
Carnegie Mellon

Lecture 5
Partial Redundancy Elimination

I.  Forms of redundancy
•  global common subexpression elimination
•  loop invariant code motion
•  partial redundancy

II.  Lazy Code Motion Algorithm
•  Mathematical concept: a cut set
•  Basic technique (anticipation)
•  3 more passes to refine algorithm

Reading: Chapter 9.5

M. Lam CS243: Partial Redundancy Elimination 1

Carnegie Mellon

Overview

•  Eliminates many forms of redundancy in one fell swoop

•  Originally formulated as 1 bi-directional analysis

•  Lazy code motion algorithm
–  formulated as 4 separate uni-directional passes

•  backward, forward, forward, backward

M. Lam CS243: Partial Redundancy Elimination 2

Carnegie Mellon

I. Common Subexpression Elimination

•  A common expression may have different values on different paths!

•  On every path reaching p,
–  expression b+c has been computed
–  b, c not overwritten after the expression

M. Lam CS243: Partial Redundancy Elimination 3

Build up intuition about redundancy elimination with examples of familiar concepts

d = b + c

a = b + c

b = 7

d = b + c

a = b + c

b = 7
f = b + c

d = b + c

a = b + c

Carnegie Mellon

Loop Invariant Code Motion

•  Given an expression (b+c) inside a loop,
–  does the value of b+c change inside the loop?
–  is the code executed at least once?

M. Lam CS243: Partial Redundancy Elimination 4

a = t

t = b + c

a = b + c a = b + c

b = read() a = b + c
exit

Carnegie Mellon

Partial Redundancy

•  Can we place calculations of b+c
such that no path re-executes the same expression

•  Partial Redundancy Elimination (PRE)
–  subsumes:

•  global common subexpression (full redundancy)
•  loop invariant code motion (partial redundancy for loops)

M. Lam CS243: Partial Redundancy Elimination 5

Unifying theory: More powerful, elegant but less direct.

d = b + c

a = b + c

Carnegie Mellon

II. Preparing the Flow Graph
•  Key observation

•  Can replace a bi-directional (!) data flow
with several unidirectional data flows much easier

•  Better result as well!

•  Definition: Critical edges
•  source basic block has multiple successors
•  destination basic block has multiple predecessors

•  Modify the flow graph: (treat every statement as a basic block)
•  To keep algorithm simple: restrict placement of instructions to the

beginning of a basic block
•  Add a basic block for every edge that leads to a basic block with

multiple predecessors (not just on critical edges)

M. Lam CS243: Partial Redundancy Elimination 6

d = b + c

a = b + c

d = b + c

a = b + c

Carnegie Mellon

Full Redundancy: A Cut Set in a Graph

•  Full redundancy at p: expression a+b redundant on all paths
–  a cut set: nodes that separate entry from p
–  a cut set contains calculation of a+b
–  a, b, not redefined

M. Lam CS243: Partial Redundancy Elimination 7

Key mathematical concept

Carnegie Mellon

Partial Redundancy: Completing a Cut Set

•  Partial redundancy at p: redundant on some but not all paths
•  Add operations to create a cut set containing a+b
•  Note: Moving operations up can eliminate redundancy

•  Constraint on placement: no wasted operation
•  a+b is “anticipated” at B if its value computed at B

will be used along ALL subsequent paths
•  a, b not redefined, no branches that lead to exit with out use

•  Range where a+b is anticipated Choice

M. Lam CS243: Partial Redundancy Elimination 8

Carnegie Mellon

Pass 1: Anticipated Expressions

•  Backward pass: Anticipated expressions
Anticipated[b].in: Set of expressions anticipated at the entry of b

•  An expression is anticipated if its value computed at point p
will be used along ALL subsequent paths

•  First approximation:
•  place operations at the frontier of anticipation

(boundary between not anticipated and anticipated)

M. Lam CS243: Partial Redundancy Elimination 9

This pass does most of the heavy lifting in eliminating redundancy

Anticipated Expressions

Domain Sets of expressions

Direction backward

Transfer Function fb(x) = EUseb ∪ (x -EKillb)
 EUse: used exp, EKill: exp killed

 ∧ ∩

Boundary in[exit] = ∅

Initialization in[b] = {all expressions}

Carnegie Mellon

Examples (1)

M. Lam CS243: Partial Redundancy Elimination 10

See the algorithm in action

x = a + b

z = a + b

y = a + b

x = a + b r = a + b a = 10

Carnegie Mellon

Examples (2)

•  Cannot eliminate all redundancy

M. Lam CS243: Partial Redundancy Elimination 11

z = a + b

x = a + b

Carnegie Mellon

Examples (3)
Do you know how the algorithm works without simulating it?

M. Lam CS243: Partial Redundancy Elimination 12

Carnegie Mellon

Pass 2: Place As Early As Possible

•  First approximation: frontier between “not anticipated” & “anticipated”
•  Complication: Anticipation may oscillate

•  An anticipation frontier may cover a subsequent frontier.
•  Once an expression has been anticipated,

 it is “available” to subsequent frontiers
 no need to re-evaluate.

•  e will be available at p if
e has been “anticipated but not subsequently killed” on all paths reaching p

M. Lam CS243: Partial Redundancy Elimination

There is still some redundancy left!

a = 1

x = a+b

y = a+b

Carnegie Mellon

Available Expressions

•  e will be available at p if
e has been “anticipated but not subsequently killed” on all paths
reaching p

M. Lam CS243: Partial Redundancy Elimination 14

Available Expressions

Domain Sets of expressions

Direction forward

Transfer Function fb(x) = (Anticipated[b].in ∪ x) - EKillb

 ∧ ∩
Boundary out[entry] = ∅

Initialization out[b] = {all expressions}

Carnegie Mellon

Early Placement

•  earliest(b)
–  set of expressions added to block b under early placement

•  Place expression at the
earliest point anticipated and not already available
–  earliest(b) = anticipated[b].in - available[b].in

•  Algorithm
–  For all basic block b,

if x+y ∈ earliest[b]
 at beginning of b:
 create a new variable t

 t = x+y,
replace every original x+y by t

M. Lam CS243: Partial Redundancy Elimination 15

Carnegie Mellon

Pass 3: Lazy Code Motion

An expression e is postponable at a program point p if
•  all paths leading to p

have seen the earliest placement of e but not a subsequent use

M. Lam CS243: Partial Redundancy Elimination 16

Let’s be lazy without introducing redundancy.

Postponable Expressions

Domain Sets of expressions

Direction forward

Transfer Function fb(x)	 =	 (earliest[b]	 ∪	 x)	 -‐EUseb	
 ∧ ∩
Boundary out[entry] = ∅

Initialization out[b] = {all expressions}

Delay without creating redundancy to reduce
 register pressure

Carnegie Mellon

Latest: frontier at the end of “postponable” cut set

•  latest[b] = (earliest[b] ∪ postponable.in[b]) ∩

 (EUseb ∪ ¬(∩s ∈ succ[b](earliest[s] ∪ postponable.in[s])))
•  OK to place expression: earliest or postponable
•  Need to place at b if either

–  used in b, or
–  not OK to place in one of its successors

•  Works because of pre-processing step (an empty block was introduced
to an edge if the destination has multiple predecessors)

•  if b has a successor that cannot accept postponement,
b has only one successor

•  The following does not exist:

M. Lam CS243: Partial Redundancy Elimination

OK to place

OK to place not OK to place

Carnegie Mellon

Pass 4: Cleaning Up

•  Eliminate temporary variable assignments unused beyond current block
•  Compute: Used.out[b]: sets of used (live) expressions at exit of b.

M. Lam CS243: Partial Redundancy Elimination 18

Finally… this is easy, it is like liveness

Used Expressions

Domain Sets of expressions

Direction backward

Transfer Function fb(x) = (EUse[b] ∪ x) - latest[b]

 ∧ ∪
Boundary in[exit] = ∅

Initialization in[b] = ∅

x = a + b

not used afterwards

Carnegie Mellon

Code Transformation

Original version: For each basic block b,
 if x+y ∈ earliest[b]
 at beginning of b:
 create a new variable t

 t = x+y,
 replace every original x+y by t

New version: For each basic block b,

 if (x+y) ∈ (latest[b] ∩ ¬ used.out[b]) { }

 else
 if x+y ∈ latest[b]
 at beginning of b:
 create a new variable t

 t = x+y,
 replace every original x+y by t

M. Lam CS243: Partial Redundancy Elimination 19

Carnegie Mellon

4 Passes for Partial Redundancy Elimination

•  Heavy lifting: Cannot introduce operations not executed originally
–  Pass 1 (backward): Anticipation: range of code motion
–  Placing operations at the frontier of anticipation gets most of the

redundancy
•  Squeezing the last drop of redundancy:

An anticipation frontier may cover a subsequent frontier
–  Pass 2 (forward): Availability
–  Earliest: anticipated, but not yet available

•  Push the cut set out -- as late as possible
To minimize register lifetimes
–  Pass 3 (forward): Postponability: move it down provided it does not

create redundancy
–  Latest: where it is used or the frontier of postponability

•  Cleaning up
–  Pass 4: Remove temporary assignment

M. Lam CS243: Partial Redundancy Elimination 20

Carnegie Mellon

Remarks

•  Powerful algorithm
–  Finds many forms of redundancy in one unified framework

•  Illustrates the power of data flow
–  Multiple data flow problems

M. Lam CS243: Partial Redundancy Elimination 21

