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Lecture 5 
Partial Redundancy Elimination 

I.  Forms of redundancy 
•  global common subexpression elimination 
•  loop invariant code motion 
•  partial redundancy   

II.  Lazy Code Motion Algorithm 
•  Mathematical concept: a cut set 
•  Basic technique (anticipation) 
•  3 more passes to refine algorithm 

Reading: Chapter 9.5 
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Overview 

•  Eliminates many forms of redundancy in one fell swoop 

•  Originally formulated as 1 bi-directional analysis 

•  Lazy code motion algorithm 
–  formulated as 4 separate uni-directional passes 

•  backward, forward, forward, backward 
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I. Common Subexpression Elimination 

•  A common expression may have different values on different paths! 

•  On every path reaching p,  
–  expression b+c has been computed  
–  b, c not overwritten after the expression 
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Build up intuition about redundancy elimination with examples of familiar concepts 

d = b + c 

a = b + c 

b = 7 

d = b + c 

a = b + c 

b = 7 
f = b + c 

d = b + c 

a = b + c 
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Loop Invariant Code Motion 

•  Given an expression (b+c) inside a loop,  
–  does the value of b+c change inside the loop?  
–  is the code executed at least once? 
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a = t     

t = b + c 

a = b + c a = b + c 

b = read() a = b + c 
exit 
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Partial Redundancy 

•  Can we place calculations of b+c  
such that no path re-executes the same expression 

•  Partial Redundancy Elimination (PRE) 
–  subsumes:  

•  global common subexpression (full redundancy) 
•  loop invariant code motion (partial redundancy for loops) 
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Unifying theory: More powerful, elegant  but less direct. 

d = b + c 

a = b + c 
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II. Preparing the Flow Graph 
•  Key observation 

•  Can replace a bi-directional (!) data flow  
with several unidirectional data flows  much easier 

•  Better result as well! 

•  Definition: Critical edges 
•  source basic block has multiple successors 
•  destination basic block has multiple predecessors 

•  Modify the flow graph: (treat every statement as a basic block) 
•  To keep algorithm simple: restrict placement of instructions to the 

beginning of a basic block  
•  Add a basic block for every edge that leads to a basic block with 

multiple predecessors (not just on critical edges) 
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d = b + c 

a = b + c 

d = b + c 

a = b + c 
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Full Redundancy: A Cut Set in a Graph 

•  Full redundancy at p: expression a+b redundant on all paths 
–  a cut set: nodes that separate entry from p 
–  a cut set contains calculation of a+b 
–  a, b, not redefined 
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Key mathematical concept 
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Partial Redundancy: Completing a Cut Set 

•  Partial redundancy at p: redundant on some but not all paths 
•  Add operations to create a cut set containing a+b 
•  Note: Moving operations up can eliminate redundancy 

•  Constraint on placement: no wasted operation 
•  a+b is “anticipated” at B if its value computed at B 

will be used along ALL subsequent paths 
•  a, b not redefined, no branches that lead to exit with out use 

•  Range where a+b is anticipated  Choice 
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Pass 1: Anticipated Expressions 

•  Backward pass: Anticipated expressions 
Anticipated[b].in: Set of expressions anticipated at the entry of b 

•  An expression is anticipated if its value computed at point p  
will be used along ALL subsequent paths 

•  First approximation: 
•  place operations at the frontier of anticipation 

(boundary between not anticipated and anticipated) 
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This pass does most of the heavy lifting in eliminating redundancy 

Anticipated Expressions 

Domain Sets of expressions 

Direction backward 

Transfer Function fb(x) = EUseb ∪ (x -EKillb) 
 EUse: used exp, EKill: exp killed 

 ∧ ∩ 

Boundary in[exit] = ∅ 

Initialization in[b] = {all expressions} 
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Examples (1) 
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See the algorithm in action 

x = a + b 

z = a + b 

y = a + b 

x = a + b r = a + b a = 10 
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Examples (2) 

•  Cannot eliminate all redundancy 
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z = a + b 

x = a + b 
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Examples (3) 
Do you know how the algorithm works without simulating it?  
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Pass 2: Place As Early As Possible 

•  First approximation: frontier between “not anticipated” & “anticipated” 
•  Complication: Anticipation may oscillate 

•  An anticipation frontier may cover a subsequent frontier. 
•  Once an expression has been anticipated,  

   it is “available” to subsequent frontiers  
    no need to re-evaluate. 

•  e will be available at p if  
e has been “anticipated but not subsequently killed” on all paths reaching p 

M. Lam CS243: Partial Redundancy Elimination 

There is still some redundancy left! 

a = 1      

x = a+b  

y = a+b  



Carnegie Mellon 

Available Expressions 

•  e will be available at p if  
e has been “anticipated but not subsequently killed” on all paths 
reaching p 
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Available Expressions 

Domain Sets of expressions 

Direction forward 

Transfer Function fb(x) = (Anticipated[b].in ∪ x) - EKillb 

 ∧ ∩ 
Boundary out[entry] = ∅ 

Initialization out[b] = {all expressions} 
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Early Placement 

•  earliest(b) 
–  set of expressions added to block b under early placement 

•  Place expression at the  
earliest point anticipated and not already available 
–  earliest(b) = anticipated[b].in - available[b].in 

•  Algorithm 
–  For all basic block b,  

if x+y ∈ earliest[b] 
 at beginning of b:  
       create a new variable t 

      t = x+y, 
replace every original x+y by t 
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Pass 3: Lazy Code Motion 

An expression e is postponable at a program point p if 
•  all paths leading to p  

have seen the earliest placement of e but not a subsequent use 

M. Lam CS243: Partial Redundancy Elimination 16 

Let’s be lazy without introducing redundancy. 

Postponable Expressions 

Domain Sets of expressions 

Direction forward 

Transfer Function fb(x)	  =	  (earliest[b]	  ∪	  x)	  -‐EUseb	  
 ∧ ∩ 
Boundary out[entry] = ∅ 

Initialization out[b] = {all expressions} 

Delay without creating redundancy to reduce 
  register pressure 
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Latest: frontier at the end of “postponable” cut set 

•  latest[b] = (earliest[b] ∪ postponable.in[b]) ∩  

  (EUseb ∪ ¬(∩s ∈ succ[b](earliest[s] ∪ postponable.in[s]))) 
•  OK to place expression: earliest or postponable 
•  Need to place at b if either 

–  used in b, or 
–  not OK to place in one of its successors 

•  Works because of pre-processing step (an empty block was introduced 
to an edge if the destination has multiple predecessors)  

•  if b has a successor that cannot accept postponement,  
b has only one successor 

•  The following does not exist: 
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OK to place 

OK to place not OK to place 
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Pass 4: Cleaning Up 

•  Eliminate temporary variable assignments unused beyond current block  
•  Compute: Used.out[b]: sets of used (live) expressions at exit of b. 
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Finally… this is easy, it is like liveness 

Used Expressions 

Domain Sets of expressions 

Direction backward 

Transfer Function fb(x) = (EUse[b] ∪ x) - latest[b] 

 ∧ ∪ 
Boundary in[exit] = ∅ 

Initialization in[b] = ∅ 

x = a + b 

not used afterwards 
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Code Transformation 

Original version:     For each basic block b,  
 if x+y ∈ earliest[b] 
 at beginning of b:  
       create a new variable t 

              t = x+y, 
 replace every original x+y by t 

New version:     For each basic block b, 

                             if (x+y) ∈ (latest[b] ∩ ¬ used.out[b]) { } 

                             else  
      if x+y ∈ latest[b] 
             at beginning of b:  
              create a new variable t 

                    t = x+y, 
     replace every original x+y by t                 
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4 Passes for Partial Redundancy Elimination 

•  Heavy lifting: Cannot introduce operations not executed originally 
–  Pass 1 (backward): Anticipation: range of code motion 
–  Placing operations at the frontier of anticipation gets most of the 

redundancy 
•  Squeezing the last drop of redundancy:  

An anticipation frontier may cover a subsequent frontier 
–  Pass 2 (forward): Availability 
–  Earliest: anticipated, but not yet available 

•  Push the cut set out -- as late as possible 
To minimize register lifetimes 
–  Pass 3 (forward): Postponability: move it down provided it does not 

create redundancy 
–  Latest: where it is used or the frontier of postponability 

•  Cleaning up 
–  Pass 4: Remove temporary assignment 
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Remarks 

•  Powerful algorithm  
–  Finds many forms of redundancy in one unified framework 

•  Illustrates the power of data flow 
–  Multiple data flow problems 
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