CS 380C: Sample Mid-semester
Exam
Spring 2025

Name:

UT EID:

Problem 1 (20 points max) :
Problem 2 (15 points max) :
Problem 3 (10 points max) :
Problem 4 (25 points max) :

Problem 5 (30 points max) :

Total (100 points max) :

1. (Grammars, 20 points)) Consider the following grammar

S—7Z$%

Z—d|XYZ

Y —elc

X—>Y|a
In these productions, € is the empty string, and the terminal symbols
come from the set {a,c,d,$}. S is the start symbol.

(a) (5 points) Compute the NULLABLE relation for the grammar.
(b) (5 points) Compute the FIRST relation for the grammar.
(¢) (7 points) Compute the FOLLOW relation for the grammar.

(d) (3 points) Use these relations to determine whether the gram-
mar can be parsed by a recursive-descent parser.

Explain each answer briefly.

(a) NULLABLE = {X,Y}
(b) i. FIRST(Y) = {e,c}
ii. FIRST(X) = {a,ec}
iii. FIRST(Z) ={d,a,c}
iv. FIRST(S) = {d,a,c}}
(c) i. FOLLOW(Y) = {d,a,c}
ii. FOLLOW(X) = {a,d,c}
iii. FOLLOW(Z) ={$}
(d) No. For example, FOLLOW(Y) includes c, so you don’t know
which production of Y to pick if the look-ahead symbol is c.

2. (Optimization, 15 points)

dp = 0.0
i =20

L: tl = 1%8
t2 = A[tl]
£t3 = 1x8
td = B[t3]
th = t2+t4
dp = dp + tb5
i = 1i+1

if i<n goto L

The intermediate code shown above computes the dot product of
two vectors A and B. The notation A[t1] stands for what you
would expect: load the contents of the memory location whose ad-
dress is the sum of the starting address of array A and the contents
of tl.

(a) (5 points) Explain the following optimizations in a few sen-
tences each, using the intermediate code to illustrate your an-
swers: common subexpression elimination, strength reduction,
induction variable elimination.

1*8 1s computed twice so it is an opportunity for common
subexpression elimination.

strength reduction: i is an induction variable incremented by
1 each time through the loop so the expression 1*8 can be
strength reduced to t1 =tl + 8.

induction variable elimination: tl, i, t3 are induction variables
so we can eliminate two of them.

(b) (10 points) Use these and any other relevant optimizations to
optimize the code shown above. Hint: it might help to think
first of how you would write a highly optimized dot product in
this notation.

dp = 0.0

tl =0

bound = n=*8
t2 = A[tl]
td = B[tl]
th = t2«t4
dp = dp + tb5
tl = t1+8

if tl<bound goto L

3. (Dataflow analysis, 10 points) In this problem, you need to for-
mulate dataflow equations to solve certain problems. You need to
specify (i) the domain, (ii) whether the problem is forward or back-
ward, (iii) the dataflow equation for an assignment statement, (iv)
the confluence operator, (v) whether we need to compute the least
or greatest solution, and (vi) how to initialize the unknowns in the
set of dataflow equations.

(a) (5 points) A variable is said to be possibly uninitialized if there
is a path in the control-flow graph from START to a use of that
variable that does not pass through a definition of that vari-
able. Formulate the problem of computing the set of possibly
uninitialized variables of a procedure as a dataflow analysis
problem.

(b) (5 points) A variable is said to be definitely uninitialized if all
paths in the control-flow graph from START to a use of that
variable do not pass through a definition of that variable. For-
mulate the problem of computing the set of definitely uninitial-
ized variables of a procedure as a dataflow analysis problem.

(a) * Domain = power-set of variables in program
* Forward-flow problem
* OUT[START] = set of all variables in program
* assignment: x = e KILL = {x} GEN = {}
* Confluence operation = union
* Find least solution

(b) * Domain = power-set of variables in program
* Forward-flow problem
* OUT[START] = set of all variables in program
» assignment: x = e KILL = {x} GEN = {}
* Confluence operation = intersection
* Find greatest solution

4. (Control dependence, 25 points)

(a) (8 points) Compute the dominance relation for the control-flow
graph shown below. Your answer should be in the form of a
table as shown in lecture.

(b) (8 points) Compute the post-dominance relation for the control-
flow graph shown below.

(¢) (9 points) Compute the (Pingali/Bilardi version) control-dependence
relation for this control-flow graph. Your answer should be in
the form of a table in which the rows are CFG edges and the
columns are vertices as discussed in class.

END

Figure 1: A control-flow graph

(a) * dom(START) = {START}
* dom(A) = {START,A}
* dom(B) = {START,A,B}
* dom(C) = {START,A,C}
» dom(D) = {START,A,C,D}
» dom(E) = {START,A,C,E}
» dom(F) = {START,A,C,F}
» dom(G) = {START,A,C,G}
* dom(END) = {START,END}
(b) Compute the post-dominance relation for the control-flow graph
shown below.
* pdom(START) = {START,END}
* pdom(A) = {END,C,G,A}
* pdom(B) = {C,B,G,END}
* pdom(C) = {END,G,C}
» pdom(D) = {END,G,D}
* pdom(E) = {END,F,G,E}
* pdom(F) = {END,G,F}
* pdom(G) = {END,G}
* pdom(END) = {END}
(¢) (9 points) Compute the (Pingali/Bilardi version) control-dependence
relation for this control-flow graph. Your answer should be in

the form of a table in which the rows are CFG edges and the
columns are vertices as discussed in class.

cd(START—A) = {A,C,G}
cd(START—END) = {}
cd(A—B) = {B}
cd(A—C) = {}

cd(C—D) = {D}

cd(C—E) = {E,F}
cd(D—F) = {F}

cd(D—G) = {}

cd(F—G) = {}

cd(F—B) = {C,B}

5. (Cultural knowledge about compilers, 30 points)) Answer each of
the following questions briefly.

(a) (4 points) What was the first high-level programming language?
Who is credited with leading the team that built the compiler
for this language?

FORTRAN, Backus

(b) (4 points) If a programming language does not support recur-
sion, we do not need a stack to implement it. True or false?
Explain briefly.

True. You can statically allocate a frame for each procedure.
If you have recursion, you need a frame per procedure invoca-
tion, so you need a stack.

(c) (4 points) Name two optimizations that are usually done using
the abstract syntax tree representation of programs. Name two
optimizations that usually done using a lower-level represen-
tation like 3-address code representation.

Loop interchange, in-line expansion of functions. Common
subexpression elimination, strength reduction.

(d) (2 point) Roughly how many compiler passes are executed by
modern optimizing compilers when compiling programs? Pick
one of the following: (i) between 1 and 10, (ii) between 10 and
100, and (iii) between 100 and 1000.

Between 10 and 100.

(e) (2 points) In the context of compilers and programming lan-
guages, what is the difference between a language and a gram-
mar?

Language is a set of strings. Grammar for language is a finite
set of rules for generating strings in language.

(f) (2 points) What is an ambiguous grammar? Is the following
grammar ambiguous (£ is the start symbol and int is a termi-
nal)? Explain your answer briefly.

E—int | (E+E)|E+E
A grammar is ambiguous if a string in the language can have
more than parse tree. Grammar is ambiguous. Consider 2+3+4.

(g) (2 points) In recursive-descent parsing, FOLLOW sets are needed
only if the grammar has e-productions. True or false? Explain
your answer briefly.

True. If there are no e-productions, we can use FIRST sets to
determine which production to apply for a given non-terminal,
look-ahead symbol combination.

(h) (2 points) In the context of programming languages, what is
aliasing? Why does it complicate program analysis? Explain
in three or four sentences.

Two names for same memory location. You cannot determine
defs and uses by looking only at names.

(i) (4 points) In the context of dataflow analysis, what is meant by
a confluence operator? Explain how you would use the con-
fluence operator to determine whether to compute the greatest
fixpoint or least fixpoint in a dataflow problem.

Confluence operator is used to merge values from domain at
control-flow points where paths come together. If confluence
operator is join, you compute least solution, otherwise greatest
solution.

(j) (4 points) Consider live variable analysis. Show a simple pro-
gram whose dataflow equations have different least and great-
est solutions. Explain briefly which of these solutions you
would compute for live variable analysis.

z =0

y =0

X =Y

while p(z) {z = x + z}
end

At the output of z=x+z, live = {x,z}. This is given by least
solution. However there is another solution {x,y,z} in which
y is spuriously assumed to be live in the loop, which is the
greatest solution to the dataflow equations. We would compute
the least solution.

