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Abstract CUDA-based programming model is heterogeneous — composed of two
components: host (CPU) and device (GPU). Both components have separated mem-
ory spaces and processing units. A great challenge to increase GPU-based applica-
tion performance is the data migration between these memory spaces. Currently, the
CUDA platform supports the following data migration methods: UMA, zero-copy,
pageable and pinned memory. In this paper, we compare the zero-copy performance
method with the other methods by considering the overall application runtime. Ad-
ditionally, we investigated the aspects of data migration process to enunciate causes
of the performance variations. The obtained results demonstrated in some cases
the zero-copy memory can provide an average performance on 19 % higher than
the pinned memory transfer. In the studied situation, this method was the second
most efficient. Finally, we present limitations of zero-copy memory as a resource for
improving performance of CUDA applications.

1 Introduction

By considering the involved architectures, CUDA-based programming model is het-
erogeneous — composed of two components: host (CPU) and device (GPU) [5]. Both
components have separated memory spaces and processing units. A great challenge
for performance increasing in CUDA-based programming is the data migration be-
tween host and device memory spaces [7]. It is not a simple task to manage this
data transfer, even without focusing in performance, since in some methods it is nec-
essary to perform explicit requests for memory copy and the control of concurrent
data access [8]. At present, the latest CUDA version provides four main methods for
data migration between host and device memory spaces: zero-copy memory, UMA
(Unified Memory Access) model, pageable and pinned memory [11].
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In this paper, we investigate the zero-copy migration method, by comparing the
performance with the other three memory migration methods provided by CUDA
API and evaluating all runtime tests. We conducted a case study for the migration
process. First, we developed an application to perform a scalar multiplication and the
sum from the elements of a vector. Then, we adapted this application to execute and
to evaluate two situations. In the first, less memory access is performed by the GPU
during threads execution; in the second, a greater number of access transactions is
performed. Finally, we present the limitations of using zero-copy memory method
as an approach to increase a CUDA application performance.

Besides the introduction, this document consists of another five sections. Related
works are introduced in Sect. 2. In Sect. 3, we describe the main data migration
methods between host and device on the CUDA architecture. Then, in Sect. 4, we
present the results. In this section, we evaluate and discuss the performance of the
methods described in Sect. 3, comparing them with zero-copy memory method. In
Sect. 5, we present some limitations in the use of zero-copy memory. Finally, Sect. 6
concludes this paper.

2 Related Works

In the last years, various studies on the transfer of data between the different archi-
tectures of the GPU-based programming model were produced. Kaldewey et al. [4]
conducted a study on the efficiency of use of the bandwidth of the PCI-E bus in com-
munication between the host and the device in the UVA model. By zero-copy memory
they demonstrated the performance is close to the theoretical maximum bandwith
memory. However, in that study, a comparison of the impact of the use of this mem-
ory in the global application performance compared to other transfer methods was
not performed. Bai et al. [1] used the zero-copy memory to optimize algorithms per-
formance for lattice-based cryptographic systems. In the tests, they analyzed both
single GPU and multiple GPUs communicating with the CPU. Landaverde et al.
[7] conducted a research of UMA model performance from the pageable memory
transfer. In the methodology, they established a benchmark model to the methods
similar to the model used in this work. Based on the results, they demonstrated that
the use of UMA model causes a performance loss regarding to the pageable and
pinned memory.

3 Data Migration Between Host and Device

3.1 CUDA Main Memory Access Model

Compute Unified Device Architecture (CUDA) is a platform developed by NVIDIA
to allow use of GPUs in general-purpose computing. CUDA-based programming
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Device

Fig. 1 Heterogeneous CUDA-programming model

model is heterogeneous and each component, host and device, owns processing unit
and memory space [11].

The rate that a processing unit can access the main memory is limited by its self
memory bandwidth. In CUDA-based programming model, in addition to memory
bandwidth of GPU and CPU, there is a bus between the host and device, as shown in
in Fig. 1. Typically, the bus that mediates this communication is the PCI (Peripheral
Component Interconnect). The PCI memory bandwidth is generally less than CPU
and GPU [10]. Thus, it is important to analyze the memory transfer impacts on the
design of a CUDA application.

3.2 CUDA Data Transfer Methods

Along the versions, NVIDIA introduced different memory management methods
on the CUDA platform. By the time this study was conducted, the latest version
of CUDA SDK - CUDA 7 SDK - offers the following methods: pageable memory,
pinned memory, zero-copy memory, and Unified Memory Access (UMA) model [11].

Standard Transfer Method: Standard transfer method can be executed with page-
able memory or pinned memory. In a pageable memory, during the execution of an
application, the physical address of the data may change, given the memory pages
may undergo swap for the secondary memory. In this way, before the data is copied
from the host to the device, architecture migrates the desired data portion for pinned
memory buffer on the host [11]. Then, through the PCI resource Direct Memory Ac-
cess (DMA) performs the data transfer from the buffer to the device [3]. In contrast
to pageable memory, pinned memory does not undergo swap. Thus, in standard
transfer method of pinned memory, it does not occur to data migration to the buffer.
This feature allows the PCI use DMA to directly transfer the data from the current
physical location in host memory to the device memory space [10]. In pageable
memory, the additional transfer contributes to a decrease in performance (memory
bandwidth) regarding to pinned memory [2].

Zero-copy Method: Zero-copy memory is a “kind” of pinned memory provide by
Unified Virtual Addressing (UVA). The use of zero-copy method discards the need
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to explicit requests (i.e., a function call) for data migration. UVA model provides a
single shared virtual space of memory between the host and the device, providing
the address of the data on the host is mapped to the device [9]. Data migration occurs
implicitly whenever a portion that is not presented in context is referenced, either
the host or the device [10]. Thus, the zero-copy memory is used when a set of data
does not fit completely in the device memory; once the CUDA API maintains only a
portion of data that is accessed at a specific time in the device [6]. The remaining data
set is maintained in host memory [10]. By considering the use of multiple GPUs,
UVA model also provides a shared memory space and eliminates the intermediate
step to copy the host memory during data transfer from one GPU to another. In the
state of the art, the aspects of data movement in zero-copy memory provide by CUDA
API are not disclosed.

UMA Model: Unified Memory Access (UMA) model is similar to zero-copy mem-
ory regarding no need for an explicit request for data migration. On the other hand,
the data is not allocated in a pinned memory. As in zero-copy memory, the API is
responsible for managing the entire data migration process.

4 Case Study: Evaluation of Memory Management
Methods

In this section, we evaluate the performance of data migration between the host and
device memory spaces. In addition to the performance comparison, we investigated
the aspects that justify the variation between migration methods.

In the tests, we setup two different situations for the scenario: in the first, described
in Subsect. 4.1, we created a simulated application in which the GPU makes a small
amount of memory access transactions for each kernel thread; in the second, we
adapted this application to the GPU performs a greater amount of memory access
transactions, as shown in Subsect. 4.2.

4.1 Situation 1: Less Amount of Memory Access
Transactions During a Thread Execution

Application Model: For the tests, we have developed an application that performs
scalar multiplication and sum from vector elements. The implemented algorithm can
be divided into the following steps:

1. Initialization of vector elements
2. Data transfer to the device (HtoD)
3. Vector scalar multiplication (kernel)



Performance Evaluation of Data Migration Methods 693
4. Data transfer to the host (DtoH)
5. Sum of vector elements

The step that comprehends the vector scalar multiplication was parallelized and
runs on the GPU. The code snippet that is executed in this step can be seen in Fig. 2.

_ _global_ _ void mult(int xvect, int num, int N){
//Thread index
int id = blockldx.x * blockDim.x + threadldx.x;
//Multiplication = vector element % constant value
if (id <N)
*(vect + id) = x(vect + id) * num;

NN bW~

Fig. 2 Code snippet that runs on the device for vector multiplication by a constant.

The host is responsible for the initialization steps and sum of vector elements.
These steps are performed sequentially. Throughout the algorithm, all steps use the
vector as the Input and Output Dataset. After the initialization of the vector, it is
necessary to migrate this set of data from the host to device (HtoD). Then, after
multiplication by a scalar value, the vector should be migrated back to the host
(DtoH). The context of CUDA application comprehends a single stream. A pseudo-
code containing all algorithm steps is presented in Algorithm 1. The code snippet
that contains the parallelized instructions was previously shown in Fig. 2.

To compare and investigate the performance of each memory management
method, we adapted the application with the necessary function calls to allocate
and copy memory. It is worth mentioning that we focus exclusively on evaluating
the performance differences and research aspects of the data migration between the
host and the device. Thus, the implemented algorithm is not complex and does not
require a large computational effort.

Algorithm 1. Scalar multiplication and sum of vector elements

Require: n > 0
Ensure: vec < vec * ¢
vec < Allocation
¢ < ky {kj is a constant}
fori =1,i <n,i ++do
vecli] = ky {k; is a constant}
end for
= migration data — HtoD
mult<<<N, 1>>> (vec, ¢, n) { CUDA kernel}
= migration data — DtoH
sum =0
fori =1,i <n,i++do
sum = sum + vecli]
end for
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Methodology: We developed an application which performs a scalar multiplication
and sum from the vector elements (see the Subsect. 4.1) for our microbenchmarks.
NVIDIA Visual Profiler and nvprof tools were used to measure processing time and
to obtain details of the data transfer aspects throughout the runtime. We run the
application with four different configurations of data migration methods provided
by CUDA platform.

In the tests, we use five different vector sizes. The arrangement of threads and
threads blocks on kernel function was performed based on these sizes. Number of
elements in each vector size: 1048576 (1024 threads x 1024 blocks), 2097152 (1024
threads x 2048 blocks), 4194304 (1024 threads x 4096 blocks), 8388608 (1024
threads x 8192 blocks) and 16777216 (1024 threads x 16384 blocks) elements.

The timeline during runtime for each test was divided into five ranges as the
steps that have been described in the implemented algorithm. To define each time
range, we use NVTX (NVIDIA Tools Extension). We named these ranges as follows:
initialization, HtoD transfer, multiplication, DtoH transfer and sum. It is easy to
associate each range with the described algorithm steps, which are presented in
Subsect. 4.1. Data transfer ranges were not considered in the UMA model and the
zero-copy memory, once there is no explicit memory copy in these methods.

All results represent an average of five executions. All the tests were performed
on computer with Windows 8.1 64 Bits Operating System, Intel [5-2320 CPU, 4 GB
RAM, PCI Express x16 2.0 bus, NVIDIA Geforce GT 740 GPU, with 1 GB RAM
DDR3 and 384 CUDA cores. The application was implemented using the CUDA 7
SDK.

Experimental Results: In this section, we present results of the tests. In order to
provide a better understanding, all values were normalized.
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Fig.3 Global normalized runtime for the application of scalar multiplication and addition of vector
elements (Situation 1).

Figure 3 shows the normalized runtimes for application that performs the scalar
multiplication and the sum from the vector elements. In particular, the results
match the configured application in four memory management methods: page-
able memory (represented by M1), pinned memory (represented by M2), UMA



Performance Evaluation of Data Migration Methods 695

(represented by M3) and zero-copy memory (represented by M4). Apart from the
global runtime, it is also shown the runtime of each range that the application was
divided: initialization, HtoD transfer, multiplication, DtoH transfer and sum.

From Fig 3, we can see that there was a distinct variation in application perfor-
mance among the data migration methods. Additionally, it is possible to observe
the results were consistent, once the performance variation pattern in retained once
the array size is increased. From the obtained results, we ordered the migration data
methods regarding best described performance: zero-copy memory, UMA model,
pageable memory and pinned memory. In all presented tests, this order of efficiency
is the same. On average, the application configured with the standard transfer method
with pinned memory spends 19.40% more time than zero-copy memory; with page-
able memory, 37.24% more time was spent; and in UMA model, it was 256.57%.

In order to figure out the reasons for performance variations among the methods,
we evaluate aspects of data migration during tests runtime. In the tests, the config-
uration with pageable memory spends on average 62.47% more time than the time
spent by the pinned memory in HtoD transfer range and 77.40% in DtoH transfer
range. Through the NVIDIA Visual Profiler, it is possible to measure the throughput
of pinned memory — on average 6.68 GB/s (HtoD) and 6.697 GB/s (DtoH), whereas
in the pageable memory was 3.69 GB/s (HtoD) and 3.87 GB/s (DtoH). In the other
analyzed ranges, the time consumed by both methods is the same. On average, there
is a difference of 0.59% in relation to the run time in the initialization, 1.52% in mul-
tiplication, and 2.43% in the sum of vector elements. In the standard transfer method,
the data migration does not affect the performance of other ranges that the timeline
of the tests was divided. Thus, we used this method to compare and to investigate
the data migration aspects and performance in UMA model and zero-copy memory.

In UMA model, there is no explicit memory copy. However, from Fig. 3, of course
notice a high discrepancy between the processing time of this method regarding the
standard transfer method, when we analyze the ranges of initialization, multiplication
and sum from vector elements. On average, the UMA model spent 152% more time
than the average of the pageable and pinned memories during initialization, 670%
more than multiplication and 251% more than sum range.

In all tests, the zero-copy memory is more efficient. As in UMA model, there is
no explicit memory copy. However, the data migration takes place at different times.
Figure 4 shows the time consumed during the execution of multiplication range
for zero-copy memory and standard transfer methods for all tests. As we can see,
once the vector has more than 2097152 (2048x1024) elements, the kernel runtime
with zero-copy method becomes greater than the time taken by the standard transfer
method with pageable memory and pinned. NVIDIA Visual Profiler tool does not
support a graphical analysis of the data migration with zero-copy memory. Although,
it is possible to collect information about reading and writing transactions in system
memory, i.e., in the host, while running the kernel. In all executed tests, regardless
of the vector size, there are on average 2097152 (2048x1024) access transactions to
host memory (reading and writing) for the kernel running with zero-copy memory.
Each Access transaction features 32-bit width and the transfer rate is on average
5.88 GB/s.
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Fig. 4 Multiplication range runtime. Configured application with the memory management meth-
ods: zero-copy memory, pageable memory and pinned memory.

Discussion: The results demonstrate the data migration between host and device
memory spaces effectively impacts the application performance. Additionally, dif-
ferent memory management methods provided by CUDA, exhibit high performance
variation.

Zero-copy memory method was more efficient than other methods. However, we
cannot assert that for any application of this method will be more efficient. The results
demonstrate that the use of zero-copy memory affects the performance of the kernels,
once that occur access transactions to host memory during the execution. Thus, to
further investigate the behavior of this method, we modified the kernel function
to run the tests again. The modified kernel and the results obtained are shown in
Subsect. 4.2.

The pinned memory obtained the second best performance. Regarding pageable
memory, the performance difference is caused by the memory throughput. Pinned
memory has a transfer rate about 77% higher than the pageable memory. The per-
formance of UMA was lower than all other methods.

4.2 Situation 2: Greatest Amount of Memory Access
Transactions During the Execution of a Thread

In order to better investigate the behavior of zero-copy memory and another memory
management methods, we adapt the original kernel function shown in Fig. 2. The
modified code snippet can be seen in Fig. 5. The kernel modification does not cause
changes in the application results. The modification added 49 redundant instructions
of each thread execution. By performing this kernel, we intend to simulate an in-
creased amount of memory access transactions while running the kernel. Note that
the remaining steps of the algorithm (Algorithm 1) have not been modified. Thus,
the produced results by the application are the same.
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_global_ _ void mult(int xvect, int num, int N){
//Thread index
int id = blockldx.x * blockDim.x + threadldx.x;
//Multiplication = vector element % constant value
if (id <N)
for (int i = 0; i < 50; i++)
x(vect + id) = x(vect + id) * num;

O\ AL —

Fig. 5 Code snippet of modified kernel.

Methodology: To perform the tests, we use the same methodology from the original
application (see Subsect. 4.1), i.e., with unmodified kernel.

Experimental Results: Fig. 6 shows the normalized runtime for the application in
Situation 2. In comparison with Fig. 3, which represents the application execution
time in Situation 1, we can observe that the relative time consumed by the multipli-
cation range increased in all tests. Moreover, in all other observed ranges (initializa-
tion, HtoD transfer, DtoH transfer and sum), the spent runtime was the same. In all
tests, zero-copy memory has the lowest performance. Whereas, the standard transfer
method with pinned memory is the most efficient.
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Fig. 6 Global normalized runtime for the application with kernel adapted (Situation 2).

The ratio of the multiplication range runtime with both modified kernel and un-
modified kernel is shown in Figure 7. From this figure, we can see that the standard
transfer method increases of about 20 times the runtime. Whereas the runtime in-
crease in zero-copy memory was at least 40 times. Through NVIDIA Visual Profiler,
we can observe in zero-copy memory, the kernel runtime increase is accompanied
by an increase in the number of host memory access transactions. In all tests, the
number of access transactions increased 50 times, which corresponds to the increased
number of instructions in the modified kernel.
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Fig. 7 Runtime ratio of multiplication range. Ratio between runtime multiplication in Situation 2
and Situation 1

Discussion: The tests demonstrated that an increase in access to data during kernel
execution affects the migration of memory between the host and the device when
using the zero-copy memory method. Additionally, we can observe that there is
not a self optimization CUDA API when using zero-copy memory, once the kernel
modification aims to increase the amount of memory access transactions and leads
to the execution of redundant instructions.

5 Limitations of Zero-copy Memory Usage

The first limitation on the use of zero-copy memory resides in the fact that the
data is allocated in a pinned memory. The allocation of large amounts of pinned
memory can affect the operating system performance [10]. Unfortunately, it is not
possible to measure a precise relationship between the amount of memory allocated
and total memory installed in the system. Beyond the amount available memory, the
operating system and other applications that are running in the environment influence
the performance loss of the entire system. On this way, a good practice is not to use
zero-copy memory when it is not known in advance, the maximum amount of data
that will be allocated. As discussed in Subsect. 4.2, a problem in the use of zero-copy
memory is the occurrence of performance loss when the amount of memory access
transactions increases. Particularly, part of these transactions may include redundant
copies performed on a kernel. In some cases, it can use a local variable within the
kernel function that receives a copy of the data used for to avoid the redundant
accesses. Basically, the zero-copy memory must be used on data undergoing a
lesser amount of access during transactions execution. In case of more amount
of access transactions, other transfer methods are recommendable.
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6 Conclusion

Zero-copy memory presents implicit and transparent memory copies to the program-
mer, hiding the complexity of managing the data migration. Originally, this method
was conceived as a feature that allows the use of data sets that may not be entirely
stored in the memory device.

This study showed that in cases in which the kernel function performs a small
amount of memory access transactions (in particular, a single access transaction),
zero-copy memory can be used to provide performance increase. In certain cases,
the use of zero-copy memory can provide a performance gain of more than 19% in
the runtime application when compared to pinned memory. Based on the obtained
results, we demonstrated that the total number of memory access transactions dur-
ing execution of the kernel reduces the overall performance of the application and
establishing a barrier in using zero-copy memory.

In the tested situations, we do not use multiple streams and memory copy process
was not overlapped by the running kernel. Therefore, further works may include anal-
ysis of the performance of the zero-copy memory in a concurrent streams scenario.
In a other future study, we will investigate the performance of zero-copy memory in
other models of GPUs and also in the OpenCL API.
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