
Memory Consistency Models

Some material borrowed from Sarita Adve’s (UIUC) 
tutorial on memory consistency models.
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Uniprocessor execution

• Processors reorder operations to improve performance
• Constraint on reordering: must respect dependences

– data dependences must be respected: loads/stores 
to a given memory address must be executed in 
program order

– control dependences must be respected
• In particular, 

– stores to different memory locations can be performed out of program order
               store v1, data                                store b1, flag
               store b1, flag                          store v1, data

– loads to different memory locations can be performed out of program order
                load flag, r1                                    load data,r2
                load data, r2                            load flag, r1

– load and store to different memory locations can be performed out of program order
 



Example of hardware reordering

Memory systemProcessor

Store buffer

Load bypassing

• Store buffer holds store operations that need to be sent to memory
• Loads are higher priority operations than stores since their results are
  needed to keep processor busy, so they bypass the store buffer
• Load address is checked against addresses in store buffer, so store
  buffer satisfies load if there is an address match
• Result: load can bypass stores to other addresses



Problem with reorderings
• Reorderings can be performed either by the 

compiler or by the hardware at runtime
– static and dynamic instruction reordering

• Problem: uniprocessor operation reordering 
constrained only by dependences can result in 
counter-intuitive program behavior in shared-
memory multiprocessors.



Simple shared-memory machine 
model

MEMORY

P1 P3P2 Pn

• All shared-memory locations are stored in global memory.
• Any one processor at a time can grab memory and perform 
  a load or store to a shared-memory location.
• Intuitively, memory operations from the different processors 
  appear to be interleaved in some order at the memory.



Example (I) 

Code:
Initially A = Flag = 0

P1      P2 
A = 23;     while (Flag != 1) {;} 
Flag = 1;     ... = A; 

    Idea: 
– P1 writes data into A and sets Flag to tell P2 that data 

value can be read from A. 
– P2 waits till Flag is set and then reads data from A.



Execution Sequence for (I)
Code:
Initially A = Flag = 0
P1     P2 
A = 23;     while (Flag != 1) {;} 
Flag = 1;    ... = A; 

Possible execution sequence on each processor:
P1     P2 
Write, A, 23    Read, Flag, 0 
Write, Flag, 1    Read, Flag, 1 
     Read, A, ?

Problem: If the two writes on processor P1 can be reordered, it is 
possible for processor P2 to read 0 from variable A. 



Example 2
Code: (like Dekker’s algorithm)
Initially Flag1 = Flag2 = 0
P1     P2 
Flag1 = 1;    Flag2 = 1; 
If (Flag2 == 0)                     If (Flag1 == 0) 
   critical section       critical section  

Possible execution sequence on each processor:
P1     P2 
Write, Flag1, 1   Write, Flag2, 1 
Read, Flag2, 0   Read, Flag1, ?? 
     



Execution sequence for (II)
Code: (like Dekker’s algorithm)
Initially Flag1 = Flag2 = 0
P1     P2 
Flag1 = 1;   Flag2 = 1; 
If (Flag2 == 0)                          If (Flag1 == 0) 
   critical section       critical section  

Possible execution sequence on each processor:
P1     P2 
Write, Flag1, 1   Write, Flag2, 1 
Read, Flag2, 0   Read, Flag1, ?? 
     
 
      Most people would say that P2 will read 1 as the value of Flag1.
      Since P1 reads 0 as the value of Flag2, P1’s read of Flag2 must happen before P2 

writes to Flag2. Intuitively, we would expect P1’s write of Flag to happen before P2’s 
read of Flag1.

      However, this is true only if reads and writes on the same processor to different 
locations are not reordered by the compiler or the hardware.

      Unfortunately, this is very common on most processors (store-buffers with load-
bypassing).



Lessons
• Uniprocessors can reorder instructions subject only to 

control and data dependence constraints
• These constraints are not sufficient in shared-memory 

multiprocessor context
– simple parallel programs may produce counter-

intuitive results
• Question: what constraints must we put on uniprocessor 

instruction reordering so that
– shared-memory programming is intuitive
– but we do not lost uniprocessor performance?

• Many answers to this question
– answer is called memory consistency model 

supported by the processor



Consistency models
- Consistency models are not about memory operations 

from  different processors.
- Consistency models are not about dependent memory 

operations in a single processor’s instruction stream 
(these are respected even by processors that reorder 
instructions).

- Consistency models are all about ordering constraints on 
independent memory operations in a single processor’s 
instruction stream that have some high-level 
dependence (such as locks guarding data) that should 
be respected to obtain intuitively reasonable results.



Simple Memory Consistency Model
• Sequential consistency (SC) [Lamport]

– result of execution is as if memory operations of 
each process are executed in program order

MEMORY

P1 P3P2 Pn



Program Order  
Initially X = 2
P1       P2 
…..      …..
r0=Read(X)     r1=Read(X)
r0=r0+1      r1=r1+1
Write(r0,X)     Write(r1,X) 
…..      …… 

Possible execution sequences:

P1:r0=Read(X)  P2:r1=Read(X)
P2:r1=Read(X)  P2:r1=r1+1
P1:r0=r0+1  P2:Write(r1,X)
P1:Write(r0,X)  P1:r0=Read(X)
P2:r1=r1+1  P1:r0=r0+1
P2:Write(r1,X)  P1:Write(r0,X)
x=3   x=4



Atomic Operations
- sequential consistency has nothing to do with atomicity 

as shown by example on previous slide
- atomicity: use atomic operations such as exchange

- exchange(r,M): swap contents of register r and 
location M                   

    r0 = 1;
    do exchange(r0,S) 
         while (r0 != 0); //S is memory location
    //enter critical section
      …..
    //exit critical section
    S = 0;



Sequential Consistency
• SC constrains all memory operations:

• Write → Read

• Write → Write 
• Read → Read, Write

- Simple model for reasoning about parallel programs
- You can verify that the examples considered earlier work 

correctly under sequential consistency.
- However, this simplicity comes at the cost of uniprocessor 

performance.
- Question: how do we reconcile sequential consistency model 

with the demands of performance?



Relaxed consistency model:
Weak ordering

- Introduce concept of a fence operation:

- all memory operations before fence in program order must complete 
before fence is executed

- all memory operations after fence in program order must wait for fence 
to complete

- fences are performed in program order
- Implementation of fence: 

- processor has counter that is incremented when memory op is issued, and 
decremented when memory op is completed

- Example: PowerPC has SYNC instruction

- Language constructs:
- OpenMP: flush
- All synchronization operations like lock and unlock act like a fence



Weak ordering picture

fence

fence

fence

program
execution

Memory operations in these
regions can be reordered



Example (I) revisited
Code:
Initially A = Flag = 0

P1      P2 
A = 23;
flush;     while (Flag != 1) {;} 
Flag = 1;    ... = A; 

    Execution: 
– P1 writes data into A
– Flush waits till write to A is completed
– P1 then writes data to Flag
– Therefore, if P2 sees Flag = 1, it is guaranteed that it will read the 

correct value of A even if memory operations in P1 before flush and 
memory operations after flush are reordered by the hardware or 
compiler.



Example II revisited

20

Flag1 = 1;
flush;
if (Flag2 == 0)
   //Critical

Flag2 = 1;
flush;
if (Flag1 == 0)
   //Critical

Flushes ensure that reads do not occur before writes

Now can guarantee that both processors will not enter critical section



Another relaxed model: 
release consistency

- Further relaxation of weak consistency

- Synchronization accesses are divided into 
- Acquires: operations like lock
- Release: operations like unlock

- Semantics of acquire:
- Acquire must complete before all following memory accesses

- Semantics of release: 
- All memory operations before release must complete before release

- However,
- accesses after release in program order do not have to wait for release

- operations which follow release and which need to wait must be protected by an 
acquire

- acquire does not wait for accesses preceding it



Example

acq(A)

L/S

rel(A)

L/S

acq(B)

L/S

rel(B)

Which operations can be overlapped?



Comments
• In the literature, there are a large number of other 

consistency models
– processor consistency
– Location consistency
– total store order (TSO)
– ….

• It is important to remember that all of these are 
concerned with reordering of independent memory 
operations within a processor.

• Easy to come up with shared-memory programs that 
behave differently for each consistency model.

• In practice, weak consistency/release consistency seem 
to be winning.



Memory coherence



Memory system 

MEMORY

P1 P3P2 Pn

• In practice, having a single global shared memory limits performance.
• For good performance, caching is necessary even in uniprocessors.
• Caching introduces new problem in multiprocessor context: memory 
  coherence.

 



Cache coherence problem

• Shared-memory variables like Flag1 and Flag2 need to 
be visible to all processors.

• However, if a processor caches such variables in its own 
cache, updates to the cached version may not be visible 
to other processors.

• In effect, a single variable at the program level may end 
up getting “de-cohered” into several ghost locations at 
the hardware level.

• Coherent memory system: provides illusion that each 
memory location at the program level is implemented as 
a single memory location at the architectural level



Understanding Coherence: 
Example 1

Initially A = B = C = 0 
P1        P2         P3                              P4
A = 1;    A = 2;     while (B != 1) {;}         while (B != 1) {;} 
B = 1;    C = 1;     while (C != 1) {;}         while (C != 1) {;}
                            tmp1 = A;     1             tmp2 = A;    2

• Can happen if updates of A reach P3 and P4 in different order

• Coherence protocol must serialize writes to same location
– Writes to same location should be seen in same order by all

 



Understanding Coherence: 
Example 2

Initially A = B = 0 
P1   P2   P3 
A = 1  while (A != 1) ; while (B != 1) ; 
  B = 1;   tmp = A 

P1   P2   P3 
Write, A, 1 
         Read, A, 1 
        Write, B, 1 
          Read, B, 1 
          Read, A,   0

• Can happen if read returns new value before all copies see it
• All copies must be updated before any processor can access new value.



Write atomicity
    These two properties

– writes to same location must be seen in the 
same order by all processors

– all copies must be updated before any 
processor can access new value

are known as write atomicity.



Cache Coherence Protocols
• How to find cached copies?

– Directory-based schemes: look up a directory 
that keeps track of all cached copies

– Snoopy-cache schemes: works for bus-based 
systems

• How to propagate write? 
– Invalidate -- Remove old copies from other 

caches 
– Update -- Update old copies in other caches 

to new values



Summary

• Two problems: memory consistency and memory coherence
• Memory consistency model

– what instructions is compiler or hardware allowed to reorder?
– nothing really to do with memory operations from different 

processors
– sequential consistency: perform memory operations in program 

order
– relaxed consistency models: all of them rely on some notion of a 

fence operation that demarcates regions within which reordering 
is permissible

• Memory coherence
– Preserve the illusion that there is a single logical memory 

location corresponding to each program variable even though 
there may be lots of physical memory locations where the 
variable is stored



Note: Aggressive 
Implementations of SC 

• Can actually do optimizations with SC with some 
care 
– Hardware has been fairly successful
– Limited success with compiler 

• But not an issue here
– Many current architectures do not give SC
– Compiler optimizations on SC still limited 



Outline
• What is a memory consistency model?
• Implicit memory model
• Relaxed memory models (system-centric)
• Programmer-centric approach for relaxed 

models
• Application to Java
• Conclusions



Classification for Relaxed 
Models

• Typically described as system optimizations - system-
centric

• Optimizations
– Program order relaxation:

• Write → Read
• Write → Write 
• Read → Read, Write

– Read others’ write early
– Read own write early

• All models provide safety net
• All models maintain uniprocessor data and control 

dependences, write serialization 



Some Current System-Centric 
Models

•SYNC• • • • • • PowerP
C

•various 
MEMBARs

• • • • • RMO
•MB, WMB• • • • • Alpha

•release, 
acquire, nsync, 
RMW

• • • • • • RCpc

•release, 
acquire, nsync, 
RMW

• • • • • RCsc
•synchronization• • • • • WO
•RMW, STBAR• • • • PSO
•RMW• • • • PC
•RMW• • • TSO

•serialization 
instructions

• • IBM 370

• Safety Net• Read 
Own 
Write 
Early

• Read 
Others’ 

Write Early

• R 
→RW 
Order

• W 
→W 

Order

• W 
→R 

Order

• Relaxati
on:



System-Centric Models: 
Assessment

• System-centric models provide higher 
performance than SC

•  BUT  3P criteria    
– Programmability?     

• Lost intuitive interface of SC      
– Portability?     

• Many different models      
– Performance?     

• Can we do better?       
– Need a higher level of abstraction  



Outline
• What is a memory consistency model?
• Implicit memory model - sequential consistency
• Relaxed memory models (system-centric)
• Programmer-centric approach for relaxed 

models
• Application to Java
• Conclusions



An Alternate Programmer-
Centric View

• Many models give informal software rules for correct 
results

• BUT
– Rules are often ambiguous when generally applied
– What is a correct result?

• Why not
– Formalize one notion of correctness – the base model
– Relaxed model = 

• Software rules that give appearance of base model
• Which base model? What rules? What if don’t obey 

rules?



Which Base Model?
• Choose sequential consistency as base model 
• Specify memory model as a contract    

– System gives sequential consistency   
– IF programmer obeys certain rules

• + Programmability
• + Performance
• + Portability  
• [Adve and Hill, Gharachorloo, Gupta, and 

Hennessy]



What Software Rules?
• Rules must 

– Pertain to program behavior on SC system
– Enable optimizations without violating SC

• Possible rules
– Prohibit certain access patterns
– Ask for certain information
– Use given constructs in prescribed ways
– ??? 

• Examples coming up 



What if a Program Violates 
Rules?

• What about programs that don’t obey the rules?
• Option 1: Provide a system-centric specification

– But this path has pitfalls
• Option 2: Avoid system-centric specification

– Only guarantee a read returns value written to 
its location

–   



Programmer-Centric Models
• Several models proposed 
• Motivated by previous system-centric 

optimizations (and more)
• This talk

– Data-race-free-0 (DRF0) / properly-labeled-1 
model 

– Application to Java



The Data-Race-Free-0 Model: 
Motivation 

• Different operations have different semantics
•          P1            P2 
•          A =  23;           while (Flag != 1)  {;}
•          B =  37;                                     … = B;
•          Flag = 1;                                   … = A; 
• Flag = Synchronization; A, B = Data 
• Can reorder data operations 
• Distinguish data and synchronization 
• Need to    

– - Characterize data / synchronization  
– - Prove characterization allows optimizations w/o violating 

SC    



Data-Race-Free-0: Some 
Definitions

• Two operations  conflict if    
– Access same location  
– At least one is a write   



Data-Race-Free-0: Some 
Definitions (Cont.)

• (Consider SC executions ⇒ global total order)
• Two conflicting operations race if

– From different processors 
– Execute one after another (consecutively)

•          P1     P2 
•          Write, A, 23 
•          Write, B, 37   
•                                                                Read, Flag, 0
•          Write, Flag, 1           
•       Read, Flag, 1
•             Read, B, 

___         Read, 
A, ___  

• Races usually  “synchronization,” others  “data”
• Can optimize operations that never race



Data-Race-Free-0 (DRF0) 
Definition

• Data-Race-Free-0 Program
– All accesses distinguished as either 

synchronization or data
– All races distinguished as synchronization 

» (in any SC execution)

• Data-Race-Free-0 Model
– Guarantees SC to data-race-free-0 programs 
– (For others, reads return value of some write 

to the location) 



Programming with Data-Race-
Free-0

• Information required: 
– This operation never races (in any SC 

execution)
1. Write program assuming SC
2. For every memory operation specified in the program 

do:

Never 
races?

yes
Distinguish as data

Distinguish as synchronization

no

don’t know 
or don’t care



Programming With Data-Race-
Free-0

• Programmer’s interface is sequential 
consistency

• Knowledge of races needed even with SC
• “Don't-know” option helps



Distinguishing/Labeling Memory 
Operations

• Need to distinguish/label operations at all levels  
  
• High-level language   
• Hardware 
– Compiler must translate language label to hardware 

label  
• Tradeoffs at all levels   

– Flexibility  
– Ease-of-use  
– Performance  
– Interaction with other level    



Language Support for 
Distinguishing Accesses

• Synchronization with special constructs
• Support to distinguish individual accesses 



Synchronization with Special 
Constructs

• Example: synchronized in Java
• Programmer must ensure races limited to the special 

constructs
• Provided construct may be inappropriate for some races

– E.g., producer-consumer with Java

• P1            P2 
• A =  23;          while (Flag != 1)  {;}
• B =  37;                               … = B;
• Flag = 1;                              … = A; 



Distinguishing Individual Memory 
Operations

• Option 1: Annotations at statement level
• P1            P2 
• data = ON                           synchronization = ON

– A =  23;               while (Flag != 1)  {;}
– B =  37;                           data = ON

• synchronization = ON               … = B;
– Flag = 1;                                … = A;

• Option 2: Declarations at variable level 
• synch int: Flag  
• data  int:  A, B  



Distinguishing Individual Memory 
Operations (Cont.)

• Default declarations    
– To decrease errors     

• Make synchronization default     
– To decrease number of additional 

labels     Make data 
default     



Distinguishing/Labeling 
Operations for Hardware

• Different flavors of load/store
• - E.g., ld.acq, st.rel in IA-64

• Fences or memory barrier instructions
– - Most popular today  

• E.g., MB/WMB in Alpha, MEMBAR in SPARC V9  

– - For DRF0, insert appropriate fence before/after synch
– - Extra instruction for all synchronization

+ Default = synchronization can give bad performance

• Special instructions for synchronization
• - E.g., Compare&Swap

•    



Interactions Between Language 
and Hardware

• If hardware uses fences, 
• language should not encourage default of 

synchronization 
• If hardware only distinguishes based on special 

instructions, 
• language should not distinguish individual 

operations 
• Languages other than Java do not provide 

explicit support, 
• high-level programmers directly use hardware 

fences 



Performance: Data-Race-Free-0 
Implementations

• Can prove that we can    
– Reorder, overlap data between consecutive 

synchronization  
– Make data writes non-atomic  

• P1            P2 
• A =  23;          while (Flag != 1)  {;}
• B =  37;                               … = B;
• Flag = 1;                              … = A; 

• ⇒ Weak Ordering obeys Data-Race-Free-0



Data-Race-Free-0 
Implementations (Cont.)

• DRF0 also allows more aggressive implementations than WO
• Don't need Data → Read sync, Write sync → Data (like RCsc)

• P1            P2 
• A =  23;          while (Flag != 1)  {;}
• B =  37;                               … = B;
• Flag = 1;                              … = A; 

• Can postpone writes of A, B to Read, Flag, 1
• Can postpone writes of A, B to reads of A, B  
• Can exploit last two observations with 

– Lazy invalidations  
– Lazy release consistency on software DSMs   



Portability: DRF0 Program on 
System-Centric Models

• WO - Direct port
• Alpha, RMO - Precede synch write with fence, follow synch read 

with fence, fence between synch write and read
• RCsc - Synchronization = competing
• IBM 370, TSO, PC - Replace synch reads with read-modify-writes
• PSO - Replace synch reads with read-modify-writes, precede synch 

write with STBAR
• PowerPC - Combination of Alpha/RMO and TSO/PC
• RCpc - Combination of RCsc and PC 



Data-Race-Free-0 vs. Weak 
Ordering

• Programmability    
– DRF0 programmer can assume SC  
– WO requires reasoning with out-of-order, non-

atomicity   
• Performance   

– DRF0 allows higher performance 
implementations  

• Portability   
– DRF0 programs correct on more implementations 

than WO  
– DRF0 programs can be run correctly on all system-

centric models discussed earlier  



Data-Race-Free-0 vs. Weak 
Ordering (Cont.) 

• Caveats   
• Asynchronous programs  
• Theoretically possible to distinguish 

operations better than DRF0 for a given 
system



Programmer-Centric Models: 
Summary

• The idea   
– Programmer follows prescribed rules (for 

behavior on SC) 
– System gives SC  

• For programmer   
– Reason with SC  
– Enhanced portability  

• For system designers   
– More flexibility   



Programmer-Centric Models: A 
Systematic Approach

• In general   
• What software rules are useful?  
• What further optimizations are possible?  

• My thesis characterizes
• Useful rules
• Possible optimizations
• Relationship between the above 



Conclusions
• Sequential consistency limits performance optimizations
• System-centric relaxed memory models harder to program
• Programmer-centric approach for relaxed models

– Software obeys rules, system gives SC
• Application to Java

– Can develop software rules for SC for idioms of interest
– Easier for programmers than system-centric specification


