
Dominators,
control-dependence

and SSA form

Organization

• Dominator relation of CFGs
– postdominator relation

• Dominator tree
• Computing dominator relation and tree

– Dataflow algorithm
– Lengauer and Tarjan algorithm

• Control-dependence relation
• SSA form

Control-flow graphs
• CFG is a directed graph
• Unique node START from which

all nodes in CFG are reachable
• Unique node END reachable from

all nodes
• Dummy edge to simplify

discussion START  END
• Path in CFG: sequence of nodes,

possibly empty, such that
successive nodes in sequence are
connected in CFG by edge

– If x is first node in sequence and y
is last node, we will write the path
as x * y

– If path is non-empty (has at least
one edge) we will write x + y

START

a

b

c

d e

f

g

END

Dominators
• In a CFG G, node a is

said to dominate node
b if every path from
START to b contains
a.

• Dominance relation:
relation on nodes
– We will write a dom b

if a dominates b

a

b

c

d e

f

g

END

START

Example

A

B

C

D E

F

G

END

START

START
A
B
C
D
E
F
G

END

START A B C D E F G END
x

x
x x x x x x x x

x x x x x x
x

x x x x x
x

x
x x

x
x

Computing dominance relation

• Dataflow problem:

N Dom(N) = {N} U ∩ Dom(M)
M ε pred(N)

Domain: powerset of nodes in CFG

Work through example on previous slide to check this.
Question: what do you get if you compute least solution?

Find greatest solution.

Properties of dominance

• Dominance is
– reflexive: a dom a
– anti-symmetric: a dom b and b dom a  a = b
– transitive: a dom b and b dom c  a dom c
– tree-structured:

• a dom c and b dom c  a dom b or b dom a
• intuitively, this means dominators of a node are

themselves ordered by dominance

Example of proof

• Let us prove that dominance is transitive.
– Given: a dom b and b dom c
– Consider any path P: START + c
– Since b dom c, P must contain b.
– Consider prefix of P = Q: START + b
– Q must contain a because a dom b.
– Therefore P contains a.

Dominator tree example

START

a

b

c

d e

f

g

END

START

ENDa

b c

d e f

g

Check: verify that from dominator tree, you can generate full relation

Computing dominator tree

• Inefficient way:
– Solve dataflow equations to compute full

dominance relation
– Build tree top-down

• Root is START
• For every other node

– Remove START from its dominator set
– If node is then dominated only by itself, add node as child

of START in dominator tree
• Keep repeating this process in the obvious way

Building dominator tree directly

• Algorithm of Lengauer and Tarjan
– Based on depth-first search of graph
– O(E*α(E)) where E is number of edges in

CFG
– Essentially linear time

• Linear time algorithm due to Buchsbaum
et al
– Much more complex and probably not efficient

to implement except for very large graphs

Immediate dominators

• Parent of node b in tree, if it exists, is
called the immediate dominator of b
– written as idom(b)
– idom not defined for START

• Intuitively, all dominators of b other than b
itself dominate idom(b)
– In our example, idom(c) = a

Useful lemma
• Lemma: Given CFG G

and edge ab, idom(b)
dominates a

• Proof: Otherwise, there is
a path P: START + a
that does not contain
idom(b). Concatenating
edge ab to path P, we
get a path from START to
b that does not contain
idom(b) which is a
contradiction.

START

ENDq

b c

d e a

g

ab is edge in CFG
idom(b) = q which dominates f

Postdominators
• Given a CFG G, node b is said to postdominate

node a if every path from a to END contains b.
– we write b pdom a to say that b postdominates a

• Postdominance is dominance in reverse CFG
obtained by reversing direction of all edges and
interchanging roles of START and END.

• Caveat: a dom b does not necessarily imply b
pdom a.
– See example: a dom b but b does not pdom a

Obvious properties
• Postdominance is a tree-structured relation
• Postdominator relation can be built using a

backward dataflow analysis.
• Postdominator tree can be built using Lengauer

and Tarjan algorithm on reverse CFG
• Immediate postdominator: ipdom
• Lemma: if a  b is an edge in CFG G, then

ipdom(a) postdominates b.

Control dependence

• Intuitive idea:
– node w is control-dependent on a node u if

node u determines whether w is executed
• Example:

e

S1 S2

m

START

END

START
…..
if e then S1 else S2
….
END

We would say S1 and S2 are control-dependent on e

Examples (contd.)

e

S1

START

END

START
…..
while e do S1;
….
END

We would say node S1 is control-dependent on e.
It is also intuitive to say node e is control-dependent on itself:

- execution of node e determines whether or not e is executed again.

Example (contd.)
• S1 and S3 are control-

dependent on f
• Are they control-dependent on

e?
• Decision at e does not fully

determine if S1 (or S3 is
executed) since there is a later
test that determines this

• So we will NOT say that S1
and S3 are control-dependent
on e
– Intuition: control-dependence

is about “last” decision point
• However, f is control-

dependent on e, and S1 and
S3 are transitively (iteratively)
control-dependent on e

e

S2

m

START

END

f

S1 S3

n

Example (contd.)
• Can a node be control-

dependent on more than
one node?
– yes, see example
– nested repeat-until loops

• n is control-dependent on
t1 and t2 (why?)

• In general, control-
dependence relation can
be quadratic in size of
program

t1

t2

n

Formal definition of control
dependence

• Formalizing these intuitions is quite tricky
• Starting around 1980, lots of proposed

definitions
• Commonly accepted definition due to

Ferrane, Ottenstein, Warren (1987)
• Uses idea of postdominance
• We will use a slightly modified definition

due to Bilardi and Pingali which is easier
to think about and work with

Control dependence definition
• First cut: given a CFG G, a node w is control-

dependent on an edge (uv) if
– w postdominates v
– ……. w does not postdominate u

• Intuitively,
– first condition: if control flows from u to v it is

guaranteed that w will be executed
– second condition: but from u we can reach END

without encountering w
– so there is a decision being made at u that

determines whether w is executed

Control dependence definition
• Small caveat: what if w = u in

previous definition?
– See picture: is u control-

dependent on edge uv?
– Intuition says yes, but

definition on previous slides
says “u should not
postdominate u” and our
definition of postdominance is
reflexive

• Fix: given a CFG G, a node w
is control-dependent on an
edge (uv) if
– w postdominates v
– if w is not u, w does not

postdominate u

u

v

Strict postdominance
• A node w is said to strictly postdominate a node

u if
– w != u
– w postdominates u

• That is, strict postdominance is the irreflexive
version of the postdominance relation

• Control dependence: given a CFG G, a node w
is control-dependent on an edge (uv) if
– w postdominates v
– w does not strictly postdominate u

Example

START

a

b

c

d e

f

g

END

STARTa
fb
cd
ce
ab

a b c d e f g
x x x x

x x x
x

x
x

Computing control-dependence
relation

• Control dependence:
given a CFG G, a node w
is control-dependent on
an edge (uv) if
– w postdominates v
– w does not strictly

postdominate u

• Nodes control dependent
on edge (uv) are nodes
on path up the
postdominator tree from v
to ipdom(u), excluding
ipdom(u)
– We will write this as

[v,ipdom(u))
• half-open interval in tree

END

STARTg

f

d e c

a

STARTa
fb
cd
ce
ab

a b c d e f g
x x x x

x x x
x

x
x

b

Computing control-dependence
relation

• Compute the postdominator tree
• Overlay each edge uv on pdom tree and determine

nodes in interval [v,ipdom(u))
• Time and space complexity is O(EV).
• Faster solution: in practice, we do not want the full

relation, we only make queries
– cd(e): what are the nodes control-dependent on an edge e?
– conds(w): what are the edges that w is control-dependent on?
– cdequiv(w): what nodes have the same control-dependences as

node w?
• It is possible to implement a simple data structure that

takes O(E) time and space to build, and that answers
these queries in time proportional to output of query
(optimal) (Pingali and Bilardi 1997).

SSA form
• Static single assignment form

– Intermediate representation of program in which
every use of a variable is reached by exactly one
definition

– Most programs do not satisfy this condition
• (eg) see program on next slide: use of Z in node F is reached

by definitions in nodes A and C
– Requires inserting dummy assignments called Φ-

functions at merge points in the CFG to “merge”
multiple definitions

– Simple algorithm: insert Φ-functions for all variables at
all merge points in the CFG and rename each real
and dummy assignment of a variable uniquely

• (eg) see transformed example on next slide

SSA example
START

Z:= …

p1

Z:= …. ……

p3

p2

print(Z)

END

START

Z0:= …

p1

Z2:= …. Z3:= Φ(Z1,Z3)

p3

Z4:= Φ(Z2,Z3)
p2

print(Z4)

END

Z1 := Φ(Z4,Z0)

A

B

C
D

E

F

G

A

B
C

D

E
G

F

Minimal SSA form
• In previous example, dummy assignment Z3 is

not really needed since there is no actual
assignment to Z in nodes D and G of the original
program.

• Minimal SSA form
– SSA form of program that does not contain such

“unnecessary” dummy assignments
– See example on next slide

• Question: how do we construct minimal SSA
form directly?

Minimal-SSA form Example

Minimal SSA form

Minimal-SSA form Example

Computing Merge(v)
• If u ε Merge(w), w does not

strictly dominate u
– Proof: there is a path from

START to v that does not
contain w

• Conversely
– if w dominates u, u ε Merge(w)

• Idea:
– compute nodes on the

dominance frontier of w
• w does not strictly dominate u

but dominates some CFG
predecessor of u

– iterate

w

u

START

Dominance frontier

• Dominance frontier of node w
– Node u is in dominance frontier of node w if w

• dominates a CFG predecessor v of u, but
• does not strictly dominate u

• Dominance frontier = control dependence
in reverse graph

A
B
C
D
E
F
G

A B C D E F G

x
x

x
x

Running example:

x x

Iterated dominance frontier
• Irreflexive closure of dominance

frontier relation
• Related notion: iterated control

dependence in reverse graph
• Where to place Φ-functions for a

variable Z
– Let Assignments = {START} U

{nodes with assignments to Z in
original CFG}

– Find set I = iterated dominance
frontier of nodes in Assignments

– Place Φ-functions in nodes of
set I

• For example
– Assignments = {START,A,C}
– DF(Assignments) = {E}
– DF(DF(Assignments)) = {B}
– DF(DF(DF(Assignments))) = {B}
– So I = {E,B}
– This is where we place Φ-

functions, which is correct

Why is SSA form useful?
• For many dataflow problems, SSA form enables

“sparse” dataflow analysis that
– yields the same precision as bit-vector CFG-based

dataflow analysis
– but is asymptotically faster since it permits the

exploitation of sparsity
– Example: constant propagation (see following slides)

• SSA has two distinct features
– factored def-use chains
– renaming
– you do not have to perform renaming to get

advantage of SSA for many dataflow problems

Constant propagation

• Dataflow algorithm
described earlier will
determine that the last
use of y is constant

• Intuition: it discovers
that the false side of
the conditional is dead

Def-use chains algorithm

• Algorithm:
– Compute reaching definitions
– Add def-use chains to CFG
– Cell for each definition and

use, initialized to ⊥
– Propagate lattice values from

definitions to uses, using
confluence operator to merge
values from multiple definitions
that reach a given use

• Algorithm will not find all the
constants found by CFG
dataflow algorithm

SSA algorithm
• Cells for each def and use of SSA

edges initialized to ⊥
• Cell per edge and statement to mark

liveness
• Propagate liveness along CFG edges

to mark live edges
• Statement is live if any incoming

edge is live
• Propagate constants along SSA

edges from live statements
• At conditional, evaluate condition

using propagated values to mark
liveness on outgoing edges

• At function, merge values only
from live CFG edges using
confluence operator

• Will find all constants found by CFG
dataflow algorithm

φ

START

x := 1

y := x+2

..y..

y := 5

y>x

φ SSA edges

Computing SSA form
• Cytron et al algorithm

– compute DF relation (see slides on computing
control-dependence relation)

– find irreflexive transitive closure of DF relation for set
of assignments for each variable

• Computing full DF relation
– Cytron et al algorithm takes O(|V| +|DF|) time
– |DF| can be quadratic in size of CFG

• Faster algorithms
– O(|V|+|E|) time per variable: see Bilardi and Pingali

Dependences

• We have seen control-dependences.
• What other kind of dependences are there

in programs?
– Data dependences: dependences that arise

from reads and writes to memory locations
• Think of these as constraints on reordering

of statements

Data dependences
• Flow-dependence (read-after-write): S1S2

– Execution of S2 may follow execution of S1 in program
order

– S1 may write to a memory location that may be read by
S2

– Example:
…..

x := 3
…x..
…….

flow-dependence

while e do
…x…
x: = …
……

flow-dependence

This is called a loop-carried dependence

Anti-dependences
• Anti-dependence (write-after-read): S1S2

– Execution of S2 may follow execution of S1 in
program order

– S1 may read from a memory location that may be
(over)written by S2

– Example:
x := …
..x….
x:= … anti-dependence

Output-dependence

• Output-dependence (write-after-write):
S1S2
– Execution of S2 may follow execution of S1 in

program order
– S1 and S2 may both write to same memory

location

Summary of dependences

• Dependence
– Data-dependence: relation between nodes

• Flow- or read-after-write (RAW)
• Anti- or write-after-read (WAR)
• Output- or write-after-write (WAW)

– Control-dependence: relation between nodes
and edges

	Dominators, �control-dependence �and SSA form
	Organization
	Control-flow graphs
	Dominators
	Example
	Computing dominance relation
	Properties of dominance
	Example of proof
	Dominator tree example
	Computing dominator tree
	Building dominator tree directly
	Immediate dominators
	Useful lemma
	Postdominators
	Obvious properties
	Control dependence
	Examples (contd.)
	Example (contd.)
	Example (contd.)
	Formal definition of control dependence
	Control dependence definition
	Control dependence definition
	Strict postdominance
	Example
	Computing control-dependence relation
	Computing control-dependence relation
	SSA form
	SSA example
	Minimal SSA form
	Minimal-SSA form Example
	Minimal SSA form
	Minimal-SSA form Example
	Computing Merge(v)
	Dominance frontier
	Iterated dominance frontier
	Why is SSA form useful?
	Constant propagation
	Def-use chains algorithm
	SSA algorithm
	Computing SSA form
	Dependences
	Data dependences
	Anti-dependences
	Output-dependence
	Summary of dependences

