
Dominators, 
control-dependence 

and SSA form



Organization

• Dominator relation of CFGs
– postdominator relation

• Dominator tree
• Computing dominator relation and tree

– Dataflow algorithm
– Lengauer and Tarjan algorithm

• Control-dependence relation
• SSA form



Control-flow graphs
• CFG is a directed graph
• Unique node START from which 

all nodes in CFG are reachable
• Unique node END reachable from 

all nodes
• Dummy edge to simplify 

discussion   START  END
• Path in CFG: sequence of nodes, 

possibly empty, such that 
successive nodes in sequence are 
connected in CFG by edge

– If x is first node in sequence and y 
is last node, we will write the path 
as x * y 

– If path is non-empty (has at least 
one edge) we will write x + y

START

a

b

c

d e

f

g

END



Dominators
• In a CFG G, node a is 

said to dominate node 
b if every path from 
START to b contains 
a.

• Dominance relation: 
relation on nodes
– We will write a dom b 

if a dominates b
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END

START
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Computing dominance relation

• Dataflow problem:

N Dom(N) =  {N}  U           ∩      Dom(M)
M ε pred(N)

Domain: powerset of nodes in CFG

Work through example on previous slide to check this.
Question: what do you get if you compute least solution?

Find greatest solution.



Properties of dominance

• Dominance is
– reflexive: a dom a
– anti-symmetric: a dom b and b dom a  a = b
– transitive: a dom b and b dom c  a dom c
– tree-structured: 

• a dom c and b dom c  a dom b or b dom a
• intuitively, this means dominators of a node are 

themselves ordered by dominance 



Example of proof

• Let us prove that dominance is transitive.
– Given: a dom b and b dom c
– Consider any path P: START + c
– Since b dom c, P must contain b.
– Consider prefix of P = Q: START + b
– Q must contain a because a dom b.
– Therefore P contains a.



Dominator tree example

START

a

b

c

d e

f

g

END

START

ENDa

b c

d e f

g

Check: verify that from dominator tree, you can generate full relation



Computing dominator tree

• Inefficient way:
– Solve dataflow equations to compute full 

dominance relation
– Build tree top-down

• Root is START
• For every other node

– Remove START from its dominator set
– If node is then dominated only by itself, add node as child 

of START in dominator tree
• Keep repeating this process in the obvious way



Building dominator tree directly

• Algorithm of Lengauer and Tarjan 
– Based on depth-first search of graph
– O(E*α(E)) where E is number of edges in 

CFG
– Essentially linear time

• Linear time algorithm due to Buchsbaum 
et al
– Much more complex and probably not efficient 

to implement except for very large graphs



Immediate dominators

• Parent of node b in tree, if it exists, is 
called the immediate dominator of b 
– written as idom(b)
– idom not defined for START

• Intuitively, all dominators of b other than b 
itself dominate idom(b)
– In our example, idom(c) = a



Useful lemma
• Lemma: Given CFG G 

and edge ab, idom(b) 
dominates a

• Proof: Otherwise, there is 
a path P: START + a 
that does not contain 
idom(b). Concatenating 
edge ab to path P, we 
get a path from START to 
b that does not contain 
idom(b) which is a 
contradiction.

START

ENDq

b c

d e a

g

ab is edge in CFG
idom(b) = q which dominates f 



Postdominators
• Given a CFG G, node b is said to postdominate

node a if every path from a to END contains b.
– we write b pdom a to say that b postdominates a

• Postdominance is dominance in reverse CFG 
obtained by reversing direction of all edges and 
interchanging roles of START and END.

• Caveat: a dom b does not necessarily imply b 
pdom a. 
– See example: a dom b but b does not pdom a



Obvious properties
• Postdominance is a tree-structured relation
• Postdominator relation can be built using a 

backward dataflow analysis.
• Postdominator tree can be built using Lengauer 

and Tarjan algorithm on reverse CFG
• Immediate postdominator: ipdom
• Lemma: if a  b is an edge in CFG G, then 

ipdom(a) postdominates b. 



Control dependence

• Intuitive idea: 
– node w is control-dependent on a node u if 

node u determines whether w is executed
• Example:

e

S1 S2

m

START

END

START
…..
if e then S1 else S2
….
END

We would say S1 and S2 are control-dependent on e



Examples (contd.)

e

S1

START

END

START
…..
while e do S1;
….
END

We would say node S1 is control-dependent on e.
It is also intuitive to say node e is control-dependent on itself:

- execution of node e determines whether or not e is executed again.



Example (contd.)
• S1 and S3 are control-

dependent on f
• Are they control-dependent on 

e?
• Decision at e does not fully 

determine if S1 (or S3 is 
executed) since there is a later 
test that determines this

• So we will NOT say that S1 
and S3 are control-dependent 
on e
– Intuition: control-dependence 

is about “last” decision point
• However, f is control-

dependent on e, and S1 and 
S3 are transitively (iteratively) 
control-dependent on e

e

S2

m

START

END

f

S1 S3

n



Example (contd.)
• Can a node be control-

dependent on more than 
one node?
– yes, see example
– nested repeat-until loops

• n is control-dependent on 
t1 and t2 (why?)

• In general, control-
dependence relation can 
be quadratic in size of 
program

t1

t2

n



Formal definition of control 
dependence

• Formalizing these intuitions is quite tricky
• Starting around 1980, lots of proposed 

definitions
• Commonly accepted definition due to 

Ferrane, Ottenstein, Warren (1987)
• Uses idea of postdominance
• We will use a slightly modified definition 

due to Bilardi and Pingali which is easier 
to think about and work with



Control dependence definition
• First cut: given a CFG G, a node w is control-

dependent on an edge (uv) if 
– w postdominates v
– ……. w does not postdominate u

• Intuitively, 
– first condition: if control flows from u to v it is 

guaranteed that w will be executed
– second condition: but from u we can reach END 

without encountering w
– so there is a decision being made at u that 

determines whether w is executed



Control dependence definition
• Small caveat: what if w = u in 

previous definition?
– See picture: is u control-

dependent on edge uv? 
– Intuition says yes, but 

definition on previous slides 
says “u should not 
postdominate u” and our 
definition of postdominance is 
reflexive

• Fix: given a CFG G, a node w 
is control-dependent on an 
edge (uv) if 
– w postdominates v
– if w is not u, w does not 

postdominate u

u

v



Strict postdominance
• A node w is said to strictly postdominate a node 

u if 
– w != u 
– w postdominates u

• That is, strict postdominance is the irreflexive 
version of the postdominance relation

• Control dependence: given a CFG G, a node w 
is control-dependent on an edge (uv) if 
– w postdominates v
– w does not strictly postdominate u



Example

START

a

b

c

d e

f

g

END

STARTa
fb
cd
ce
ab

a   b   c   d   e   f   g
x x x x

x x x
x

x
x



Computing control-dependence 
relation

• Control dependence: 
given a CFG G, a node w 
is control-dependent on 
an edge (uv) if 
– w postdominates v
– w does not strictly 

postdominate u

• Nodes control dependent 
on edge (uv) are nodes 
on path up the 
postdominator tree from v 
to ipdom(u), excluding 
ipdom(u)
– We will write this as 

[v,ipdom(u)) 
• half-open interval in tree

END

STARTg

f

d e c

a

STARTa
fb
cd
ce
ab

a   b   c   d   e   f   g
x x x x

x x x
x

x
x

b



Computing control-dependence 
relation

• Compute the postdominator tree
• Overlay each edge uv on pdom tree and determine 

nodes in interval [v,ipdom(u))
• Time and space complexity is O(EV).
• Faster solution: in practice, we do not want the full 

relation, we only make queries
– cd(e): what are the nodes control-dependent on an edge e?
– conds(w): what are the edges that w is control-dependent on?
– cdequiv(w): what nodes have the same control-dependences as 

node w?
• It is possible to implement a simple data structure that 

takes O(E) time and space to build, and that answers 
these queries in time proportional to output of query 
(optimal) (Pingali and Bilardi 1997).



SSA form
• Static single assignment form

– Intermediate representation of program in which 
every use of a variable is reached by exactly one 
definition

– Most programs do not satisfy this condition
• (eg) see program on next slide: use of Z in node F is reached 

by definitions in nodes A and C
– Requires inserting dummy assignments called Φ-

functions at merge points in the CFG to “merge” 
multiple definitions

– Simple algorithm: insert Φ-functions for all variables at 
all merge points in the CFG and rename each real 
and dummy assignment of a variable uniquely

• (eg) see transformed example on next slide



SSA example
START

Z:= …

p1

Z:= …. ……

p3

p2

print(Z)

END

START

Z0:= …

p1

Z2:= …. Z3:= Φ(Z1,Z3)

p3

Z4:= Φ(Z2,Z3)
p2

print(Z4)

END

Z1 := Φ(Z4,Z0) 

A

B

C
D

E

F

G

A

B
C

D

E
G

F



Minimal SSA form
• In previous example, dummy assignment Z3 is 

not really needed since there is no actual 
assignment to Z in nodes D and G of the original 
program.

• Minimal SSA form
– SSA form of program that does not contain such 

“unnecessary” dummy assignments
– See example on next slide

• Question: how do we construct minimal SSA 
form directly?



Minimal-SSA form Example



Minimal SSA form 



Minimal-SSA form Example



Computing Merge(v)
• If u ε Merge(w), w does not 

strictly dominate u
– Proof: there is a path from 

START to v that does not 
contain w

• Conversely
– if w dominates u, u ε Merge(w)

• Idea: 
– compute nodes on the 

dominance frontier of w
• w does not strictly dominate u 

but dominates some CFG 
predecessor of u

– iterate

w

u

START



Dominance frontier

• Dominance frontier of node w
– Node u is in dominance frontier of node w if w

• dominates a CFG predecessor v of u, but
• does not strictly dominate u

• Dominance frontier = control dependence 
in reverse graph

A
B
C
D
E
F
G

A  B  C  D  E  F  G 

x
x

x
x

Running example:

x x



Iterated dominance frontier
• Irreflexive closure of dominance 

frontier relation
• Related notion: iterated control 

dependence in reverse graph
• Where to place Φ-functions for a 

variable Z
– Let Assignments = {START} U 

{nodes with assignments to Z in 
original CFG}

– Find set I = iterated dominance 
frontier of nodes in Assignments

– Place Φ-functions in nodes of 
set I

• For example
– Assignments = {START,A,C}
– DF(Assignments) = {E}
– DF(DF(Assignments)) = {B}
– DF(DF(DF(Assignments))) = {B}
– So I = {E,B}
– This is where we place Φ-

functions, which is correct



Why is SSA form useful?
• For many dataflow problems, SSA form enables 

“sparse” dataflow analysis that
– yields the same precision as bit-vector CFG-based 

dataflow analysis 
– but is asymptotically faster since it permits the 

exploitation of sparsity 
– Example: constant propagation (see following slides)

• SSA has two distinct features
– factored def-use chains
– renaming
– you do not have to perform renaming to get 

advantage of SSA for many dataflow problems



Constant propagation

• Dataflow algorithm 
described earlier will 
determine that the last 
use of y is constant

• Intuition: it discovers 
that the false side of 
the conditional is dead



Def-use chains algorithm

• Algorithm:
– Compute reaching definitions
– Add def-use chains to CFG
– Cell for each definition and 

use, initialized to ⊥
– Propagate lattice values from 

definitions to uses, using 
confluence operator to merge 
values from multiple definitions 
that reach a given use

• Algorithm will not find all the 
constants found by CFG 
dataflow algorithm



SSA algorithm
• Cells for each def and use of SSA 

edges initialized to ⊥
• Cell per edge and statement to mark 

liveness 
• Propagate liveness along CFG edges 

to mark live edges
• Statement is live if any incoming 

edge is live
• Propagate constants along SSA 

edges from live statements
• At conditional, evaluate condition 

using propagated values to mark 
liveness on outgoing edges

• At     function, merge values only 
from live CFG edges using 
confluence operator

• Will find all constants found by CFG 
dataflow algorithm

φ

START

x := 1

y := x+2

..y..

y := 5

y>x

φ SSA edges



Computing SSA form
• Cytron et al algorithm

– compute DF relation (see slides on computing 
control-dependence relation)

– find irreflexive transitive closure of DF relation for set 
of assignments for each variable

• Computing full DF relation
– Cytron et al algorithm takes O(|V| +|DF|) time
– |DF| can be quadratic in size of CFG

• Faster algorithms
– O(|V|+|E|) time per variable: see Bilardi and Pingali



Dependences

• We have seen control-dependences.
• What other kind of dependences are there 

in programs?
– Data dependences: dependences that arise 

from reads and writes to memory locations
• Think of these as constraints on reordering 

of statements



Data dependences
• Flow-dependence (read-after-write): S1S2

– Execution of S2 may follow execution of S1 in program 
order

– S1 may write to a memory location that may be read by 
S2

– Example:
…..

x := 3     
…x..   
…….

flow-dependence

while e do
…x…
x: = …
……

flow-dependence

This is called a loop-carried dependence



Anti-dependences
• Anti-dependence (write-after-read): S1S2

– Execution of S2 may follow execution of S1 in 
program order

– S1 may read from a memory location that may be 
(over)written by S2

– Example:
x := …
..x….
x:= … anti-dependence



Output-dependence

• Output-dependence (write-after-write): 
S1S2
– Execution of S2 may follow execution of S1 in 

program order
– S1 and S2 may both write to same memory 

location 



Summary of dependences

• Dependence
– Data-dependence: relation between nodes

• Flow- or read-after-write (RAW)
• Anti- or write-after-read (WAR)
• Output- or write-after-write (WAW)

– Control-dependence: relation between nodes 
and edges 
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