CS 380C.:
Advanced Topics in Compilers

Administration

e |nstructor: Keshav Pingal
— Professor (CS, Oden Institute)
— Email: pingali@cs.utexas.edu
e TA: Dani Wang
— PhD student, CS
— Email: daniw@utexas.edu

Meeting times

e |ecture:
— TTh 3:30PM-5:00PM

e Office hours:
— Keshav Pingali: T 1-2 PM, POB 4.126
— TA office hours: TBD

Prerequisites

Compilers and architecture
— Some background in compilers
— Basic computer architecture

Machine learning
— Basic knowledge of machine learning

Software and math maturity
— Able to implement large programs in C/C++
— Comfortable with abstractions like graph theory

Ability to read research papers and understand
content

Course material

e \Website for course

e All lecture notes, announcements, papers,
assignments, etc. will be posted there

e No assigned book for the course
— post papers and other material as appropriate

http://www.cs.utexas.edu/users/pingali/CS380C/2025/index.html

Coursework

4-5 programming assignments and problem sets
Mid-semester exam

Paper presentations

— Second half of semester

Term project

— Substantial implementation project in area of
compilers

Final exam (at my discretion)

Why do we need
compilation technology?

e Traditional view:

Translation: high-level language (HLL) programs to low-level
machine code

Optimization: reduce number of arithmetic operations by
optimizations like common subexpression elimination

lgnore data structures: too complex to analyze

e Modern view:

Collection of automatic techniques for extracting meaning from
and transforming programs

Useful for debugging, optimization, verification, detecting
malware, translation,

Optimization:
e Restructure (reorganize) computation to optimize locality and parallelism

e Reducing amount of computation is useful but not critical
e Optimizing data structure accesses is critical

Why do we need translators?

e Bridge the “semantic gap”

— Programmers prefer to write programs at a high level of
abstraction

— Modern architectures are very complex, so to get good
performance, we have to worry about a lot of low-level details

— Compilers let programmers write high-level programs and still get
good performance on complex machine architectures

e Application portability

— When a new ISA or architecture comes out, you only need to
reimplement the compiler on that machine

— Application programs should run without (substantial) modification
— Saves programming effort

e Summary: performance + portability of HLL programs

Microprocessor t

rend data

40 Years of Microprocessor Trend Data

7
10 ! ! ' ! Transistors
N . - N W (thousands)
) b
10° I N N - Y RN ST | Single-Thread
: : : A A p 'Y .
g | e 'L Performance
104 -A.A..A.A..........A..A.AE.A.A...“..........A..A.....E “2}..‘A 'A‘.:...,.. - (SpeCINTX103)
e :‘i‘ ﬁ“ % T Frequency (MHz)
103 T AALA..e;#,I e B -
. ol gl Typical Power
102 - ----- B o .;I-v;v}!'wﬂ'v'v"'f ----------- - (Watts)

A .:il vV ,v o yYV L ® '§
L SR EESOA R A0 M 220’8 _| Number of
10 A = Ty $eg e Logical Cores

Iy L v v vV vv : *8
0 . Y y NP | nooe
10 _.‘...’ ’E ’ ’ﬁ’ “.MW ‘ i —
i | i |
1970 1980 1990 2000 2010 2020
Year
Original data up to the year 2010 collected and plotted by M. Harowitz, F. Labonte, . Shacham, K. Olukotun, L. Hammond, and C. Batten
New plot and data collected for 2010-2015 by K. Rupp
) Before 2005 o |« After 2005

Intel Skylake chip

Front End Instruction

Cache Tag L1 Instruction Cache
HOP Cache 32KiB 8-Way Instruction
|
Tag TLB
16 B;‘cycla
Branch
Predictor Instruction Fetch & PreDecode
(BPL) (16 B window) -
p
_ | < 5
Memory & 'IO interfaces Instruction Queue ~ &
Rl (50, 2x25 entries) 2
g d i [=
o
MicroCode [5-Way Decade
S Campler] [Siele][STl | S 17 Simere |
Decoder || Decoder || Decoder || Decoder || Decoder
(MS ROM)
1-4p0Ps Stack
I Engine
(SE)
5
System Decoded Stream Buffer (DSE) B E=IE=E
(HOP Cache)]
(L.5k pOPs; B-Way)
Agent 54’ mriom !
W/ Allocation Queue (IDQ) (128, Zx64 LOPs) |
display,
MOP pOP pOP pOP pOP pOP |Branch Order Buffer
memory, | Register Alias Table (RAT) Iﬁu (BOB) (48-entry)
3 []
&ifo RS e Femters™ [arme] (omaiaome] |
i
g 5 P P P P P P P
- NP
a 2|l
= 8|1 I |nteger Physical Register Fld Sdhedily Vector Physical Register File
'i‘ ;] (180 Registers) =] "‘I‘;,',"'::‘t':i::"““ (RS) (168 Registers)
= L N
2 = =
- =] =2 g
- El N
= = 32B/cycle
= 2 @O
o
w| = To L3
4 L=
b =P
~

(56 entries)

ili:\! ~
Data TLB
Load Buffer 5 | L1 Data Cache 4

(72 entries) | & 32KiB 8-Way

b Line Fill Buffers (LFB)
(10 entries)

Execution E ngi ne \ Store Buffer & Forwarding

14
aphy/ar9

Memory Subsystem

Block diagram of each coré?”

Getting performance

Programs must exploit

— coarse-grain (thread-level) parallelism

— memory hierarchy (L1,L2,L3,..)

— instruction-level parallelism (ILP)

— registers

How important is it to exploit these hardware features?

— If you have n cores and you run on only one, you get at
most 1/n of peak performance, so this is obvious

— Memory hierarchy: typical latencies
e L1 cache:~1cycle
e |2 cache:~ 10 cycles
e Memory: ~ 500-1000 cycles

e |f most memory accesses hit in L1/L2 cache, performance is much
better than if most of accesses go to memory

Software problem

e Problem:

— Programs obtained by expressing most algorithms in
the straight-forward way perform poorly

— Worrying about performance when coding algorithms
complicates the software process greatly

e |Let us study cache optimization to understand this

e Caches are useful only if programs have
locality of reference

— temporal locality: program references to given memory
address are clustered together in time

— spatial locality: program references clustered in address
space are clustered in time

Example: matrix multiplication

for1 =1, N //assume arrays stored in row-major order
forJ=1, N
forK=1,N
C(1,J) = C(1,J) + A(l,K)*B(K,J)

e All six loop permutations are computationally equivalent
(even modulo round-off error).

e Great algorithmic data reuse: each array element is
touched O(N) times!

e However, execution times of the six versions can be very
different if machine has a cache.

|JK version (large cache)

|
B
forI=1,N A |)
forJ=1, N
forK=1,N _HK_, e
C(1,J) = C(1,9) + A(I,K)*B(K,J)

 Large cache scenario: matrices are small enough to fit into cache
— Assume only cold misses, no capacity or conflict misses

— Miss ratio:
 Data size = 3 N?
« Assume line size = b floating-point numbers
« Miss ratio = 3 N2/b*4N3 = 0.75/bN = 0.019 (b = 4,N=10)

|JK version (small cache)

|
B
forI=1,N A |)
forJ=1, N
forK=1,N _HK_, e
C(1,J) = C(1,9) + A(I,K)*B(K,J)

« Small cache scenario: matrices are large compared to cache/row-
major storage

— Cold and capacity misses (ignore conflict misses)

— Miss ratio:
« C: N2/b misses (good temporal locality)
« A: N3/b misses (good spatial locality)
« B: N3misses (poor temporal and spatial locality)
« Miss ratio = 0.25 (b+1)/b = 0.3125 (for b = 4)

MMM Experiments

« Simulated L1 Cache Miss Ratio for Intel Pentium IlI
— MMM withN=1...1300
— 16KB 32B/Block 4-way 8-byte elements

Awarage of Miss#|

0.55

0.5 | T

0.45 L

0.4 '

Forrm
0.35 1

—ijk

043 | Il —ikj
. | I}M ik

0.25 Jki
— kij

. — Kji
| h | — (blank)

0.2

1
X —]
- — =
¥ e
[—
o —
—

it) P

0.05

— & W = @ T M Wm r- & T M W = & T M I r- & & @ W = & T W = T e W f= e T T W 4 S o W o W D v W
[- T T~ R - T - T T - = T - T T " = - " R T B S S - R~ - T
¥ = T O H a4 & M & w = 0w R In o= o w = o= o = oW ok R W o™ X oZ 2 E ¥ T T M M o omom o o=w w o

Quantifying performance differences

for 1 =1, N //assume arrays stored in row-major order
ford=1,N
forK=1,N
C(1,J) = C(1,J) + A(1,K)*B(K,J)

« Typical cache parameters:
— L2 cache hit: 10 cycles, cache miss 70 cycles

« Time to execute IKJ version:
2N3 + 70*0.13*4N3 + 10*0.87*4N3 =73.2 N3
« Time to execute JKI version:
2N3 + 70*0.5*4N3 + 10*0.5*4N3 = 162 N3
« Speed-up =2.2
« Key transformation: loop permutation

Even better.....

« Break MMM into a bunch of smaller MMMs so that large cache model is true
for each small MMM

=>» large cache model is valid for entire computation

=> miss ratio will be 0.75/bt for entire computation where t is
pd

0.55
045 T /
0.45 | ‘I //
0.4
0.35 i / Fninijk
Tl g
ll i o
n2 i SERHINE LRI RAR 11T 1 | _|:h|ank:|
| A
0.15 ‘ il ||l| ”| [
o1 ' ‘ "'[”h.}','i //,,
0.05
¥

mmm
mm
T v W W M ™M oM @ T o W W I & W o = e = W owm & % % T X S 2 & FE O OE M M MW oM owow W

Loop tiling/blocking

Jt B
forlt=1,N, t I
for Jt = 1,N,t .
for Kt = 1,N,t A 1o

for | = It,I1t+t-1
for J = Jt,Jt+t-1 It l " .
for K = Kt,Kt+t-1 W1 i

C(1,J) = C(1,9)+A(1,K)*B(K,J) ! -------- .

K C

Kt

Break big MMM into sequence of smaller MMMSs where
each smaller MMM multiplies sub-matrices of size txt.
« Parameter t (tile size) must be chosen carefully

— as large as possible
— working set of small matrix multiplication must fit in cache

Speed-up from tiling/blocking

e Miss ratio for block computation
= miss ratio for large cache model
=0.75/bt
=0.001 (b =4, t =200)
e Time to execute tiled version =
2N3 + 70*0.001*4N3+ 10*0.999*4N3 = 42.3N3
e Speed-up over JK| version =4

Observations

Locality optimized code is more complex than high-level algorithm.

Locality optimization changed the order in which operations were
done, not the number of operations

“Fine-grain” view of data structures (arrays) is critical
Loop orders and tile size must be chosen carefully

— cache size is key parameter

— associativity matters

Actual code is even more complex: must optimize for processor
resources

— registers: register tiling

— pipeline: loop unrolling

— Optimized MMM code can be ~1000’s of lines of C code
Wouldn’t it be nice to have all this be done automatically by a
compiler?

— Actually, it is done automatically nowadays...

Performance of MMM code produced by
Intel’s Itanium compiler (-03)

GFLOPS relative to -O2; bigger is better
92% of Peak
30 Performance
8. 25
& 20
=
T 15
S
10
S
8 5
O — T | | T 1 1 T T T T
& y >
& &£ & & s
X Q .
& &

Goto BLAS obtains close to 99% of peak, so compiler is pretty good!

Summary

Exploiting parallelism, memory hierarchies etc. is very
Important

If program uses only one core out of n cores in processors,
you get at most 1/n of peak performance

Memory hierarchy optimizations are very important
— can improve performance by 10X or more

Key points:

— need to focus on data structure manipulation

— reorganization of computations and data structure layout are key

— few opportunities usually to reduce the number of computations
except in address arithmetic

Organization of modern compiler

L Source program

Front—end

’ | \

,Our focus
High—level Optimizer ‘

Low—level Optimizer

Low—level representation (3—address code.....)

Augmented low—level representation

Code generator

1
/

N\ 4
A Y 4
B R e i- Assembly-er-machine code

Front-end

e Goal: convert linear representation of program
to hierarchical representation

— Input: text file
— Qutput: abstract syntax tree + symbol table

e Key modules:

— Lexical analyzer: converts sequence of characters in
text file into sequence of tokens

— Parser: converts sequence of tokens into abstract
syntax tree + symbol table

— Semantic checker: (eg) perform type checking

High-level optimizer

Goal: perform high-level analysis and
optimization of program

Input: AST + symbol table from front-end

Output: Low-level program representation
such as 3-address code

Tasks:
— Procedure/method inlining
— Array/pointer dependence analysis

— Loop transformations: unrolling, permutation,
tiling, jamming,....

Low-level optimizer

Goal: perform scalar optimizations on low-|level
representation of program

Input: low-level representation of program such as
3-address code

Output: optimized low-level representation +
additional information such as def-use chains

Tasks:

— Dataflow analysis: live variables, reaching definitions, ...

— Scalar optimizations: constant propagation, partial
redundancy elimination, strength reduction,

Code generator

Goal: produce assembly/machine code from
optimized low-level representation of program

Input: optimized low-level representation of
program from low-level optimizer

Output: assembly/machine code for real or
virtual machine

Tasks:

— Register allocation
— |Instruction selection

JIT compilation

e Traditionally, all phases of compilation were completed
before program was executed

e New twist: virtual machines
— Offline compiler:

e Generates code for virtual machine like JVM
— Just-in-time compiler:

e Generates code for real machine from VM code while program is
executing

e Advantages:
— Portability

— JIT compiler can perform optimizations for particular input

My lectures (scalar stuff)

Introduction

— compiler structure, architecture and compilation, sources of improvement
Control flow analysis

— basic blocks & loops, dominators, postdominators, control dependence
Data flow analysis

— lattice theory, iterative frameworks, reaching definitions, liveness
Static-single assignment form (SSA)

— static-single assignment, constant propagation.
Global optimizations

— loop invariant code motion, common subexpression elimination, strength
reduction.

Register allocation
— coloring, allocation, live range splitting.

Instruction scheduling (depending on schedule)
— pipelined and VLIW architectures, list scheduling.

My lectures (data structure stuff)

Array dependence analysis
— integer linear programming, dependence abstractions.

Loop transformations for array programs

— linear loop transformations, loop fusion/fission, enhancing
parallelism and locality

Self-optimizing programs
— empirical search, ATLAS, FFTW

Analysis of pointer-based programs
— points-to and shape analysis

Parallelizing graph programs

— amorphous data parallelism, exploiting amorphous data-
parallelism

Advanced topics for CS 380C

e Optimizing machine learning programs

— Training and testing times can be large
* Models are getting more complex
e Lot of training data

— How do we optimize training and testing
times on modern architectures?

e Exploiting machine learning in compilers

— Some work in this area but no major
breakthroughs yet

— Active research topic
e (Course

— See website for partial list of papers we will
study in this area

— Papers will be presented by students

— |deally, your paper presentation and course
project will be linked

Schedule for lectures

e See
— http://www.cs.utexas.edu/users/pingali/CS380C/2025/i

ndex.htm]

http://www.cs.utexas.edu/users/pingali/CS380C/2025/index.html
http://www.cs.utexas.edu/users/pingali/CS380C/2025/index.html

Reading assicnments for next class

e |ecture slides on SAM

e My SIGARCH blogpost:

?

e Mike O’Boyle’s survey article on using machine
learning in compilers

Wang and O’Boyle, arXiv:1805.03441

e Eran Yahav's SIGPLAN blog post on machine
learning in compilers

https://www.cs.utexas.edu/~pingali/CS380C/2025/lectures/SaM/sam.pdf
https://www.sigarch.org/the-unreasonable-ineffectiveness-of-machine-learning-in-computer-systems-research/
https://arxiv.org/abs/1805.03441
https://blog.sigplan.org/2019/08/22/from-programs-to-deep-models-part-1/

	Slide 1: CS 380C: Advanced Topics in Compilers
	Slide 2: Administration
	Slide 3: Meeting times
	Slide 4: Prerequisites
	Slide 5: Course material
	Slide 6: Coursework
	Slide 7: Why do we need compilation technology?
	Slide 8: Why do we need translators?
	Slide 9: Microprocessor trend data
	Slide 10: Intel Skylake chip
	Slide 11: Getting performance
	Slide 12: Software problem
	Slide 13: Example: matrix multiplication
	Slide 14: IJK version (large cache)
	Slide 15: IJK version (small cache)
	Slide 16: MMM Experiments
	Slide 17: Quantifying performance differences
	Slide 18: Even better…..
	Slide 19: Loop tiling/blocking
	Slide 20: Speed-up from tiling/blocking
	Slide 21: Observations
	Slide 22: Performance of MMM code produced by Intel’s Itanium compiler (-O3)
	Slide 23: Summary
	Slide 24: Organization of modern compiler
	Slide 25: Front-end
	Slide 26: High-level optimizer
	Slide 27: Low-level optimizer
	Slide 28: Code generator
	Slide 29: JIT compilation
	Slide 30: My lectures (scalar stuff)
	Slide 31: My lectures (data structure stuff)
	Slide 32: Advanced topics for CS 380C
	Slide 33: Schedule for lectures
	Slide 34: Reading assignments for next class

