, and Kevin Skadron. 2009. Rodinia: A bench-
mark suite for heterogeneous computing. In 2009 IEEE International
Symposium on Workload Characterization (IISWC). 44–54. https:
//doi.org/10.1109/IISWC.2009.5306797

[4] Jason Cong, Hui Huang, Chunyue Liu, and Yi Zou. 2011. A reuse-
aware prefetching scheme for scratchpad memory. In 2011 48th
ACM/EDAC/IEEE Design Automation Conference (DAC). 960–965.

[5] Anthony Danalis, Ki-Yong Kim, Lori Pollock, and Martin Swany. 2005.
Transformations to Parallel Codes for Communication-Computation
Overlap. In SC ’05: Proceedings of the 2005 ACM/IEEE Conference on
Supercomputing. 58–58. https://doi.org/10.1109/SC.2005.75

[6] Anthony Danalis, Lori Pollock, Martin Swany, and John Cavazos. 2009.
MPI-aware Compiler Optimizations for Improving Communication-
computation Overlap. In Proceedings of the 23rd International Confer-
ence on Supercomputing (ICS ’09). ACM, New York, NY, USA, 316–325.
https://doi.org/10.1145/1542275.1542321

[7] Lewis Fishgold, Anthony Danalis, Lori Pollock, and Martin Swany.
2006. An automated approach to improve communication-
computation overlap in clusters. In Proceedings 20th IEEE International
Parallel Distributed Processing Symposium. 7 pp.–. https://doi.org/10.
1109/IPDPS.2006.1639590

[8] Free Software Foundation. 2019. mprotect(2) - Linux manual page.
Website. (2019). http://man7.org/linux/man-pages/man2/mprotect.2.
html

[9] Serban Georgescu and Hiroshi Okuda. 2010. Conjugate gradients
on multiple GPUs. International Journal for Numerical Methods in
Fluids 64, 10âĂŘ12 (2010), 1254–1273. https://doi.org/10.1002/fld.2462
arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/fld.2462

[10] Tobias Gysi, Jeremia Bär, and Torsten Hoefler. 2016. dCUDA: Hardware
Supported Overlap of Computation and Communication. In Proceed-
ings of the International Conference for High Performance Computing,
Networking, Storage and Analysis (SC ’16). IEEE Press, Piscataway, NJ,
USA, Article 52, 12 pages. http://dl.acm.org/citation.cfm?id=3014904.
3014974

[11] Mark Harris. 2012. How to Overlap Data Transfers in
CUDA C/C++. Website. (2012). https://devblogs.nvidia.com/
how-overlap-data-transfers-cuda-cc/

[12] Mark Harris. 2017. Unified Memory for CUDA Beginners. Website.
(2017). https://devblogs.nvidia.com/unified-memory-cuda-beginners/

[13] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2015. Deep
Residual Learning for Image Recognition. 2016 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR) (2015), 770–778.

[14] Ilya Issenin, Erik Brockmeyer, Miguel Miranda, and Nikil Dutt. 2004.
Data Reuse Analysis Technique for Software-Controlled Memory Hier-
archies. In Proceedings of the Conference on Design, Automation and Test
in Europe - Volume 1 (DATE ’04). IEEE Computer Society, Washington,
DC, USA, 10202–. http://dl.acm.org/citation.cfm?id=968878.968995

[15] Ilya Issenin, Erik Brockmeyer, Miguel Miranda, and Nikil Dutt. 2007.
DRDU: A Data Reuse Analysis Technique for Efficient Scratch-pad
Memory Management. ACM Trans. Des. Autom. Electron. Syst. 12, 2,
Article 15 (April 2007). https://doi.org/10.1145/1230800.1230807

[16] Ali Khajeh-Saeed and J. Blair Perot. 2012. Computational Fluid Dy-
namics Simulations Using Many Graphics Processors. Computing in
Science Engineering 14, 3 (May 2012), 10–19. https://doi.org/10.1109/
MCSE.2011.117

[17] Ki-Hwan Kim and Q-Han Park. 2012. Overlapping computation
and communication of three-dimensional FDTD on a GPU clus-
ter. Computer Physics Communications 183, 11 (2012), 2364 – 2369.
https://doi.org/10.1016/j.cpc.2012.06.003

[18] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. 2012. Ima-
geNet Classification with Deep Convolutional Neural Networks. In
Proceedings of the 25th International Conference on Neural Information
Processing Systems - Volume 1 (NIPS’12). Curran Associates Inc., USA,
1097–1105. http://dl.acm.org/citation.cfm?id=2999134.2999257

[19] Raphael Landaverde, Tiansheng Zhang, Ayse K. Coskun, and Martin
Herbordt. 2014. An investigation of Unified Memory Access perfor-
mance in CUDA. In 2014 IEEE High Performance Extreme Computing
Conference (HPEC). 1–6. https://doi.org/10.1109/HPEC.2014.7040988

[20] Wenqiang Li, Guanghao Jin, Xuewen Cui, and Simon See. 2015. An
Evaluation of Unified Memory Technology on NVIDIA GPUs. In 2015
15th IEEE/ACM International Symposium on Cluster, Cloud and Grid
Computing. 1092–1098. https://doi.org/10.1109/CCGrid.2015.105

[21] NVIDIA. 2014. NVIDIA’s Next Generation CUDA Compute Ar-
chitecture: Kepler GK110/210. Whitepaper. (2014). https://www.
nvidia.com/content/dam/en-zz/Solutions/Data-Center/documents/
NVIDIA-Kepler-GK110-GK210-Architecture-Whitepaper.pdf

[22] NVIDIA. 2019. Artificial Intelligence Architecture | NVIDIA
Volta. Website. (2019). https://www.nvidia.com/en-us/data-center/
volta-gpu-architecture/

[23] NVIDIA. 2019. CUDACode Samples. Website. (2019). https://developer.
nvidia.com/cuda-code-samples

[24] NVIDIA. 2019. CUDA Parallel Computing Platform. Website. (2019).
https://developer.nvidia.com/cuda-zone

[25] NVIDIA. 2019. CUDA Runtime API: Memory Management. Web-
site. (2019). https://docs.nvidia.com/cuda/cuda-runtime-api/group_
_CUDART__MEMORY.html

[26] NVIDIA. 2019. NVIDIA Driver Downloads. Website. (2019). https:
//www.nvidia.com/Download/index.aspx

[27] NVIDIA. 2019. Pascal GPU Architecture. Website. (2019). https:
//www.nvidia.com/en-us/data-center/pascal-gpu-architecture/

[28] NVIDIA. 2019. Professional Graphics Solution and Turing GPU Ar-
chitecture | NVIDIA. Website. (2019). https://www.nvidia.com/en-us/
design-visualization/technologies/turing-architecture/

[29] NVIDIA. 2019. Unified Memory Programming. Website.
(2019). https://docs.nvidia.com/cuda/cuda-c-programming-guide/
index.html#um-unified-memory-programming-hd

[30] Everett H. Phillips and Massimiliano Fatica. 2010. Implementing the
Himeno benchmark with CUDA on GPU clusters. In 2010 IEEE Inter-
national Symposium on Parallel Distributed Processing (IPDPS). 1–10.
https://doi.org/10.1109/IPDPS.2010.5470394

[31] James C. Phillips, John E. Stone, and Klaus Schulten. 2008. Adapting a
message-driven parallel application to GPU-accelerated clusters. In SC
’08: Proceedings of the 2008 ACM/IEEE Conference on Supercomputing.
1–9. https://doi.org/10.1109/SC.2008.5214716

[32] Berkeley AI Research. 2019. Caffe: Deep learning framework. Website.
(2019). http://caffe.berkeleyvision.org/

[33] Karen Simonyan and Andrew Zisserman. 2014. Very Deep Convolu-
tional Networks for Large-Scale Image Recognition. arXiv 1409.1556
(09 2014).

[34] John A. Stratton, Christopher Rodrigrues, I-Jui Sung, Nady Obeid,
Liwen Chang, Geng Liu, and Wen-Mei W. Hwu. 2012. Parboil: A
Revised Benchmark Suite for Scientific and Commercial Throughput
Computing. Technical Report IMPACT-12-01. University of Illinois at
Urbana-Champaign, Urbana.

11

https://doi.org/10.1109/HiPC.2018.00024
https://doi.org/10.1109/HiPC.2018.00024
https://doi.org/10.1016/j.jpdc.2012.09.006
https://doi.org/10.1016/j.jpdc.2012.09.006
https://doi.org/10.1109/IISWC.2009.5306797
https://doi.org/10.1109/IISWC.2009.5306797
https://doi.org/10.1109/SC.2005.75
https://doi.org/10.1145/1542275.1542321
https://doi.org/10.1109/IPDPS.2006.1639590
https://doi.org/10.1109/IPDPS.2006.1639590
http://man7.org/linux/man-pages/man2/mprotect.2.html
http://man7.org/linux/man-pages/man2/mprotect.2.html
https://doi.org/10.1002/fld.2462
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/fld.2462
http://dl.acm.org/citation.cfm?id=3014904.3014974
http://dl.acm.org/citation.cfm?id=3014904.3014974
https://devblogs.nvidia.com/how-overlap-data-transfers-cuda-cc/
https://devblogs.nvidia.com/how-overlap-data-transfers-cuda-cc/
https://devblogs.nvidia.com/unified-memory-cuda-beginners/
http://dl.acm.org/citation.cfm?id=968878.968995
https://doi.org/10.1145/1230800.1230807
https://doi.org/10.1109/MCSE.2011.117
https://doi.org/10.1109/MCSE.2011.117
https://doi.org/10.1016/j.cpc.2012.06.003
http://dl.acm.org/citation.cfm?id=2999134.2999257
https://doi.org/10.1109/HPEC.2014.7040988
https://doi.org/10.1109/CCGrid.2015.105
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/documents/NVIDIA-Kepler-GK110-GK210-Architecture-Whitepaper.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/documents/NVIDIA-Kepler-GK110-GK210-Architecture-Whitepaper.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/documents/NVIDIA-Kepler-GK110-GK210-Architecture-Whitepaper.pdf
https://www.nvidia.com/en-us/data-center/volta-gpu-architecture/
https://www.nvidia.com/en-us/data-center/volta-gpu-architecture/
https://developer.nvidia.com/cuda-code-samples
https://developer.nvidia.com/cuda-code-samples
https://developer.nvidia.com/cuda-zone
https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__MEMORY.html
https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__MEMORY.html
https://www.nvidia.com/Download/index.aspx
https://www.nvidia.com/Download/index.aspx
https://www.nvidia.com/en-us/data-center/pascal-gpu-architecture/
https://www.nvidia.com/en-us/data-center/pascal-gpu-architecture/
https://www.nvidia.com/en-us/design-visualization/technologies/turing-architecture/
https://www.nvidia.com/en-us/design-visualization/technologies/turing-architecture/
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#um-unified-memory-programming-hd
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#um-unified-memory-programming-hd
https://doi.org/10.1109/IPDPS.2010.5470394
https://doi.org/10.1109/SC.2008.5214716
http://caffe.berkeleyvision.org/

1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265

PPoPP’20, February 22–26, 2020, San Diego, California, USA Anon.

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

[35] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed,
Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and An-
drew Rabinovich. 2015. Going deeper with convolutions. In 2015 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR). 1–9.
https://doi.org/10.1109/CVPR.2015.7298594

[36] J. B. White III and J. J. Dongarra. 2011. Overlapping Computation and
Communication for Advection on Hybrid Parallel Computers. In 2011
IEEE International Parallel Distributed Processing Symposium. 59–67.
https://doi.org/10.1109/IPDPS.2011.16

[37] Doran Wilde and Sanjay Rajopadhye. 1996. Memory reuse analysis in
the polyhedral model. In Euro-Par’96 Parallel Processing, Luc Bougé,
Pierre Fraigniaud, Anne Mignotte, and Yves Robert (Eds.). Springer
Berlin Heidelberg, Berlin, Heidelberg, 389–397.

12

https://doi.org/10.1109/CVPR.2015.7298594
https://doi.org/10.1109/IPDPS.2011.16

	Abstract
	1 Introduction
	2 Related Work
	3 CUDA Unified Memory
	4 Design and Implementation
	4.1 Overlapping H2Dmemcpy and Computation
	4.2 Data Consistency and Correctness
	4.3 HUM Driver
	4.4 HUM H2Dmemcpy Mechanism
	4.5 Parallelizing Memory Copy Commands
	4.6 Scheduling Memory Copy Commands

	5 Evaluation
	5.1 Methodology
	5.2 Results

	6 Conclusions
	References

