
1

1

Coherent caches

Adapted from a lecture by Ian Watson, University of Machester

2

Bus-based Shared Memory
Organization

Basic picture is simple :-

CPU
Cache

CPU
Cache

CPU
Cache

Shared Bus

Shared
Memory

3

Organization

• Bus is usually simple physical connection
(wires)

• Bus bandwidth limits no. of CPUs
• Could be multiple memory elements
• For now, assume that each CPU has only a

single level of cache

4

Problem of Memory Coherence

• Assume just single level caches and main
memory

• Processor writes to location in its cache
• Other caches may hold shared copies - these

will be out of date
• Updating main memory alone is not enough

2

5

Example

CPU
Cache

CPU
Cache

CPU
Cache

Shared Bus

Shared
Memory

X: 24

Processor 1 reads X: obtains 24 from memory and caches it
Processor 2 reads X: obtains 24 from memory and caches it
Processor 1 writes 32 to X: its locally cached copy is updated
Processor 3 reads X: what value should it get?

Memory and processor 2 think it is 24
Processor 1 thinks it is 32

Notice that having write-through caches is not good enough

1 2 3

6

Bus Snooping

• Scheme where every CPU knows who has a copy
of its cached data is far too complex.

• So each CPU (cache system) ‘snoops’ (i.e.
watches continually) for write activity concerned
with data addresses which it has cached.

• This assumes a bus structure which is ‘global’, i.e
all communication can be seen by all.

• More scalable solution: ‘directory based’
coherence schemes

7

Snooping Protocols

• Write Invalidate
– CPU wanting to write to an address, grabs a bus

cycle and sends a ‘write invalidate’ message
– All snooping caches invalidate their copy of

appropriate cache line
– CPU writes to its cached copy (assume for now

that it also writes through to memory)
– Any shared read in other CPUs will now miss

in cache and re-fetch new data.

8

Snooping Protocols

• Write Update
– CPU wanting to write grabs bus cycle and

broadcasts new data as it updates its own copy
– All snooping caches update their copy

• Note that in both schemes, problem of
simultaneous writes is taken care of by bus
arbitration - only one CPU can use the bus
at any one time.

3

9

Update or Invalidate?

• Update looks the simplest, most obvious
and fastest, but:-
– Invalidate scheme is usually implemented with

write-back caches and in that case:
• Multiple writes to same word (no intervening read)

need only one invalidate message but would require
an update for each

• Writes to same block in (usual) multi-word cache
block require only one invalidate but would require
multiple updates.

10

Update or Invalidate?

• Due to both spatial and temporal locality,
previous cases occur often.

• Bus bandwidth is a precious commodity in
shared memory multi-processors

• Experience has shown that invalidate
protocols use significantly less bandwidth.

• Will consider implementation details only
of invalidate.

11

Implementation Issues

• In both schemes, knowing if a cached value is not
shared (copy in another cache) can avoid sending
any messages.

• Invalidate description assumed that a cache value
update was written through to memory. If we used
a ‘copy back’ scheme other processors could re-
fetch old value on a cache miss.

• We need a protocol to handle all this.

12

MESI Protocol (1)

• A practical multiprocessor invalidate protocol
which attempts to minimize bus usage.

• Allows usage of a ‘write back’ scheme - i.e. main
memory not updated until ‘dirty’ cache line is
displaced

• Extension of usual cache tags, i.e. invalid tag and
‘dirty’ tag in normal write back cache.

4

13

MESI Protocol (2)

Any cache line can be in one of 4 states (2 bits)
• Modified - cache line has been modified, is

different from main memory - is the only cached
copy. (multiprocessor ‘dirty’)

• Exclusive - cache line is the same as main
memory and is the only cached copy

• Shared - Same as main memory but copies may
exist in other caches.

• Invalid - Line data is not valid (as in simple
cache)

14

MESI Protocol (3)

• Cache line changes state as a function of
memory access events.

• Event may be either
– Due to local processor activity (i.e. cache

access)
– Due to bus activity - as a result of snooping

• Cache line has its own state affected only if
address matches

15

MESI Protocol (4)

• Operation can be described informally by
looking at action in local processor
– Read Hit
– Read Miss
– Write Hit
– Write Miss

• More formally by state transition diagram

16

MESI Local Read Hit

• Line must be in one of MES
• This must be correct local value (if M it

must have been modified locally)
• Simply return value
• No state change

5

17

MESI Local Read Miss (1)

• No other copy in caches
– Processor makes bus request to memory
– Value read to local cache, marked E

• One cache has E copy
– Processor makes bus request to memory
– Snooping cache puts copy value on the bus
– Memory access is abandoned
– Local processor caches value
– Both lines set to S

18

MESI Local Read Miss (2)

• Several caches have S copy
– Processor makes bus request to memory
– One cache puts copy value on the bus

(arbitrated)
– Memory access is abandoned
– Local processor caches value
– Local copy set to S
– Other copies remain S

19

MESI Local Read Miss (3)

• One cache has M copy
– Processor makes bus request to memory
– Snooping cache puts copy value on the bus
– Memory access is abandoned
– Local processor caches value
– Local copy tagged S
– Source (M) value copied back to memory
– Source value M -> S

20

MESI Local Write Hit (1)

Line must be one of MES
• M

– line is exclusive and already ‘dirty’
– Update local cache value
– no state change

• E
– Update local cache value
– State E -> M

6

21

MESI Local Write Hit (2)

• S
– Processor broadcasts an invalidate on bus
– Snooping processors with S copy change S->I
– Local cache value is updated
– Local state change S->M

22

MESI Local Write Miss (1)

Detailed action depends on copies in other
processors

• No other copies
– Value read from memory to local cache (?)
– Value updated
– Local copy state set to M

23

MESI Local Write Miss (2)

• Other copies, either one in state E or more
in state S
– Value read from memory to local cache - bus

transaction marked RWITM (read with intent to
modify)

– Snooping processors see this and set their copy
state to I

– Local copy updated & state set to M

24

MESI Local Write Miss (3)

Another copy in state M
• Processor issues bus transaction marked

RWITM
• Snooping processor sees this

– Blocks RWITM request
– Takes control of bus
– Writes back its copy to memory
– Sets its copy state to I

7

25

MESI Local Write Miss (4)

Another copy in state M (continued)
• Original local processor re-issues RWITM

request
• Is now simple no-copy case

– Value read from memory to local cache
– Local copy value updated
– Local copy state set to M

26

Putting it all together

• All of this information can be described
compactly using a state transition diagram

• Diagram shows what happens to a cache
line in a processor as a result of
– memory accesses made by that processor (read

hit/miss, write hit/miss)
– memory accesses made by other processors that

result in bus transactions observed by this
snoopy cache (Mem read, RWITM,Invalidate)

27

MESI – locally initiated accesses

Invalid

Modified Exclusive

Shared
Read
Hit

Read
Hit

Read
Hit

Read
Miss(sh)

Read
Miss(ex)

Write
Hit

Write
Hit

Write
HitWrite

Miss

RWITM
Invalidate

Mem Read

Mem Read

= bus transaction
28

MESI – remotely initiated accesses

Invalid

Modified Exclusive

Shared

Mem Read

Mem Read
Mem Read

Invalidate

RWITMRWITM

= copy back

8

29

MESI notes

• There are minor variations (particularly to
do with write miss)

• Normal ‘write back’ when cache line is
evicted is done if line state is M

• Multi-level caches
– If caches are inclusive, only the lowest level

cache needs to snoop on the bus

30

Directory Schemes

• Snoopy schemes do not scale because they rely on
broadcast

• Directory-based schemes allow scaling.
– avoid broadcasts by keeping track of all PEs caching a

memory block, and then using point-to-point messages to
maintain coherence

– they allow the flexibility to use any scalable point-to-point
network

31

Basic Scheme (Censier & Feautrier)

• Assume "k" processors.
• With each cache-block in memory:

k presence-bits, and 1 dirty-bit
• With each cache-block in cache:

1valid bit, and 1 dirty (owner) bit• ••

P P

Cache Cache

Memory Directory

presence bits dirty bit

Interconnection Network

– Read from main memory by PE-i:
• If dirty-bit is OFF then { read from main memory; turn p[i] ON; }
• if dirty-bit is ON then { recall line from dirty PE (cache state to

shared); update memory; turn dirty-bit OFF; turn p[i] ON; supply
recalled data to PE-i; }

– Write to main memory:
• If dirty-bit OFF then { send invalidations to all PEs caching that block;

turn dirty-bit ON; turn P[i] ON; ... }
• ... 32

Key Issues

• Scaling of memory and directory bandwidth
– Can not have main memory or directory memory centralized
– Need a distributed memory and directory structure

• Directory memory requirements do not scale well
– Number of presence bits grows with number of PEs
– Many ways to get around this problem

• limited pointer schemes of many flavors

• Industry standard
– SCI: Scalable Coherent Interface

