
1

Top-down Parsing

Outline

• Inference rules for computing grammar
properties

• Top-down parsing

• SLL(1) grammars

• Recursive-descent parsing

• Generating parsing tables for SLL(1) grammars

Concepts

• Distinction between language and grammar
– Language: set of strings over some alphabet
– Grammar: a set of rules for generating the strings in a language
– G: grammar, L(G): language generated by grammar

• Recognition vs. parsing, given grammar G and word w
– Recognition is decision problem - is w in L(G)?
– Parsing: if w in L(G), show a derivation (proof)

• Context-free grammar: 4-tuple
– S: Start symbol
– T: Terminals aka tokens (also written as  by some authors)
– N: Non-terminals (also written as V)
– P: Productions

• Sentential forms and sentences
– Sentential form: string that can be obtained by starting with S and

using productions as rewrite rules to rewrite nonterminals
– Sentence: sentential form without nonterminals (word in language)

3

Concepts

• Derivation of string using grammar

– Start from S and repeatedly rewrite a nonterminal
using the productions of the grammar until there
are no nonterminals left

– Leftmost/rightmost-derivation: rewrite only the
leftmost/rightmost nonterminal at each step

• Ambiguous grammar

– Grammar in which there are two or more leftmost
derivations for some word

4

Inference rules

Big picture

• Given grammar, we need to compute certain
sets that will be used by parser

• These sets are usually specified recursively
– (e.g.) if A is a member of the set, then B is also a

member of that set

• Inference rules are an elegant way to specify
these recursive sets without writing code

• From inference rules, it is easy to write down
code

Parsing SLL(1) grammars

• Compute relations NULLABLE, FIRST and FOLLOW
• NULLABLE  N

– set of non-terminals that can be rewritten to the empty string

• FIRST()  T U {}
– if  can be rewritten to a string starting with terminal t, then t

is in FIRST()
– if  can be rewritten to , then  is in FIRST()

• FOLLOW(A)  T U {$}
– $ is a special symbol (see later)
– set of terminals that can follow A in a sentential form

t  FOLLOW(A) if we can derive a string …At…

• These relations are defined for any context-free grammar
but if grammar is SLL(1), they can be used to implement a
recursive-descent parser.

7

NULLABLE

• −production
– A production whose righthand side is the empty string ε
– (e.g.) A → ε

• Nullable non-terminal
• Nonterminal that can be rewritten to 

• NULLABLE: set of nullable nonterminals
– If there is production A → ε, then A  NULLABLE
– If there is production A → Y1..Yn and Yi  NULLABLE for all Yi, then A 

NULLABLE

8

Example
 S→ At
 A → BC | x
 B → t | ε
 C → v | ε

NULLABLE = {B,C,A}

Inference rules for NULLABLE
• This can be specified compactly using inference rules

– If predicate in numerator is true, then predicate in denominator must be true
– Caution: inference rule is “if-then”, not “if and only if”

• Given proposal X  N, we can check if proposal is consistent with
inference rules.

• Examples:
– { }: no
– {A} : no
– {A,B,C}: yes
– {S,A,B,C}: yes (numerators of both rules are false)

• For our problems, we want the smallest set that is consistent with all
inference rules

– {A,B,C}

𝐴 → ε ∈ 𝑃

𝐴 ∈ 𝑁𝑈𝐿𝐿𝐴𝐵𝐿𝐸

𝐴 → 𝑌1. . 𝑌𝑛 ∈ 𝑃 𝑌1, . . 𝑌𝑛

∈ 𝑁𝑈𝐿𝐿𝐴𝐵𝐿𝐸

𝐴 ∈ 𝑁𝑈𝐿𝐿𝐴𝐵𝐿𝐸

NULLABLE  N Smallest set for which

Grammar
 S→ At
 A → BC | x
 B → t | 
 C → v | 

Computing NULLABLE

• Initialize NULLABLE to {}
• Round-based computation

– In each round, visit every production and see if you can add
more elements to NULLABLE

– Terminate when NULLABLE does not change in some round

𝐴 → ∈ 𝑃

𝐴 ∈ 𝑁𝑈𝐿𝐿𝐴𝐵𝐿𝐸

𝐴 → 𝑌1. . 𝑌𝑛 ∈ 𝑃 𝑌1, . . 𝑌𝑛

∈ 𝑁𝑈𝐿𝐿𝐴𝐵𝐿𝐸

𝐴 ∈ 𝑁𝑈𝐿𝐿𝐴𝐵𝐿𝐸

NULLABLE  N Smallest set for which



NULLABLE = { }
repeat
 for each production A → Y1..Yn

 if Y1..Yn = ε or all Yi are in NULLABLE, add A to NULLABLE

until NULLABLE set does not change

Computing NULLABLE:

Slicker way to write inference rules

• Define predicate NULLABLE: string → true/false
• NULLABLE(α) = true if α can be rewritten to ε

– NULLABLE(ε) = true
– NULLABLE(t:T) = false
– NULLABLE(Y1..Yn) = NULLABLE(Y1) & ..& NULLABLE(Yn)

𝐴 → ε ∈ 𝑃

𝐴 ∈ 𝑁𝑈𝐿𝐿𝐴𝐵𝐿𝐸

𝐴 → 𝑌1. . 𝑌𝑛 ∈ 𝑃 𝑌1, . . 𝑌𝑛
 ∈

𝑁𝑈𝐿𝐿𝐴𝐵𝐿𝐸

𝐴 ∈ 𝑁𝑈𝐿𝐿𝐴𝐵𝐿𝐸

NULLABLE  N Smallest set for which

𝐴 → 𝑌1. . 𝑌𝑛 ∈ 𝑃 𝑁𝑈𝐿𝐿𝐴𝐵𝐿𝐸(𝑌1. . . 𝑌𝑛)

𝐴 ∈ 𝑁𝑈𝐿𝐿𝐴𝐵𝐿𝐸

NULLABLE  N Smallest set for which

Lifting

• We generalized NULLABLE

– from non-terminals

– to strings of terminals and non-terminals

• From Google AI
“In programming languages, "lifting" refers to the process of
transforming a function to operate on a different data structure, usually
a more complex one like a container or a monad, while preserving its
original behavior, essentially allowing you to apply a function to elements
within that data structure without explicitly iterating through them; this
is often achieved using higher-order functions and is particularly
prevalent in functional programming languages like Haskell where
functions can be treated as data.”

Another relation: FIRST

• FIRST()  T U {} (A is nonterminal)

– if  can be rewritten to a string starting with
terminal t, then t  FIRST()

– if  can be rewritten to  (that is, NULLABLE(A)),
then   FIRST()

• Convenient to define F = T U {}

– f denotes element of F (so either terminal or ε)

• As with NULLABLE, it is convenient to extend
this to arbitrary strings

Example

 S→ A

 A → BC | x

 B → t | 

 C → v | 

NULLABLE = {A,B,C}

FIRST(A)={x,t,v,}

FIRST(B)={t,}

FIRST(C)={v,}

FIRST(S)={x,t,v,}

Note: v  FIRST(A) even though it is not in FIRST(B).
This is because B is nullable and v  FIRST(C).

General FIRST relation

FIRST() = { }
FIRST(t) = {t}
FIRST(Y1…Yn) = FIRST(Y1) +1 FIRST(Y2) +1 …FIRST(Yn)

Helper function: +1
 binary operation on subsets of T U {}
 concatenate each element of first set with each element of second set
 and truncate to 1 symbol

{ ,a,b} +1 { ,c} = { ,a,b,c} 



FIRST()  F = T U {}

if  can be rewritten to a string starting with terminal t,
then t is in FIRST()

if  can be rewritten to , then  is in FIRST()

So if we can compute FIRST for all nonterminals, we can compute it for any string

Inference rule for FIRST

𝐴 → 𝑌1𝑌2. . . 𝑌𝑛 ∈ 𝑃 𝑓 ∈ 𝐹𝐼𝑅𝑆𝑇 𝑌1𝑌2. . 𝑌𝑛

𝑓 ∈ 𝐹𝐼𝑅𝑆𝑇(𝐴)

FIRST(A)  F = T U {} Smallest sets for which

FIRST sets can be computed using iterative algorithm as before

for each A:N do {
 FIRST[A] = { };
}
repeat
 for each production A → Y1..Yn do {

 FIRST[A] = FIRST[A] U FIRST(Y1..Yn)
 }
until FIRST sets do not change

Example
Grammar

 S→ A

 A → BC | x

 B → t | 

 C → v | 

S {} {} {x} {x,t,v,}

A {} {x} {x,t,v,ε} {x,t,v,ε}

B {} {t,ε} {t,ε} {t,ε}

C {} {v,ε} {v,ε} {v,ε}

Round
N

0 1 2 3

for each A:N do {
 FIRST[A] = { };
}
repeat
 for each production A → Y1..Yn do {

 FIRST[A] = FIRST[A] U FIRST(Y1..Yn)
 }
until FIRST sets do not change

Why inference rules?

From Parsing chapter in Dragon book

FOLLOW

• FOLLOW(B)  T U {$} ($ is like end-of-file/string)
– t  FOLLOW(B) if we can derive a sentential form …Bt…

• By convention, $ FOLLOW(S)

• First sentential form (convention):
– S $ so FOLLOW(S) = {$}

• Next sentential form.: say we use S → A1…Ai Ai+1 ….Am
– String becomes A1..Ai..Am$

– What is FOLLOW(Ai)?

– Answer: FIRST(Ai+1…Am$) = FIRST(Ai+1..Am) +1 FOLLOW(S)

• In general: production A → X1. . XkBY1. . Ym

• t  (FIRST(Y1..Ym) +1 FOLLOW(A))  t  FOLLOW(B)

19

Inference rules for FOLLOW

A → X1. . XkBY1. . Yn ∈ P t ∈ FIRST Y1. . Yn + 1 FOLLOW(A)

t ∈ FOLLOW(B)

FOLLOW  T U {$}

 $ ∈ FOLLOW(S)

Example for FOLLOW

 S→ A

 A → BC | x

 B → t | 

 C → v | 

NULLABLE = {A,B,C}

FIRST(A)={x,t,v,}

FIRST(B)={t,}

FIRST(C)={v,}

FIRST(S)={x,t,v,}

FOLLOW(A)={$}

FOLLOW(B)={v,$}

FOLLOW(C)={$}

FOLLOW(S)= {$}

Computing all relations

for each A do {

 NULLABLE[A] = false;

 FIRST[A] = FOLLOW[A] = { };

}

FOLLOW[S] = {$};

repeat

 for each production A → Y1..Yn do {

 if NULLABLE(Y1..Yn) then NULLABLE[A] = true;

 FIRST[A] = FIRST[A] U FIRST(Y1..Yn)

 for each Yi do

 FOLLOW[Yi] = FOLLOW[Yi] U (FIRST(Yi+1..Yk) +1 FOLLOW[A])

}

until sets do not change

Summary

• Given context-free grammar
– compute certain relations needed for parsing

• Commonly used relations
– NULLABLE
– FIRST
– FOLLOW
– Can be generalized to k symbols: FIRSTk and FOLLOWk

• Specifying these relations: inference rules
– Separate what needs to be computed from how it is

computed

• Important abstract concepts independent of parsing
– Lifting
– Inference rules

Recursive-descent parsing

CS 412/413 Spring 2008 Introduction to Compilers 25

SLL(1) Parsing Goal

• String view:

– Determine a Leftmost derivation of the input
while reading the input from Left to right while
looking ahead at most 1 input token

• Tree view:

– Beginning with the start symbol, grow a parse
tree top-down in left-to-right preorder while
looking ahead at most 1 input token beyond
the input prefix matched by the parse tree
derived so far

26

Expression Grammar

• Consider
 Grammar: E → (E + E) | int

 String: (2 + 3)

• Leftmost derivation
 E  (E + E)  (2 + E)  (2 + 3)

• How can we decide which production to use in first step?
 E → int

 E → (E+E)

• Answer: examine next unread token in input. Three cases:
 int : use the production E → int

 ‘(‘ : use the production E → (E+E)

 Otherwise: parse error.

• This rule works for all derivation steps, not just the first.

• Next unread token in input is called “look-ahead”

27

Recursive-Descent Recognizer

token = input.read(); //global variable
parse_E();

//precondition: global variable “token” has look-ahead token
void parse_E() {
 switch (token) {
 case int: token = input.read(); return;
 case ‘(‘:
 {token = input.read();
 parse_E();
 if (token != ‘+’) throw new ParseError();
 token = input.read();
 parse_E();
 if (token != ‘)’) throw new ParseError();
 token = input.read(); return;
 }
 default: throw new ParseError(); }
}
//postcondition: global variable “token” has look-ahead token

E → (E + E) | int

CS 412/413 Spring 2008 Introduction to Compilers 28

Non-SLL(1) Grammar

• Consider the grammar
 S → E + S | E

 E → num | (S)

• and the two derivations
 S  E  (S)  (E)  (3)

 S  E+S  (S)+S  (E)+E  (3)+E  (3)+4

• How could we decide between
 S → E

 S → E+S

 as the first derivation step based on one (or even some finite
number k) of look-ahead tokens?

• We can’t!
– The sample grammar is not SLL(1)

– The sample grammar is not SLL(k) for any k.

29

Making a grammar SLL(1)

S → E+S
S → E
E → num
E → (S)

S → ES’
S’ → 
S’ → +S
E → num
E → (S)

• Left-factoring: Factor common S
prefix E, add new non-terminal S’
for what follows that prefix

• Convert left-recursion to right-
recursion

• Not all context-free languages
have an SLL(1) grammar

General picture:
parser for SLL(1) grammar

• One procedure for each non-terminal
• Global variable token contains look-ahead token
• Procedure for non-terminal N

– Precondition: variable token has look-ahead token
– Action of procedure: read in a sequence of terminals that

can be derived from non-terminal N
– Postcondition: variable token has look-ahead token

• Body of procedure is a big case statement
• Each case:

– one possible look-ahead token (say t)
– invokes parsing actions for a production of N

• Question: how do we determine which production to
use for a given [N,t] combination?

31

Abstraction: predictive parsing table

 num + () $
S → ES’ → ES’
S’ → +S →  → 

E → num → (S)

S → ES’
S’ → 
S’ → +S
E → num
E → (S)

Grammar

One row for each non-terminal in V
One column for each terminal in T U {$}
Table [r,c] is the production to be used
 when expanding non-terminal r and look-ahead token is c
 (empty table entries: throw parsing error)
Given parsing table, it is easy to generate recursive-descent parser

CS 412/413 Spring 2008 Introduction to Compilers 32

Recursive-Descent Parser

void parse_S () {

 switch (token) {

 case num: parse_E(); parse_S’(); return;

 case ‘(’: parse_E(); parse_S’(); return;

 default: throw new ParseError();

 }

}

 num + () EOF
S → ES’ → ES’
S’ → +S →  → 
E → num → (S)

lookahead token

void parse_S’() {

 switch (token) {

 case ‘+’: token = input.read(); parse_S(); return;

 case ‘)’: return;

 case EOF: return;

 default: throw new ParseError();

 }

}
 num + () EOF
S → ES’ → ES’
S’ → +S →  → 
E → num → (S)

CS 412/413 Spring 2008 Introduction to Compilers 33

Recursive-Descent Parser

Recursive-Descent Parser

void parse_E() {

 switch (token) {

 case number: token = input.read(); return;

 case ‘(‘: token = input.read(); parse_S();

 if (token != ‘)’) throw new ParseError();

 token = input.read(); return;

 default: throw new ParseError(); }

}

 num + () EOF
S → ES’ → ES’
S’ → +S →  → 

E → num → (S)

CS 412/413 Spring 2008 Introduction to Compilers 35

Call Tree = Parse Tree

(1+2+(3+4))+5
S

E S’

(S) + S

E S’ 5
1 + S

E S’

2 + S

E S’

(S) 

E S’

+ S

E

4

3

parse_S

parse_E parse_S’

parse_Sparse_S

parse_E parse_S’

parse_S

parse_E parse_S’

parse_S

parse_E parse_S’

parse_S

Constructing parsing tables

N + () EOF

S ES’ ES’
S’ +S  
E N (S)

S → ES’
S’ →  | +S
E → num | (S)

?

Parsing table (easy case)

• Grammar

– has no -productions

– every production begins with a terminal symbol

– (eg) E → aXY | bYY | stX

• Easy to fill in parsing table

– in Table[E,a] put production E →aXY etc.

– if there are two or more productions in a given spot in
table, grammar is not SLL(1)

37

Generalizing construction (I)

• What if some productions begin with non-terminal
(assume no -productions)?

 Example grammar: S→ dx | Ay A → ax | bx

– For what look-ahead symbols should we use S → Ay?

– Obvious answer: for any terminal t  FIRST(A)

• Constructing parsing table:

– for each production A → Y1Y2..Yn

 Enter production into Table[A,t] for each terminal t in FIRST(Y1)

38

Example

• Enter production A → Y1…Yn into Table[A,t] for
all t for which t ∈ FIRST Y1

 S→ A

 A → BC | x

 B → t

 C → v

FIRST(A)={x,t}

FIRST(B)={t}

FIRST(C)={v}

FIRST(S)={x,t}

Table[S,x] = S → A
Table[S,t] = S → A
Table[A,t] = A → BC
Table[A,x] = A → x
Table[B,t] = B → t
Table[C,v] = C → v

Generalizing construction (II)

• Handle -productions
 Example grammar: S→ Ax A → ab | ε (A is nullable)

 Language has two strings {abx, x}

 S → Ax → abx

 S → Ax → x

• Two problems:
– Where should production A → ε go in parsing table??

• Insert A → ε into Table[A,x] if x in FOLLOW(A)

– Where should S → Ax go in parsing table?

• If we just look at FIRST(A), we miss the fact that the
lookahead symbol might also be x because A is NULLABLE

• Enter production S → Ax into Table[A,t] for all t for which
t ∈ FIRST(Ax)

40

Constructing parsing table

• Enter production A → Y1…Yn into Table[A,t] for all t
such that
– t ∈ 𝐹𝐼𝑅𝑆𝑇 𝑌1 … 𝑌𝑛

–  ∈ 𝐹𝐼𝑅𝑆𝑇 𝑌1. . 𝑌𝑛 𝑎𝑛𝑑 𝑡 ∈ 𝐹𝑂𝐿𝐿𝑂𝑊(𝐴)

• Example
 S→ A

 A → BC | x

 B → t | 

 C → v | 

NULLABLE = {A,B,C}

FIRST(A)={x,t,v,}

FIRST(B)={t,}

FIRST(C)={v,}

FIRST(S)={x,t,v,$}

FOLLOW(A)={$}

FOLLOW(B)={v,$}

FOLLOW(C)={$}

FOLLOW(S)={$}

A → BC is in table entries for t,v,$ S→A is in table entries for x,t,v,$
B → ε is in table entries for v,$ C→ ε is in table entries for $

Non-trivial example

• Grammar for arithmetic expressions

 S →E

 E → E+T | T

 T → T*F | F

 F → (E) | int

• Grammar is not LL(1)

• Massaged grammar

 S → E $
 E → T E’

 E’ → + T E’ | 

 T → F T’

 T’ → * F T’ | 

 F → (E) | int

• Nullable = {E’,T’}

• FIRST
– E = {(,int}

• FOLLOW
– E’ ={$,)}

– T’ = {$,),+}

– S = {$}

+ * () int $

S S→E $ S→E $

E E→T E’ E→T E’

E’ + T E’ E’→  E’→ 

T T→F T’ T→F T’

T’ T’→ T’→*FT’ T’→ T’→

F F→(E) F→int

CS 412/413 Spring 2008 Introduction to Compilers 43

Non-SLL(1) grammars

• Construction of predictive parse table for grammar results in
conflicts

S → S+S | S*S | num

FIRST(S+S) = FIRST(S*S) = FIRST(num) = { num }

 num + * 

S →num, →S+S, →S*S

CS 412/413 Spring 2008 Introduction to Compilers 44

Summary

• SLL(k) grammars

– left-to-right scanning

– leftmost derivation

– can determine what production to apply from the next k
symbols

– Can automatically build predictive parsing tables

• Predictive parsers

– Can be easily built for SLL(1) grammars from the parsing
tables

– Also called recursive-descent, or top-down parsers

• For Bali grammar, we can write simple recursive-
descent parser that consists of a set of mutually
recursive procedures
– one procedure for each non-terminal in the grammar

• responsible for reading in a substring and parsing it as that
non-terminal

– body of procedure is a switch/case statement that
looks at the next token and decides which production
to use for that non-terminal

• Hand-crafted recursive-descent parsers can handle
some non-SLL(1) grammars using ad hoc techniques

– more difficult to do in table-driven approach

Assignment

Helper class: SamTokenizer

• Read the on-line code for
– Tokenizer: interface
– SamTokenizer: code

• Code lets you
– open file for input:

• SamTokenizer f = new SamTokenizer(String-for-file-name)

– examine what the next thing in file is: f.peekAtKind:()→ TokenType
• TokenType: enum {INTEGER, FLOAT, WORD, OPERATOR,…}

– INTEGER: such as 3, -34, 46
– WORD: such as x, r45, y78z (variable name in Java)
– OPERATOR: such as +, -, *, (,) , etc.
– ….

– read next thing from file (or throw TokenizerException):
• f.getInt/peekInt () → int
• f.getWord/peekWord:()→ String
• f.getOp/peekOp:()→ char
• get eats up token from file, while peek does not advance the pointer into

the file

http://www.cs.utexas.edu/~pingali/CS375/2008fa/lectures/Tokenizer.java

• Useful methods in SamTokenizer class:
– f.check(char c): char → boolean

• Example: f.check(‘*’); //true if next thing in input is *
• Check if next thing in input is c

– if so, eat it up and return true
– otherwise, return false

– f.check(String s): String → boolean
• Example of its use: f.check(“if”);
• Check if next word in input matches s

– if so, eat it up and return true
– otherwise, return false

– f.checkInt(): () → boolean
• check if next token is an integer and if so, eat it up and return true
• otherwise, return false

– f.match(char c): char → void
• like f.check but throws TokenizerException if next token in input is not “c”

– f.match(String s): string → void
• (eg) f.match(“if”)

Recognizer for simple

expressions

• Input: file

• Output: true if a file contains a single expression as

defined by this grammar, false otherwise

• Note: file must contain exactly one expression

File: (2+3) (3+4)

 will return false

Expression → integer

Expression → (Expression + Expression)

Parser for expression language

static boolean expParser(String fileName) {//parser for expression in file

 try {

 SamTokenizer f = new SamTokenizer (fileName);

 return getExp(f) && (f.peekAtKind() == Tokenizer.TokenType.EOF) ;//must be at EOF

 } catch (Exception e) {

 System.out.println("Aaargh");

 return false;

 }

}

static boolean getExp(SamTokenizer f) {

 switch (f.peekAtKind()) {

 case INTEGER: //E -> integer

 {f.checkInt();

 return true;

 }

 case OPERATOR: //E ->(E+E)

 return f.check('(') && getExp(f) && f.check('+') && getExp(f) && f.check(')');

 default:

 return false;

 }

}

Note on boolean operators

• Java supports two kinds of boolean operators:
– E1 & E2:

• Evaluate both E1 and E2 and compute their conjunction
(i.e.,“and”)

– E1 && E2:
• Evaluate E1. If E1 is false, E2 is not evaluated, and value of

expression is false. If E1 is true, E2 is evaluated, and value of
expression is the conjunction of the values of E1 and E2.

• In our parser code, we use &&
– if “f.check(‘(‘) returns false, we simply return false

without trying to read anything more from input file.
This gives a graceful way to handling errors.

(3 + (34 + 23))

getExp()

(3 + (34 + 23))

getExp()

(3 + (34 + 23))

getExp()

(3 + (34 + 23))

getExp()

(3 + (34 + 23))

getExp()

Tracing recursive calls to getExp

Modifying parser to do
 SaM code generation

• Let us modify the parser so that it generates SaM
code to evaluate arithmetic expressions: (eg)

 2 : PUSHIMM 2

 STOP

(2 + 3) : PUSHIMM 2

 PUSHIMM 3

 ADD

 STOP

Idea

• Recursive method getExp should return a string
containing SaM code for expression it has parsed.

• Top-level method expParser should tack on a
STOP command after code it receives from
getExp.

• Method getExp generates code in a recursive way:

– For integer i, it returns string “PUSHIMM” + i + “\n”

– For (E1 + E2),
• recursive calls return code for E1 and E2

– say these are strings S1 and S2

• method returns S1 + S2 + “ADD\n”

CodeGen for expression language

static String expCodeGen(String fileName) {//returns SaM code for expression in file

 try {

 SamTokenizer f = new SamTokenizer (fileName);

 String pgm = getExp(f);

 return pgm + "STOP\n";

 } catch (Exception e) {

 System.out.println("Aaargh");

 return "STOP\n";

 }

}

static String getExp(SamTokenizer f) {

 switch (f.peekAtKind()) {

 case INTEGER: //E -> integer

 return "PUSHIMM " + f.getInt() + "\n";

 case OPERATOR: //E ->(E+E)

 { f.match('('); // must be ‘(‘

 String s1 = getExp(f);

 f.match('+'); //must be ‘+’

 String s2 = getExp(f);

 f.match(')'); //must be ‘)’

 return s1 + s2 + "ADD\n";

 }

 default: return "ERROR\n";

 }

}

(3 + (34 + 23))

getExp()

(3 + (34 + 23))

getExp()

(3 + (34 + 23))

getExp()

(3 + (34 + 23))

getExp()

(3 + (34 + 23))

getExp()

Tracing recursive calls
 to getExp

PUSHIMM 3

PUSHIMM 34
PUSHIMM 23

PUSHIMM 34

PUSHIMM 23

ADD

PUSHIMM 34

PUSHIMM 23

ADD

ADD

PUSHIMM 3

CS 412/413 Spring 2008 Introduction to Compilers 56

Top-Down Parsing

• We can use recursive descent to build an
abstract syntax tree too

CS 412/413 Spring 2008 Introduction to Compilers 57

Creating the AST

abstract class Expr { }

class Add extends Expr {
 Expr left, right;
 Add(Expr L, Expr R) {
 left = L; right = R;
 }
}

class Num extends Expr {
 int value;
 Num (int v) { value = v; }
}

Expr

AddNum

Class Hierarchy

CS 412/413 Spring 2008 Introduction to Compilers 58

AST Representation

+

1 +

+ 5

2 +

3 4

Add

Add Num (5)

Num(1) Add

Num(2) Add

Num(3) Num(4)

How can we generate this structure during
recursive-descent parsing?

(1 + 2 + (3 + 4)) + 5

CS 412/413 Spring 2008 Introduction to Compilers 59

Creating the AST

• Just add code to each parsing routine to create
the appropriate nodes!

• Works because parse tree and call tree have
same shape

• parse_S, parse_S’, parse_E all return an Expr:

void parse_E() Expr parse_E()

void parse_S() Expr parse_S()

void parse_S’() Expr parse_S’()

CS 412/413 Spring 2008 Introduction to Compilers 60

AST Creation: parse_E

Expr parse_E() {
 switch(token) {
 case num: // E → num
 Expr result = Num (token.value);
 token = input.read(); return result;
 case ‘(‘: // E → (S)
 token = input.read();
 Expr result = parse_S();
 if (token != ‘)’) throw new ParseError();
 token = input.read(); return result;
 default: throw new ParseError();
 }
 }

Conclusion

• There is a systematic way of generating parsing tables for
recursive-descent parsers

• Recursive descent parsers were among the first parsers
invented by compiler writers (Irons 61 for Algol-60)

• Ideally, generate parsers directly from grammar
– software maintenance would be much easier

• maintain the “parser-generator” for everyone
• maintain only the specification of your grammar

• Today we have many parser-generators
– Javacc, ANTLR: produce recursive-descent parsers from suitable

grammars
– Yacc, bison: bottom-up parsers from LALR(1) grammars

• History of parsing: (somewhat biased perspective!)
https://jeffreykegler.github.io/Ocean-of-Awareness-
blog/individual/2014/09/chron.html

https://jeffreykegler.github.io/Ocean-of-Awareness-blog/individual/2014/09/chron.html
https://jeffreykegler.github.io/Ocean-of-Awareness-blog/individual/2014/09/chron.html

	Slide 1
	Slide 2: Outline
	Slide 3: Concepts
	Slide 4: Concepts
	Slide 5: Inference rules
	Slide 6: Big picture
	Slide 7: Parsing SLL(1) grammars
	Slide 8: NULLABLE
	Slide 9: Inference rules for NULLABLE
	Slide 10: Computing NULLABLE
	Slide 11: Slicker way to write inference rules
	Slide 12: Lifting
	Slide 13: Another relation: FIRST
	Slide 14: Example
	Slide 15: General FIRST relation
	Slide 16: Inference rule for FIRST
	Slide 17: Example
	Slide 18: Why inference rules?
	Slide 19: FOLLOW
	Slide 20: Inference rules for FOLLOW
	Slide 21: Example for FOLLOW
	Slide 22: Computing all relations
	Slide 23: Summary
	Slide 24: Recursive-descent parsing
	Slide 25: SLL(1) Parsing Goal
	Slide 26: Expression Grammar
	Slide 27: Recursive-Descent Recognizer
	Slide 28: Non-SLL(1) Grammar
	Slide 29: Making a grammar SLL(1)
	Slide 30: General picture: parser for SLL(1) grammar
	Slide 31: Abstraction: predictive parsing table
	Slide 32: Recursive-Descent Parser
	Slide 33: Recursive-Descent Parser
	Slide 34: Recursive-Descent Parser
	Slide 35: Call Tree = Parse Tree
	Slide 36: Constructing parsing tables
	Slide 37: Parsing table (easy case)
	Slide 38: Generalizing construction (I)
	Slide 39: Example
	Slide 40: Generalizing construction (II)
	Slide 41: Constructing parsing table
	Slide 42: Non-trivial example
	Slide 43: Non-SLL(1) grammars
	Slide 44: Summary
	Slide 45: Assignment
	Slide 46: Helper class: SamTokenizer
	Slide 47
	Slide 48: Recognizer for simple expressions
	Slide 49: Parser for expression language
	Slide 50: Note on boolean operators
	Slide 51: Tracing recursive calls to getExp
	Slide 52: Modifying parser to do SaM code generation
	Slide 53: Idea
	Slide 54: CodeGen for expression language
	Slide 55: Tracing recursive calls to getExp
	Slide 56: Top-Down Parsing
	Slide 57: Creating the AST
	Slide 58: AST Representation
	Slide 59: Creating the AST
	Slide 60: AST Creation: parse_E
	Slide 61: Conclusion

