9/5/2017

ATLAS Library Generator

Lecture based on these papers:
* “A comparison of empirical and model-driven optimization”
Yotov et al, PLDI 2003
» “Is search really necessary to generate high-performance BLAS
Yotov et al, Proceedings of IEEE, 93(2), 2005
» “Think globally, search locally”
Yotov et al., ICS 2005

’ Overview

s ATLAS: portable BLAS generator
o Implemented by Dongarra (UTK), Demmel(UCB) et al.
o We will focus on MMM

= Importance: popularized the idea of auto-tuning
o Generate-and-test
o Program generator to generate program variants
o Test performance of variant by running program

m Program variants in ATLAS

o lterative blocked kernels for different levels of memory
hierarchy

m Auto-tuning useful for library generators
o Large upfront cost for generate-and-test

’ BLAS

m Let us focus on MMM:
for (int i = 0; i < M; i++)
for (int j = 0; j < N; j++)
for (int k = 0; k < K; k+)
CLi10] += ALIIKI*BIKIL]
= Properties
o Very good reuse: O(N2) data, O(N?3) computation
o Many optimization opportunities
= Few “real” dependencies
a Will run poorly on modern machines
= Poor use of cache and registers
= Poor use of processor pipelines

= Key optimization
o Blocking/tiling to improve temporal locality

:
| Why blocking?
]
for bi = 1 ,N,B |
for bj = 1,N,B el EH
for bk = 1,N,B
for i = bi, min(bi+B-1,N)

for j = bj, min(bj+B-1,N)
for k = bk, min(bk+B-1,N)

1| —=x c
* Assume blocks fit in cache during block computation
« # of cache misses for block data = 3B?/L (L: line size)
« # of block computations = (N/B)?
« Total number of misses = (N/B)® * (3B2/L) = 3N3/BL
« High-level picture:

» number of cache misses decreases with block size

as long as working set of block computation fits in cache

y(i) = y(i) + A(i,j)*x(j)

9/5/2017

| Optimal block size

—J—
forl=1,B g
ford=1,B If
forKk=1,B A
C(1,J) = C(1,J) + A(LK)*B(K,J) l - B B g

= Easy computation
o Need space in cache for 3 blocks of B2
a So choose largest B for which 3B2<C
= Careful accounting: to avoid capacity misses, need space in cache for
o block of B
a rowof A
o one element (line) of C
o loop order determines which matrices
= For our problem:
a B2+ B +L <C (with optimal replacement)
o B2+ 2B < C (with LRU replacement)
a In either case, we get B ~ sqrt(C)

MMM experiments

L1 Cache Miss Ratio for Intel Pentium I1I ptimal value of B

~ MMM with N = 1...1300
~ 16KB 32B/line 4-way 8-byte elements
[orrese o ived]

High-level picture of high-performance
MMM code

= Block the code for each level of memory
hierarchy
o Registers: requires loop unrolling
a L1 cache

= Choose block sizes at each level using the
theory described previously

o Useful optimization: choose block size at level
L+1 to be multiple of the block size at level L

| Importance of multi-level blocking

Uraspas 11§
2000

Mubi, ATLAS. Unlanshad
stive, Mt ATLAS, COwS
[aee B

1500 |-

1000

MFlops

P
v
[ssse80,,5000000 *Pap

soo b (B

Py I ——
0 1000 2000 3000 4000 5000
Matrix Siza

“An Experimental Comparison of Cache-oblivious and Cache-conscious programs”
Yotov et al, SPAA 2007

9/5/2017

| ATLAS

Library generator for MMM and other BLAS

Blocks only for registers and L1 cache

Uses search to determine block sizes, rather

than the analytical formulas we used

o Search takes more time, but we do it once when

library is produced

Let us study structure of ATLAS in little more

detail

| Study in Yotov et al. paper
m Original ATLAS Infrastructure

GFLOPS

L1Size NB

Detect ATLAS Search [WUNUKU | ATLAS MM
Hardware NR Engine xFetch)| Code Generator
MulAdd MulAdd (MMCase)

L Latenc,

s Model-Based ATLAS Infrastructure
L1Size NB
Detect [Lissize | ATLAS MM
Ha:‘]\;ev(;re - I:ﬁ‘ze Model M‘iF:iru Code Generator
Parameters Mu‘:ﬂd [w;‘:ndcd (MMCase)

Compile,
Execute,
Measure

MiniMMM
Source

MiniMMM
Source

Parameters in ATLAS code

Cache-level blocking (tiling)

a Atlas blocks only for L1 cache

a NB: L1 cache time size

Register-level blocking

o Important to hold array values in registers
o MU,NU: register tile size

Filling the processor pipeline

o Unroll and schedule operations

o Latency, xFetch: scheduling parameters
Versioning

a Dynamically decide which way to compute
Back-end compiler optimizations: nothing to do with ATLAS
o Scalar Optimizations

o Instruction Scheduling

| Cache-level blocking (tiling)

= Tiling in ATLAS
a Only square tiles
(NBxNBxNB)
o Working set of tile fits in L1
a Tiles are usually copied to X
continuous storage

o Special “clean-up” code
generated for boundaries K

<NB>

s Mini-MMM

for (int j = 0; j < NB; j++)

for (int i = 0; i < NB; i++)
for (int k = 0; k < NB; k#+)

<NB>
N

CLiILi += ALITIK] * BIKILi1

= NB: Optimization parameter

9/5/2017

| Register-level blocking

= Micro-MMM
o A:MUx1
o B:1xNU <NU>
o C:MUxNU
o MUxNU+MU+NU registers \X
= Unroll loops by MU, NU, and KU F& v
= Mini-MMM with Micro-MMM inside
for (int j = 0; j < NB; j += NU)
< NB; i += MU) B
j..i+NU-1] into registers
Dk < NB: k#+)
MU-1,K] into registers <~—NB—>

J+NU-1] into registers
ly A’s and B”s and add to C’s
SiHMU-1, .. j+NU-1]

7

<MU>
R

= Special clean-up code required if
NB is not a multiple of MU,NU,KU —K—>
= MU, NU, KU: optimization parameters Al

<« NB—>

’ Scheduling

Memory

= FMA Present? Operations
. Memory
= Schedule Computation Computation perations
o Using Latency Memory
Computatio Operations

= Schedule Memory Operations
o Using IFetch, NFetch,FFetch

Computation

Memory

Operations } NFetch Loads

Computation

Memory

Oremins } NFetch Loads

Computation

» Latency, xFetch: optimization parameters

’ Search Strategy

= Multi-dimensional optimization problem:
o Independent parameters: NB,MU,NU KU, ...
o Dependent variable: GFlops
o Function from parameters to variables is given implicitly; can be
evaluated repeatedly
= One optimization strategy: orthogonal line search
o Optimize along one dimension at a time, using reference values
for parameters not yet optimized
o Not guaranteed to find optimal point, but might come close

Find Best NB

= Search in following range
o 16 <= NB <= 80
a NB? <= L1Size

= In this search, use simple estimates for other
parameters

o (eg) KU: Test each candidate for
= Full K unrolling (KU = NB)
= No K unrolling (KU = 1)

9/5/2017

| Model-based optimization

= Original ATLAS Infrastructure

MFLOPS
L1Size NB
Detect ATLAS Search [MUNUKU ATLAS MM
Hardware NR Engine xFetch Code Generator
MulAdd MulAdd (MMCase)
L Latency

» Model-Based ATLAS Infrastructure

L1Size NB
Detect L1I3Size MU.NUKU
Hardware NR xFetch
MulAdd MulAdd
L Latency

ATLAS MM
Code Generator
(MMCase)

Compile,
Execute,
Measure

MiniMMM
Source

MiniMMM
Source

Modeling for Optimization Parameters

= Optimization parameters
o NB
= Hierarchy of Models (later)
o MU, NU

:(UMU *NU+ MU + NU + Latency < NR

= maximize subject to L1 Instruction Cache

o Latency

w L+ 1)2]
o MulAdd

= hardware parameter
o xFetch

n setto2

Modeling for Tile Size

= Models of increasing complexity
a 3*NB?s<C
= Whole work-set fits in L1
a NB2+NB+1<C
= Fully Associative
= Optimal Replacement
= Line Size: 1 word

5] BT J{E—IHSS or L +NB+]£S
B B B B B

(NB)

= Line Size > 1 word

el 0

<NB>

<NR>
KJ’
v« I B
[
K ¢ N(@) .
—K ——
o e —— e —
- F,
\: - C

Ne* +3NB+1§E
B B

= LRU Replacement

| Summary of model

FAIA
schise parmcter FAL

[}

« Esimaiiog A and ¥

e = lALURr £1]

| <

’ Experiments

- Ten modern architectures
* Model did well on
*RISC architectures Power 3
«UltraSparc: did better
* Model did not do as well on
«ltanium RI12K
«CISC architectures
« Substantial gap between
ATLAS CGw/S and ATLAS tanium2
Unleashed on some
architectures

Alpha21264

Model

-
- Urleshed

Power 4

UltraSparcllli

Opteron 240

AthlonMP

Pentiuml11

Pentium4

% 50% ATLAS 150% 200%
cew/s
o

9/5/2017

| Some sensitivity graphs for Alpha 21264

wrLors

¥y 88888
Pt
E?:i

8 8 8 8 § 8§

Eliminating performance gaps

= Think globally, search locally

m Gap between model-based optimization and

empirical optimization can be eliminated by
o Local search:

= for small performance gaps

= in neighborhood of model-predicted values
o Model refinement:

= for large performance gaps

= must be done manually

= (future) machine learning: learn new models
automatically

= Model-based optimization and empirical
optimization are not in conflict

Small performance gap: Alpha 21264

ATLAS CGw/S: e
mini-MMM: 1300 MFlops .
NB =72
(MU,NU) = (4,4) 1000

ATLAS Model 0
mini-MMM: 1200 MFlops
NB = 84 "°°
(MU,NU) = (4,4) o

* Local search

«Around model-predicted NB

«Hill-climbing not useful

«Search interval:[NB-lcm(MU,NU),NB+lcm(MU,NU)]
«Local search for MU,NU

«Hill-climbing OK

9/5/2017

’ Large performance gap: Itanium

MMM Performance e

Performance of mini-MMM
+ ATLAS CGw/S: 4000 MFlops =
« ATLAS Model: 1800 MFlops

Problem with NB value
ATLAS Model: 30

ATLAS CGw/S: 80 (search space max) e e ww m

Local search will not solve problem. NB Sensitivity

Itanium diagnosis and solution

= Memory hierarchy
o L1 data cache: 16 KB
a L2 cache: 256 KB
o L3 cache: 3 MB
= Diagnosis:
o Model tiles for L1 cache
On Itanium, FP values not cached in L1 cache!
Performance gap goes away if we model for L2 cache (NB = 105)

Obtain even better performance if we model for L3 cache
(NB = 360, 4.6 GFlops)

= Problem:

a Tiling for L2 or L3 may be better than tiling for L1

o How do we determine which cache level to tile for??
» Our solution: model refinement + a little search

a Determine tile sizes for all cache levels

a Choose between them empirically

0D oo

’ Large performance gap: Opteron

5
15

1
wross, 1

2
n
0
9

s
7
]
N
a
2
1

T234567600nRBE5E

MMM Performance

Performance of mini-MMM
« ATLAS CGw/S: 2072 MFlops
* ATLAS Model: 1282 MFlops

Key differences in parameter values:MU/NU
« ATLAS CGw/S: (6,1)
+ ATLAS Model: (2,1)

MU,NU Sensitivit:

| Opteron diagnosis and solution

m Opteron characteristics
o Small number of logical registers
o Out-of-order issue
o Register renaming
m For such processors, it is better to

o let hardware take care of scheduling dependent
instructions,

o use logical registers to implement a bigger register tile.

= x86 has 8 logical registers
o - register tiles must be of the form (x,1) or (1,x)

9/5/2017

’ Refined model

Lo v |AEUFp + 1
o s

« Estimating Al and Vo

Mur Ny + Moy £ Mo + L. < Nn
1 M, Ny

3§ Solve constraist for u
N AR)

1) sohe c

3 Ne 1)
o1 I8 My < Ni: then swaps Ay and N
71 Wekned Mude 1f N < 1 then
- My Nu
i

- FMa- 1
o Estimating ¥y

My < X0

+[AR] o s S8
H ¥ B,

Trim ¥z, 30 moake 8 o multigde of Afyr, N, sl 2

o Estimaties A
Ulrwoss fe s the masinwm vals for which mini-MMM fits
in the LI instrection e, Trim Koo b mahe 0 divids Ny

+ Estimating Fr. 7, and ¥,

Bottom line

Alpha21264

Power3

« Refined model is not complex. Power 4
« Refined model by itself eliminates
most performance gaps.

« Local search eliminates all UltraSparcllli
performance gaps.

R12K

Itanium2

Opteron 240

AthlonMP

Pentiuml11

Pentium 4

% 50% ATLAS 150% 200%
cow/s
S

Performance of MMM code produced by

Intel’s Itanium compiler (-O3)

30

25

20

factor faster than -02

GFLOPS relative to -02; bigger is better

92% of Peak
Performance

Goto BLAS obtains close to 99% of peak, so compiler is pretty good!

| Things to think about

= What is the space of program variants?
o Space must include the optimal point or at least points
close to it in performance
o Question: what kinds of MMM implementations are not
explored by ATLAS?
= What is the search strategy and is it guaranteed to
find the optimal (or at least very good) point?
o ATLAS uses orthogonal line search
o One general problem: you spend much more time executing non-
optimal program variants than the optimal one!
= Some notion of importance sampling might be useful if search time matters
= What were the key approximations made in the
analytical performance model?
o Need to look at model used for each parameter
o Are these approximations reasonable?

