
Access Normalization: Loop Restructuring for NUMA Computers

Wei Li
Keshav Pingali

Department of Computer Science
Cornell University

Ithaca, New York 14853

Abstract: In scalable parallel machines, processors can
make local memory accesses much faster than they can make
remote memory accesses. In addition, when a number of
remote accesses must be made, it is usually more efficient
to use block transfers of data rather than to use many small
messages. To run well on such machines, software must
exploit these features. We believe it is too onerous for a
programmer to do this by hand, so we have been exploring
the use of restructuring compiler technology for this purpose.
In this paper, we start with a language like HPF-FORTRAN
with user-specified data distributionand develop a systematic
loop transformation strategy called access normalization that
restructures loop nests to exploit locality and block transfers.
We demonstrate the power of our techniques using routines
from the BLAS (Basic Linear Algebra Subprograms) library.
An important feature of our approach is that we model loop
transformations using invertible matrices and integer lattice
theory.

1 Introduction

Scalable parallel machines are usually organized as networks
of processor-memory pairs in which a processor can access
local data much faster than it can access remote data. For
example, in the BBN Butterfly, accesses to local memory
take 0.6 microseconds while accesses to remote memory take
about 6.6 microseconds [8]. Distributed memory machines
like the Intel iPSC/i860 have even greater non-uniformity in
memory access times because access to remote data must be
orchestrated through the exchange of messages. If non-local

1This research was supported by an NSF Presidential Young Investigator
award CCR-8958543, NSF grant CCR-9008526, ONR grant N00014-93-1-
0103, and by grants from the Hewlett-Packard Corporation and the Cornell
Theory Center.

1

accesses are on the critical path through a program, making
these accesses local through proper data management will
speed up program execution.

A second feature of such architectures is that block trans-
fer of data between processors is more efficient than sending
this data using many small messages. Data transfer between
processors can be viewed as a pipeline with a large setup
time compared to the time per stage. For example, on the
Intel iPSC/i860, it takes 70 microseconds to start up commu-
nication, but it takes only 1 microsecond to transfer a double
precision floating point number between nearest neighbors
once the communication has been setup. Therefore, when a
number of data items must be sent from one processor to an-
other, it is preferable to use a single long message to amortize
startup time.

Contention in the network has the effect of increasing the
expected latency of non-local references; therefore, data man-
agement to avoid non-local references has the added benefit
of reducing contention, thereby improving performance. In-
terestingly, some analytical studies show that long messages
can increase the latency of non-local accesses [1]. This is
an argument against long messages, but on current machines,
this effect seems to be of secondary importance compared
to the benefits of amortizing start-up time, as we show in
Section 8.

For the software writer, the implication of these features
of non-uniform memory access (NUMA) 2 machines is that
programs must not only exploit parallelism but must also
manage data to eliminate non-local references wherever pos-
sible; where non-local references are necessary, they should
be grouped together for block transfers. We believe that it is
too onerous for the programmer to accomplish this by hand,
so we have been exploring the use of restructuring compilers
for this purpose. Existing compiler technology is oriented
mostly towards uniform memory access machines in which
the only concern is exploitation of parallelism. Parallel code
is generated by distributing iterations of the outermost loop
in a loop nest among the processors, with synchronization

2We use this term in a broad sense to include distributed memory
machines.

1

instructions being inserted to take care of dependences car-
ried by this loop. To reduce synchronization, transformations
like loop interchange are carried out to move parallel loops
outermost wherever possible [3, 7, 26, 37]. This approach
does not perform any data management, so it is not suitable
for generating good code on NUMA architectures.

An alternative approach, implemented by the Id Nou-
veau [32] and FORTRAN-D systems [14], among others,
is to give the programmer control over how data structures
are distributed across the processors. The compiler uses this
data decomposition information to determine how to assign
work to processors. One simple way to do this is to use the
so-called ownership rule — a processor executes an assign-
ment statement if the left hand side variable of the statement
is mapped to the local memory of that processor. A pro-
cessor executes a loop iteration if it has any work to do in
the body for that iteration. Although this strategy takes data
mappings into account, it can generate inefficient code, in
which all processors execute all iterations ‘looking for work
to do’ if the structure of the loop nest does not match the data
distribution [39]. In many of these cases, loop restructuring
can improve code quality, but no general approach to loop
transformation has been available in this context [14].

In this paper, we present a systematic approach to loop
restructuring for parallel machines with a memory hierarchy.
As in the ownership approach, our starting point is a lan-
guage like HPF-FORTRAN with user-specified data decom-
position. However, rather than use this information directly
to generate code, we use the data distribution information to
drive access normalization, which transforms loop nests so
that code can be generated by distributing iterations of the
outermost loop among the processors without compromising
locality. The structure of inner loops is chosen so that data
can be transferred using block transfers wherever possible.

Our work makes two contributions.

� We describe a new loop transformation strategy called
access normalization that is useful for compiling pro-
grams for parallel machines with non-uniform memory
access. It has applications in other areas such as the
generation of vector code.

� Our loop transformations are expressed in the frame-
work of invertible matrices and integer lattice theory,
which is an important generalization of existing frame-
works that use unimodular matrices.

The rest of the paper is organized as follows. In Section
2, we discuss a simple example that gives an overview of our
compiling strategy. We also introduce the data access matrix,
which plays a key role in the development. In Section 3, we
discuss the framework of invertible matrices as a foundation
for loop transformations. For some programs, the data ac-
cess matrix is invertible and can be used directly to transform

the loop nest, as we show in Section 4. In general, how-
ever, this matrix may not be invertible, and the techniques
of Section 5 must be used to produce an invertible matrix
for the transformation. The final problem is guaranteeing
that the transformation respects program dependences; this
is done in Section 6. In Section 7, we discuss how code can
be generated after loops have been restructured according to
our methods. We present experimental results in Section 8
that demonstrate that our methods work well on programs
of practical interest such as routines from the BLAS (Basic
Linear Algebra Subroutines) library [10]. Finally, we discuss
related work in Section 9.

2 Overview of NUMA Compilation

In this section, we give an overview of our compilation strat-
egy for NUMA architectures. We also introduce a key data
structure called the data access matrix.

2.1 NUMA Compilation

Our compiler accepts programs written in FORTRAN-77 ex-
tended with data distribution declarations that specify how
arrays are to be distributed across the local memories of the
machine. We support most of the data distributions com-
monly used by programmers of NUMA machines, such as
wrapped and blocked column and row distributions. In a
wrapped column distribution, the columns of an array are
distributed in a round-robin manner to the processors: if P is
the number of processors, then processor 0 gets columns 0, P,
2P and so on, while processor 1 gets columns 1, P+1, 2P+1,
etc. Most of the examples in this paper use a wrapped column
distribution. Blocked column distribution is similar, except
that a processor gets a contiguous set of columns. We also
support so-called 2-D blocks in which rectangular subblocks
of the array are distributed to the processors [14], but for lack
of space, we will not consider them any further in this paper.

Data distributions can be specified precisely using a distri-
bution function.

Definition 2.1 A distribution function is a function from ar-
ray indices to integers between 0 and P-1, where P is the
number of processors in the machine. An array dimension
is a distribution dimension, if that dimension is used in the
distribution function for the array.

For example, the distribution function for the wrapped col-
umn distribution of a two dimensional array is W 2�i� j� �
j mod P , and the second dimension of the array is a distri-
bution dimension.

To understand the need for loop restructuring, consider the
program in Figure 1(a), which is a simplified version of the

2

for i = 0, N1 � 1
for j = i, i+b-1

for k = 0, N2 � 1
B[i, j-i] = B[i, j-i] + A[i, j+k]

for i = p, N1 � 1, step P
for j = i, i+b-1

for k = 0, N2 � 1
B[i, j-i] = B[i, j-i] + A[i, j+k]

(a) (b)

for u = 0, b-1
for v = u, u� N1 �N2 � 2

for w = 0, N1 � 1
B[w, u] = B[w, u] + A[w, v]

for u = p, b-1, step P
for v = u, u� N1 �N2 � 2

read A[�,v];
for w = 0, N1 � 1

B[w, u] = B[w, u] + A[w, v]

(c) (d)

Figure 1: Transformation and Code Generation for a Simple Example

SYR2K code discussed in Section 8. Assume that both A
and B have a wrapped column distribution. Distributing it-
erations of the outer loop among the processors (Figure 1(b))
results in processor p executing iterations p, p + P, etc. Con-
sider accesses to elements of array B. Each iteration of the
outer loop makes N2�b � b�P � non-local accesses, and the
total number of non-local accesses is N1N2b�1� 1�P �.

The ownership rule uses data decomposition information
to generate code. A processor is involved in the execution of
an iteration �i� j� k� if it owns any of the elements referenced
in the body of the loop in that iteration. Therefore, processor
p has work to do in iteration �i� j� k� if �j � i� mod P � p
(it must update an element ofB) or if �j�k�mod P � p (it
must send an element ofA to whichever processor is updating
B in that iteration). This is accomplished by placing these
conditional tests in front of the statement, and having all
the processors execute all iterations ‘looking for work to
do’ [32, 9]. In simple programs, these conditional tests can
be optimized away, but in general they must be executed at
runtime, which is inefficient. Moreover, in our program, the
code cannot make use of block transfers of elements of A
since the elements ofA referenced during one iteration of the
j loop are mapped to different processors.

Now, consider the program of Figure 1(c). This program
computes the same function as Figure 1(a), but if we dis-
tribute the outermost loop among the processors as before
(Figure 1(d)), there are no non-local accesses to B. There
are non-local accesses toA but these can be performed using
block transfers since the subscript in the distribution dimen-
sion of A is invariant in the innermost loop. The loop trans-
formations described in this paper transform the program of
Figure 1(a) to that of Figure 1(c). Given the transformed pro-
gram, the code generation techniques described in Section 7
generate the parallel code shown in Figure 1(d).

2.2 Data Access Matrix

Since the transformations are driven by the data access pat-
terns, it is convenient to define a data structure to represent
array subscripts in a loop nest in a convenient way. This data
structure is called the data access matrix. It is used by our
loop restructuring system as the starting point for determin-
ing what transformations to apply to the loop nest. For the
loop nest in Figure 1(a), the data access matrix is�

� �1 1 0
0 1 1
1 0 0

�
A �

This matrix represents the subscripts in the sense that the
product of the data access matrix with the column vector
�i� j� k�T yields a column vector in which each element is a
subscript from the program. For our example, this product
is the column vector �j � i� j � k� i�T which corresponds to
the three subscripts of the program. Constants in a subscript
are omitted from the corresponding entry in the data access
matrix.

The order in which these subscripts are represented in the
data access matrix is important and corresponds to an esti-
mate of their relative importance for achieving good perfor-
mance. A reasonable heuristic is to give highest importance
to subscripts in the distributiondimension(s) of arrays; in our
example, the subscripts j�i and j�k dominate the subscript
i since they occur in the distribution dimensions of arrays B
and A. Notice that j � i occurs twice, but j � k occurs only
once. Therefore, we let j� i dominate j� k. This yields the
data access matrix shown above.

The technical development in the rest of the paper is in-
dependent of how subscripts were ordered to obtain the data
access matrix. In addition, a subscript that is ‘overly com-
plex’ for any reason (such as a non-linear function of loop
indices) may be omitted from the data access matrix without

3

affecting correctness.

3 Loop Transformations and Invertible
Matrices

In this section, we show how invertible matrices can be
used to model the loop transformations of interest in the
NUMA context. Consider a simple loop nest

for i = 1, 3
for j = 1, 3

A[2i+4j, i+5j] = j;

It is to be restructured to the form

for u = 6, 18 step 2
for v = u/2 + max(3d(u-6)/4e, 3),

u/2 + min(3b(u-2)/4c, 9)
step 3

A[u, v] = (2v-u)/6;

To determine how to perform the transformation, consider
the iterationspaces of the two loops, shown in Figure 2. Since
the bodies of both loops have the same statement, we must
ensure that the work done in any iteration of the original loop
nest is done in exactly one iteration of the new loop nest.
Therefore, we must construct a one-to-one mapping from the
old iteration space to the new one. Moreover, every iteration
of the new loop nest must correspond to some point in the
old iteration space, so the mapping must be an onto mapping.
In other words, we must construct an invertible mapping
between the two iteration spaces. One such mapping can be
described concisely by the following set of equations, written
in matrix form:

�
2 4
1 5

��
i
j

�
�

�
u
v

�
�

This mapping can be represented using an invertible inte-
ger matrix because it is a linear, integral, invertible mapping
between the two iteration spaces.

The use of invertible matrices to model loop transforma-
tions is a generalization of the unimodular approach which
can be used to model loop interchange, skewing and rever-
sal [7, 37]. Invertible matrices include unimodular matrices
as a special case, and permit us to model loop scaling as well.
An example of this transformation, which replaces a loop
index with an integer multiple of the loop index, is shown
below.

for i = 1, 3
A[2*i] = i

for u = 2,6,2
A[u] = u/2

(a) original code (b) loop scaling

Loop scaling may introduce integer divisions, as is shown
in the example, but these operations can be strength reduced
and replaced with additions. Like skewing or reversal, loop
scaling is not particularly interesting in isolation, but com-
bined with the other transformations, it lets us do wholesale
loop restructuring for NUMA architectures.

The algorithm for generating a restructured program start-
ing from a loop nest and an invertible mapping is given in
the technical report[24]. This algorithm is non-trivial since
the new loop nest must traverse points in the new iteration
space in lexicographic order, and the starting point, ending
point and step size of a loop in the restructured loop nest can
depend on only the loop indices of outer loops (for instance,
these values for the outermost loop must be constant). It is
not immediately obvious that this can be done for any in-
vertible matrix T . Fortunately, the iteration space of a loop
nest forms what is called an integer lattice; by applying some
results from integer lattice theory, we can easily construct the
required loop nest.

Since invertible matrices are closed under matrix product,
it follows that any sequence of these loop transformations
(permutation, reversal, skewing and scaling) can also be mod-
eled as an invertible matrix. This means that the problem of
performing the right sequence of loop transformations now
reduces to that of finding an appropriate invertible matrix that
models the desired sequence of transformations. We show
how to do this next.

4 Invertible Data Access Matrices

In this section, we consider the simple case where the data
access matrix is invertible. Consider the program of Figure 1
again. The data access matrix for the program is X.

X �

�
� �1 1 0

0 1 1
1 0 0

�
A

It is easy to verify that X is invertible; the result of trans-
forming the source program using X as the transformation
matrix was shown in Figure 1(c).

Consider what happens when code is generated for the
new loop nest by distributing iterations of the outermost loop
among the processors in a round-robinmanner. Since the out-
ermost loop index is also the the subscript of the distribution

4

� � �

�

�

�

i

j

�i� j� � �u� v�

�1� 1� � �6� 6�

�1� 2� � �10� 11�

�1� 3� � �14� 16�

�2� 1� � �8� 7�

�2� 2� � �12� 12�

�2� 3� � �16� 17�

�3� 1� � �10� 8�

�3� 2� � �14� 13�

�3� 3� � �18� 18�
� � � � �� ������ ���	������

�
�
�
�
��
��
��
��
��
�	
��
��

��
v

u

Figure 2: Mapping between Iteration Spaces

dimension of arrayB, all references toB will be purely local.
We cannot accomplish this for both A and B simultaneously
since the subscripts in the distribution dimensions of A and
B are different; therefore, there will be non-local accesses to
A. However, since the subscript in the distributiondimension
of the reference to A was placed second in the data access
matrix, this subscript in the new loop nest corresponds to the
second loop index and we can perform block transfers for
accesses to A, as was shown in Figure 1(d).

For future reference, we define the following notion.

Definition 4.1 Given an array reference, an array subscript
is normal with respect to loop i, if it is equal to the loop index
variable i.

In this example, the data access matrix yielded the trans-
formation without any complications. This is not the case in
general. First, the data access matrix may not be invertible.
We handle this case in Section 5. Second, the transformation
suggested by the data access matrix may violate one or more
data dependences. We take care of this problem in Section 6.
In both cases, the goal is to produce an invertible matrix that
retains as many rows of the data access matrix as possible.

5 Non-invertible Data Access Matrices

In general, the data access matrix is not invertible, so it cannot
be used directly to transform the loop nest. The techniques in
this section convert such a matrix into an invertible matrix that
retains as many rows (subscripts) of the data access matrix
as possible. This is done in two stages — first, we eliminate
linearly dependent rows from the data access matrix using

Algorithm BasisMatrix, and second, we pad this reduced
matrix with additional rows using Algorithm Padding, to get
a matrix that is invertible. The details of these algorithms can
be found in the associated technical report; here we outline
what these algorithms do.

5.1 Basis Matrix

It is easy to design an inefficient algorithm that takes a data
access matrix and selects as many linearly independent rows
as possible: we simply go down the rows of the matrix in
sequence, discarding a row if it is linearly dependent on the
rows before it, and keeping it otherwise. It is important
to traverse the rows in sequence since it ensures that less
important rows are discarded in favor of more important
ones. For future reference, let us call the resulting matrix the
basis matrix corresponding to the data access matrix.

Definition 5.1 The basis matrix of a data access matrix A is
the first row basis of A.

The algorithm described informally above is simple, but
it is expensive to keep checking rows for independence. A
more efficient algorithm is obtained by using a variation of
computing the Hermite normal form[23]. A detailed under-
standing of this algorithm is not important for reading the
rest of the paper, so we give an informal description of what
it does. Given a data access matrix, Algorithm BasisMatrix
in Figure 3 returns a permutation matrix P , and the rank d of
the data access matrix (the number of linearly independent
rows). The first d rows of the permutation matrix P tell us
which rows of the data access matrix are in the basis matrix.
The following example should make this clear.

5

Input: An m � n data access matrix A.
Output: An m �m permutation matrix and the rank of A.

Algorithm BasisMatrix(A) : (PermMatrix, Rank)

begin
P � I, where I is the m �m identity matrix.
done = false;
i = 1;
While not done do

/* Consider the submatrix A[i:m, i:n] */
Search for the first j � i such that A[j, i:n] �� �0;
If no such j exists Then

done = true;
Else

If j �� i then
Exchange A[i, 1:n] with A[j, 1:n]
Exchange P[i, 1:m] with P[j, 1:m]

End-If
Apply the elementary column operations to make

A[i, i] nonzero and A[i, i+1:n] zero.
i = i + 1;

End-If
End-While
return (P, i-1);

end

Figure 3: Computing a Basis Matrix

Consider the data access matrix X �
�

1 1 �1 0
2 2 �2 0
0 0 1 �1

�
.

This data access matrix can arise from the followingprogram

for i = ...
for j = ...

for k = ...
for l = ...

R[i+j-k, 2i+2j-2k, k-l] = ...

Algorithm BasisMatrix(X) returns the permutation matrix
P =

�
1 0 0
0 0 1
0 1 0

�
and rank d � 2. The first two rows of the

permutation matrix tell us which rows of A form a linearly
independent basis: the position of the non-zero entry in these
rows of P indicates which row of A is in the basis. In
this example, the first and third rows form the basis matrix
B �

�
1 1 �1 0
0 0 1 �1

�
. The significance of this in terms

of transformations is that only the first and third subscripts
can be normalized. This is reasonable because the subscript
2i� 2j � 2k is just a multiple of the subscript i � j � k.

5.2 Padding Matrix

To extend the basis matrix to an invertible matrix, we need
to add additional mutually independent rows which are also
independent of the rows of the basis matrix. There is some
flexibility in the choice of the padding matrix, and we will
use this flexibility to our advantage in the next section when
we discuss dependences.

Input: An m � n basis matrix B.
Output: An �n �m� � n padding matrix H.

Algorithm Padding(B) : PadMatrix

begin
H � I, where I is an n� n identity matrix.
For i = 1, m do

/* Consider the submatrix B[i:m, i:n] */
apply the elementary column operations to make

B[i, i] nonzero and B[i, i+1:n] zero.
If columns i and j have been exchanged Then

exchange rows i and j of H
End-If

End-For
return (H[m+1:n, 1:n]);

end

Figure 4: Computing a Padding Matrix

Algorithm Padding in Figure 4 constructs one possible
padding matrix as follows. It is well known that for a full
row rank matrix, there exist m columns that are linearly
independent. We simply need to pad these columns with �0
and the rest of the columns with columns from the �n�m��
�n�m� identity matrix I. For the above program, since the
first column and the third column are linearly independent,
the padding matrix is H �

�
0 1 0 0
0 0 0 1

�
. The mapping

between the old and new iteration spaces is

�
BB�

1 1 �1 0
0 0 1 �1
0 1 0 0
0 0 0 1

�
CCA
�
BB�

i
j
k
l

�
CCA �

�
BB�

u
v
w
z

�
CCA

In the transformed program shown below, the reference
becomes R[u, 2u, v], and second index is not normalized.

6

for u = ...
for v = ...

for w = ...
for z = ...

R[u, 2u, v]

6 Data Dependences

The results of Section 5 showed that a basis matrix can always
be padded to yield an integer, invertible matrix. However,
there is no guarantee that the transformation corresponding
to this final matrix is legal, because this transformation may
violate data dependences.

There are three kinds of data dependences between state-
ments. A data flow-dependence occurs when a value com-
puted in one statement is used in another statement. A data
anti-dependence occurs when a variable used in one state-
ment before being reassigned by another statement. A data
output-dependence occurs when a variable is computed be-
fore being recomputed by another statement. A data depen-
dence in the loop nest can be represented by distance vector
or direction vector. For example, the distance vector

�
0
0
1

�
tell us that the dependence is between successive iterations
of the innermost loop. A dependence vector has the property
that its leading non-zero is always positive; a legal trans-
formation must preserve this property for each dependence,
since the source of the dependence must be executed before
its destination. More information on data dependences and
techniques of dependence analysis can be found in [6].

To understand the legality of transformations, consider
A �

�
�1 1 0
0 1 �1

�
, a basis matrix, and DA �

�
0
0
1

�
, the

dependence matrix. Each column of the dependence matrix
represents the distance vector of a dependence in the loop
nest. In our example, there is just one dependence. If T
is an invertible matrix representing a loop transformation,
it is easily shown that TD is the dependence matrix of the
restructured loop nest; therefore, the leading non-zero ele-
ment in each column of TD must be positive. By looking
at the product ADA =

�
0
�1

�
, we can see at once that A

cannot be padded to give us a transformation that respects
data dependences. The intuition is that the first two rows of
A determine the two outermost loops of the transformed loop
nest. In the original program, the dependence was carried by
the innermost loop, but in the new program, the dependence
is ‘carried’ by the second loop. Unfortunately, the negative
value of the second dimension ofADA means that the source
of the dependence will be executed after the sink. Clearly,
there is nothing we can do in the inner loops that would rem-
edy this situation, so it is impossible to pad A to yield a legal

Input: An m � n basis matrix B
and a dependence matrix D.

Output: A legal basis Matrix.

Algorithm LegalBasis (B, D) : BasisMatrix

begin
Let Bi be the ith row of B

and di be the ith column of D.
For i = 1, m
fT = Bi D
If each element of f is non-negative then

D = D - dj, where f[j] � 0
Elseif each element of f is non-positive then
Bi = (-1) Bi;
D = D - dj, where f[j] � 0

Else
B = B - Bi;

End-If
End-For
return B;

end

Figure 5: Computing a Legal Basis Matrix

transformation.

To get around this problem, we proceed in two steps. We
start with the basis matrix and use Algorithm LegalBasis
to produce a new basis matrix that does not violate depen-
dences. Then, we pad this matrix using Algorithm LegalInvt
to yield the final transformation. In this paper, we discuss
only the case when dependences are represented by distances;
it is straight-forward to extend these results to dependence
directions[23].

6.1 Generating a Legal Basis

Algorithm LegalBasis , shown in Figure 5, takes a basis
matrix and checks each row against the dependences. For
example, consider the product of the first row and DA. This
gives us a row vector in which entries can be positive, zero or
negative. If an entry is positive, it means that the correspond-
ing dependence will be carried by the new outermost loop.
Therefore, the structure of the inner loops does not matter
as far as this dependence is concerned, and we may delete
it from the DA matrix for the rest of the algorithm. If the
entry is zero, then the dependence will not be carried by the
potential outermost loop, so we leave the dependence in the
DA matrix. However, if we have a negative entry, the depen-
dence is ‘carried’ by the potential outer loop, but the order of

7

Input: An m � n legal basis matrix B
and a dependence matrix D.

Output: An n� n legal invertible matrix T.

Algorithm LegalInvt(B, D) : Matrix

begin
/* Let Bi be row i of B, and di be column i of D */
For i = 1, m
fT = Bi D
D = D - dj, where f[j] � 0

End-For
r = m + 1;
While D is not empty do
ZT = the basis matrix of DT ;
find the first ek that is not orthogonal to D;
x = cZ�ZTZ��1ZT ek;

where c is a positive integer that makes x
an integer vector.

fT = xT D ; /* f[j] � 0 */
D = D - dj, where f[j] � 0
Br = xT ;
r = r + 1;

End-While

H = Padding(B);
return(append(B, H));

end

Figure 6: Computing a Legal Invertible Matrix

the iterations is wrong. Notice that if all of the entries of the
row vector are 0 or negative (intuitively, for all dependences,
the potential outer loop either does not carry the dependence
or the source of the dependence is executed after the sink),
we can simply reverse the direction of the loop. Problems
arise only if some entries are positive and others negative —
in that case, we cannot keep that row of the basis matrix, and
we delete it from the basis matrix. For the above example,
LegalBasis (A) generates the basis A1 �

�
�1 1 0
0 �1 1

�
.

6.2 Legal Padding Matrix

To pad a legal basis matrix, we need to satisfy two constraints.
First, any row added must be linearly independent of other
rows, so that the final matrix is invertible. Second, the row
must not violate dependence constraints. Once a new row
has been added during padding, all dependences carried by
the loop corresponding to this row may be dropped from
consideration when filling in the rest of the matrix. When

there are no further dependences to be satisfied, we can apply
Algorithm Padding of Section 5.2 to complete the generation
of a legal, invertible matrix.

As an example, consider the basis matrix B ��
�1 1 0

�
which is legal with respect to the dependence

matrix D �
�

0 0
1 0
0 1

�
. The first dependence is carried by

the new outermost loop represented by the first row of B,
and can be dropped from consideration for the rest of the
procedure. The inner product of the first row with the second
dependence is 0, meaning that this dependence is not carried
by the new outermost loop; therefore, it must be taken into
account when padding the matrix. To pad B, we need to
find a row whose inner product with the second dependence
vector is non-negative. In the geometric sense, the angle
between the two vectors must be less than or equal to 90
degrees. Thus, the general problem can be stated succinctly
as that of finding a vector that is linearly independent of the
existing row vectors in the basis matrix and within 90 degrees
of each dependence vector.

It is not immediately clear that such a vector exists; for-
tunately, Algorithm LegalInvt in Figure 6 gives a positive
answer by computing such a vector using a standard re-
sult about projections. This vector can be written as x �
cZ�ZTZ��1ZT ek for some positive scaling integer c that
makes all of the entries integers, where eTi � �0� 0� ��� 1� ���0�,
with the 1 in the ith position, and Z is a column basis from
D.

i

j

k

�� � ��

��� � ��

For our example, the remaining dependence to be satisfied
is e3. The new row vector for the padding isx � e3. Since the
dependence is carried by the loop corresponding to this new
row vector, we can drop the dependence from consideration
now. The dependence matrix is empty at this point. The
new legal basis matrix is B1 �

�
�1 1 0
0 0 1

�
. Then we can

use the Algorithm Padding to produce an invertible matrix.
The final matrix T �

�
�1 1 0

0 0 1
0 1 0

�
is a linear, invertible

matrix and the corresponding transformation satisfies all of
the dependences.

The correctness of Algorithm LegalInvt follows from the
following theorem.

8

Theorem 6.1 The invertible matrix returned by Algorithm
LegalInvt is consistent with program dependences.

Proof: Notice that the dependence vectors that need to be
satisfied are orthogonal to the row vectors of the basis matrix.
If we can find a vector from the subspace spanned by the de-
pendence vectors, then this vector must be orthogonal to the
basis rows, therefore linearly independent of the existing row
vectors. The invariants of the while-loop are that AD � 0;
the rows of A are linear independent; and for every column
di of D, eTk di � 0. Let di � Zy for some y since Z is a
basis of the columns of D. Since x = cZ�ZTZ��1ZT ek and
AZ � 0, Ax � 0. Since eTk di � 0, we have that xTdi � 0.
After each step, the rank of the column space of D decreases
at least by one, so the size of D is decreasing and the algo-
rithm will terminate. �

As a final remark, we note that the choice of the padding
matrix in this paper is quite arbitrary. For a machine in which
processors have a first-level cache, there is the obvious possi-
bility of selecting the padding to improve cache performance
by incorporating results on blocking of nested loops[12, 33].
We leave this for future work.

6.3 Direction Vectors

Direction vectors provide a conservative approximation when
the distance of dependences can not be detected at compile
time. They can be represented by signs “�”, “�” ,”=” and
“�”. “�” means that the distance is positive; “�” negative,
and “�” unknown. A direction vector can be (� � =) or (=
� �), as long as the leading nonzero is positive.

The algorithms in this paper can be extended to handle
direction vectors. For lack of space, details can be found in
the associated technical report [23].

7 NUMA Code Generation

Once the program has been transformed by access normal-
ization, we must generate the code that will run on each pro-
cessor. We generate the same code for each processor, but
this code is parameterized by the processor number so that
each processor does only the work for which it is responsible.

The general technique for partitioning the iteration space
of the loop nest among the processors is called tiling. Here,
we will restrict ourselves to the special case of wrapped and
blocked distributions introduced in Section 2. For these dis-
tributions, it is sufficient to distribute the iterations of the
outermost loop of the transformed loop nest among the pro-
cessors. Consider the first row of the transformation matrix:
one of the following cases must be true.

� The row was present in the data access matrix, so it
corresponds to a subscript in the original program, and
this subscript is in a distribution dimension.

� The row was present in the data access matrix, but it is
not a distribution dimension.

� The row was introduced by padding.

In cases (ii) and (iii), access normalization cannot exploit
locality, and we generate code simply by assigning iterations
to processors in a round-robin manner. This code can still
exploit block transfers. For case (i), an iteration should be
executed by a processor if the corresponding data element is
mapped to its local memory.

First, consider the case when the step size is 1. For a
wrapped distribution, processor p owns the data segments p,
p � P , p � 2P , .. etc, where a data segment is a column in
the wrapped column distributionor a row in the wrapped row
distribution. Since the iterations that access the data segments
on processor p are assigned to processor p, it is easy to verify
that the iterations executed by processor p are the ones shown
in Figure 7(b). The lower bound d l�pP e � P � p is the first
iteration between l and u that belongs to process p.

When the step size is not 1 (Figure 7)(d), we must solve
a linear congruence for the wrapped distribution. Assume
that the step size is positive, since the solution can be easily
extended to handle the case when the step size is negative.
The iterations can be represented by i � l � n � s where n
is a parameter with integer values. The iterations that belong
to process p are these satisfying the equation l � n � s � p
�mod P �. Using results from number theory, we know that
the when the g.c.d of s and P (written as �s� P �) divides
�l� p�, there is an infinite number of solutions in the form of
n � n0 � t � P��s� P � for some integer solution 0 � n0 �
P��s� P � and integer free variable t. However, only certain
t’s are solutions for iterations within the loop bounds. Since
l � i � u and i � l� �n0 � t �P��s� P �� � s, the range of t
is d �n0

P��s�P �
e � 0 � t � b u�l�n0�s

P��s�P ��s
c. Therefore the loop for

processor p is in Figure 7(e).

Given this assignment of iterations to processors, we must
generate synchronization instructions to take care of depen-
dences carried by the outermost loop, and insert block trans-
fers wherever possible. Inserting block transfers is similar
to message vectorization in distributed memory machines
or block-invalidates for software cache coherent schemes.
These steps are routine [13, 26, 31], and are omitted from
this paper.

9

for i = l, u for i = d l�pP e � P � p,
u,
step P

for i = max(l, p � S),
min(u, �p � 1� � S � 1)

(a) unit step (b) task p for wrapped distribution (c) task p for blocked distribution

for i = l, u, step s for i = l � n0 � s,
u,
step P��P� s� � s

for i = max(l, p � S),
min(u, �p� 1� � S � 1�,
step s

(d) non-unit step (e) task p for wrapped distribution (f) task p for blocked distribution

Figure 7: Distributing loops among processors

8 Empirical Results and Performance
Analysis

In this section, we report the performance of our techniques
on routines from the BLAS (Basic Linear Algebra Subpro-
grams) library. The target machine is a BBN Butterfly GP-
1000. On this machine, a processor can access its local
memory in about 0.6 microsecond, but a non-local access
takes about 6.6 microseconds even in the absence of con-
tention in the network. For block transfers, the startup time
is about 8 microseconds, and after that, a byte is transferred
every 0.31 microseconds [8]. Our compiler takes as input
FORTRAN-77 programs with data distribution information,
and it generates C code for each processor; this node pro-
gram is compiled into native code using the Green Hills C
compiler (Release 1.8.4). The C compiler performs only con-
ventional code optimizations, so our experimental results are
not skewed by any restructuring performed by this compiler.
We will use pseudo-code in discussing examples.

For the GEMM code, our techniques are successful in
eliminating non-local accesses significantly, so block trans-
fers contribute just a small amount to overall performance. In
the SYR2K code, the reduction of non-local accesses is less
significant, so block transfers of non-local data are important
for good performance.

8.1 GEMM

General matrix multiplication (GEMM) is one of the central
subroutines in BLAS.

for i = 1, N
for j = 1, N

for k = 1, N
C[i, j] = C[i, j] + A[i, k] � B[k, j]

All arrays are of size 400 by 400 and are distributed in
wrapped column manner. By distributing the outermost loop
among the processors without doing any transformations, we
obtain the graph labeled gemm in Figure 8(a).

The data access matrix is
�

0 1 0
0 0 1
1 0 0

�
, and dependence

matrix is
�

0
0
1

�
. The invertible matrix for the transformation

is
�

0 1 0
0 0 1
1 0 0

�
.

The transformed loop nest yields the following parallel
code with the performance labeled gemmB(Figure 8(a)). The
curve labeled gemmT is the speedup without block transfers.

for u = p, N, step P
for v = 1, N

read A[�, v];
for w = 1, N

C[w, u] = C[w, u] + A[w, v] � B[v, u]

After access normalization, accesses to C and B are local,
but there are non-local accesses to A. Since three out of four
data structure accesses in each iteration have become local,
the effect of block transfers is relatively small.

8.2 SYR2K

When remote accesses are necessary due to the problem struc-
ture, it is beneficial to use block data transfers to amortize the
cost of the startup time. Consider the rank 2k update SYR2K
from BLAS (Basic Linear Algebra Subroutines) [10]. The
subroutine computes C � �ATB � �BTA � C. Suppose
A and B are banded matrices with band width b, then C is
symmetric and banded with band width 2b� 1. The banded
matrices A, B are stored in n � 2b � 1 arrays Ab� Bb such

10

�

�

��

��

	�

�
 � �	 �� 	� 	
 	�

Speedup

Processors

gemm

gemmT

gemmB

�

�

��

��

	�

�
 � �	 �� 	� 	
 	�

Speedup

Processors

syr	k
syr	kT

syr	kB

(a) GEMM (b) banded SYR2K

Figure 8: Speedups of GEMM and banded SYR2K

that the elements A�i� j�� B�i� j� are in Ab�i� j � i � b � 1�
and Bb�i� j � i � b � 1�. C is symmetric so only the upper
triangular matrix is stored in an n � �2b � 1� array Cb such
that C�i� j� is in Cb�i� j � i�. The program is shown below.

for i = 1, N
for j = i, min(i+2b-2, N)

for k = max(i-b+1, j-b+1, 1),
min(i+b-1, j+b-1, N)

Cb[i,j-i+1] = Cb[i,j-i+1]
+ �Ab[k,i-k+b]�Bb[k,j-k+b]
+ �Ab[k,j-k+b]�Bb[k,i-k+b]

Assume that we are given a wrapped-column mapping for

each array. The data access matrix is

	
�1 1 0
0 1 �1
0 0 1
1 0 �1
1 0 0

. If

we apply Algorithm BasisMatrix, we get a base matrix B
consisting of the first three rows. However, the dependence
matrix is �0� 0� 1�T . The legal base mapping is Blegal ��

�1 1 0
0 �1 1
0 0 1

�
, which is B with the second row negated.

This matrix is invertible. Using B legal as the transformation
matrix and parallelizing the new nest, we get the parallel code

for u = p, 2b-2, step P
for v = 1-b, b-u

read Ab[�,-u-v+b]; read Ab[�,-v+b];
read Bb[�,-v+b]; read Bb[�,-u-v+b];
for w = max(1, u+v), min(N, N+v)
Cb[-u-v+w+1, u] = Cb[-u-v+w, u]

+ �Ab[w, -u-v+b]�Bb[w, -v+b]
+ �Ab[w, -v+b]�Bb[w, -u-v+b]

The experimental results are shown in Figure 8(b). The

problem size is 500 with a band size of 200. Block transfers
are relatively important in this example, since there are many
non-local accesses left in the transformed code.

A simple performance model explaining these results can
be found in the associated technical report.

9 Summary and Related Work

This paper is a contribution to the state of the art of com-
piling programs in languages like HPF-FORTRAN that per-
mit user-defined data decomposition for parallel machines
with a memory hierarchy, which is the goal of a number of
projects including FORTRAN-D, Id Nouveau, Superb and
Crystal [32, 9, 14, 19, 22, 27, 34, 39]. The emphasis in these
projects has been on code generation mechanisms (such as
the ownership rule discussed in Section 2) and on recognizing
and exploiting special patterns of computation and commu-
nication such as reductions. Although it is well-known that
loop restructuring before code generation can improve per-
formance, no systematic loop restructuring mechanism using
a general loop transformation framework has been available.

We have attempted to exploit locality by matching code to
the data distribution across the machine. This is a static no-
tion of locality, and must be differentiated from the dynamic
locality that must be exploited on parallel machines with
coherent caches [17]. On such machines, the key to high
performance is data reuse, and the code must be restructured
to allow reuse of cached data wherever possible. Restruc-
turing techniques for doing this have been explored by Wolf
and Lam [36]. Their approach is complementary to the one
described here. It is likely that scalable parallel architectures

11

will be organized as networks of processor-memory pairs in
which processors have an on-chip cache and perhaps a sec-
ond level cache between the processor and its local memory.
The techniques in this paper can be used to partitionwork and
data among the processors; techniques to enhance data reuse
can be used to optimize uniprocessor cache performance.

Our use of matrix techniques generalizes the unimodular
matrix approach [7, 37]. Unimodular matrices were used
by Kumar, Kulkarni and Basu [20] to eliminate outermost
loop-carried dependences in generating code for distributed
memory machines. In our work, we use invertible matrices,
which include unimodular matrices as a special case. This
lets us model loop scaling as well, which is important in the
NUMA context. In general, it is easier to work with invertible
matrices since there are fewer constraints to be satisfied in
generating invertible matrices, as opposed to unimodular ma-
trices. There are a number of other loop transformations like
distribution, jamming and alignment that are useful in gen-
erating code for parallel machines [38]. It would be useful
to extend the matrix framework to incorporate these transfor-
mations. Related work on loop transformations can be found
in [4, 3, 12, 16, 21, 25, 28, 29, 33, 35, 37, 38].

The data access matrix is a new concept introduced in this
paper, and access normalization is useful in other contexts
such as code generation for vector machines. On many vec-
tor machines such as the CRAY-1 and CRAY-2, vector loads
and stores must have constant stride. Even on machines such
as the Fujitsu FACOM that support scatter and gather op-
erations, it is more efficient to use constant stride accesses
wherever possible since address generation for vector ele-
ments is faster. The techniques in this paper can be used to
accomplish this[23].

We require the programmer to specify data distributions.
Automatic deduction of this information for special programs
has been investigated by Balasundaram and others [5], by
Gannon et al [12] on CEDAR-like architectures, by Hudak
and Abraham [15] for sequentially iterated parallel loops,
by Knobe et al [18] for SIMD machines, by Li and Chen
[22] for index domain alignment and by Ramanujam and
Sadayappan[30] who find communication-free partitioning of
arrays in fully parallel loops. These efforts focus on deducing
good data distributions for particular kinds of programs such
as fully parallel loops, and no general solution to this problem
is known. We speculate that it might be possible to start with
the dependence matrix and use our techniques in reverse, so
to speak, to determine what a good data distribution should
be. The main difficulty in doing this is to ensure that the
resulting parallel code is load balanced.

10 Acknowledgments

We thank Radha Jagadeesan and Danny Ralph for useful
discussions, Richard Huff for proof reading the draft, and
Mark Charney, Richard Johnson, Mayan Moudgill and Paul
Stodghill for comments. The anonymous referees from both
ASPLOS ’92 and TOCS have provided us many helpful com-
ments. In particular, we are grateful to Mary Lou Soffa for
shepherding the ASPLOS version of this paper.

References

[1] A. Agarwal. Limits on interconnection network perfor-
mance. IEEE Transactions on Parallel and Distributed
Systems, 2(4):398–412, October 1991.

[2] F. Allen, J. Cocke, and K. Kennedy. Reduction of Op-
erator Strength, pages 79–101. Prentice-Hall, 1981.

[3] R. Allen and K. Kennedy. Automatic translation of
FORTRAN programs to vector form. ACM Trans-
actions on Progamming Languages and Systems,
9(4):491–542, October 1987.

[4] C. Ancourt and F. Irigoin. Scanning polyhedra with
DO loops. In Third ACM Symposium on Principles and
Practice of Parallel Programming, pages 39–50, April
1991.

[5] V. Balasundaram, G. Fox, K. Kennedy, and U. Kremer.
An interactive environment for data partitioning and
distribution. In Proc. 5th Distributed Memory Comput.
Conf., April 1990.

[6] U. Banerjee. Dependence Analysis for Supercomputing.
Kluwer Academic, 1988.

[7] U. Banerjee. Unimodular transformations of double
loops. In Proceedings of the Workshop on Advances
in Languages and Compilers for Parallel Processing,
pages 192–219, August 1990.

[8] BBN Advanced Computers Inc. Butterfly GP1000
Switch Tutorial, 1989.

[9] D. Callahan and K. Kennedy. Compiling programs for
distributed memory multiprocessors. The Journal of
Supercomputing, 2(2), October 1988.

[10] T. Coleman and C. Van Loan. Handbook for Matrix
Computations. SIAM Publication, Phil, 1988.

[11] Digital Equipment Corporation. Alpha Architecture
Handbook, 1992.

[12] D. Gannon, W. Jalby, and K. Gallivan. Strategies for
cache and local memory management by global pro-
gram transformaions. Journal of Parallel and Dis-
tributed Computing, 5:587–616, 1988.

12

[13] H. M. Gerndt. Automatic Parallelization for
Distributed-Memory Multiprocessing Systems. PhD
thesis, Bonn University, FRG, 1989.

[14] S. Hiranandani, K. Kennedy, and C. Tseng. Compiler
optimizations for FORTRAN-D on MIMD distributed-
memory machines. Technical Report TR91-156, Rice
University, April 1991.

[15] D. Hudak and S. Abraham. Compiler techniques for
data partitioning of sequentially iterated parallel loops.
In Proc. ACM Int. Conf. Supercomputing, June 1990.

[16] F. Irigoin and R. Triolet. Supernode partitioning. In
Proc. 15th Annual ACM Symposium on Principles of
Programming Languages, January 1988.

[17] Kendall Square Research Corporation, 170 Tracer Lane,
Waltham, Ma 02154. Parallel Programming Manual,
1991.

[18] K. Knobe, J. Lukas, and G. Steele. Data optimiza-
tion: Allocation of arrays to reduce communication on
SIMD machines. Journal of Parallel and Distributed
Computing, 8:102–118, February 1990.

[19] C. Koelbel and P. Mehrotra. Compiling global names-
pace parallel loops for distributed execution. IEEE
Transactions on Parallel and Distributed Systems, 2,
October 1991.

[20] K. G. Kumar, D. Kulkarni, and A. Basu. General-
ized unimodular loop transformations for distributed
memory multiprocessors. Technical Report FG-TR-
014, Center for Development of Advanced Computing,
Bangalore, INDIA, January 1991.

[21] L. Lamport. The parallel execution of do loops. Com-
munications of the ACM, pages 83–93, February 1974.

[22] J. Li and M. Chen. Index domain alignment: Minimiz-
ing cost of cross-referencing between distributedarrays.
Technical report, Yale University, 1989.

[23] W. Li and K. Pingali. Access normalization: loop re-
structuring for NUMA compilers. Technical Report 92-
1278, Department of Computer Science, Cornell Uni-
versity, 1992.

[24] W. Li and K. Pingali. A singular loop transformation
framework based on non-singular matrices. Techni-
cal Report 92-1294, Department of Computer Science,
Cornell University, July 1992.

[25] L. Lu. A unified framework for systematic loop transfor-
mations. In 3rd ACM SIGPLAN Symposium on Prin-
ciples and Practice of Parallel Programming, pages
28–38, April 1991.

[26] S. P. Midkiff and D. A. Padua. Compiler algorithms
for synchronization. IEEE Transactions on computers,
C-36:1485–1495, December 1987.

[27] R. Mirchandaney, J. Saltz, R. Smith, D. Nicol, and
K. Crowley. Principles of runtime support for parallel
processors. In Proc. of the 2nd Int. Conf. on Supercom-
puting, July 1988.

[28] D. Padua and M. Wolfe. Advanced compiler optimiza-
tions for supercomputers. Communications of ACM,
29(12):1184–1201, December 1986.

[29] A. Porterfield. Software Methords for Improvement of
Cache Performance on Supercomputer Applications.
PhD thesis, Rice University, May 1989.

[30] J. Ramanujam and P. Sadayappan. Compile-time tech-
niques for data distribution in distributed memory ma-
chines. IEEE Transactions on Parallel and Distributed
Systems, 2, October 1991.

[31] A. Rogers. Compiling for Locality of Reference. PhD
thesis, Cornell University, 1990.

[32] A. Rogers and K. Pingali. Process decomposition
through locality of reference. In Proc. of the 1989 SIG-
PLAN Conference on Programming Language Design
and Implementation, 1989.

[33] R. Schreiber and J. Dongarra. Automatic blocking of
nested loops. Technical Report 90.38, NASA RIACS,
May 1990.

[34] P. Tseng. A Parallelizing Compiler For Distributed
Memory Parallel Computers. PhD thesis, Carnegie
Mellon University, 1989.

[35] D. Whitfield and M. L. Soffa. Automatic generation of
global optimizers. In Proc. of the SIGPLAN ’91 Conf. on
Programming Language Design and Implementation,
SIGPLAN Notices, June 1991.

[36] M. Wolf and M. Lam. A data locality optimizing al-
gorithm. In Proc. ACM SIGPLAN 91 Conference on
Programming Language Design and Implementation,
pages 30–44, June 1991.

[37] M. Wolf and M. Lam. A loop transformation theory
and an algorithm to maximize parallelism. IEEE Trans-
actions on Parallel and Distributed Systems, October
1991.

[38] M. Wolfe. Optimizing Supercompilers for Supercom-
puters. Pitman Publishing, London, 1989.

[39] H. Zima and B. Chapman. Supercompilers for Parallel
and Vector Computers. ACM Press Frontier Series,
New York, New York, 1990.

13

