Control Dependence, Program Analyses
and

The Roman Chariots Problem

Keshav Pingali
Cornell University

Gianfranco Bilardi
Universitadi Padova, Italy

N

Organization

1. Optimal Representation of Control dependence
- Definition
- Isthe control dependence graph (O(|E[*|V|) space/time) optimal ?

2. Our approach:
- Reduce problem to ROMAN CHARIOTS PROBLEM
- Build APT datastructurein O(|E| + |V]) space/time

=> APT isanoptima representation of control dependence

3. Other applications of APT:

- SSA computation in linear time per variable
- SDEG computation in linear time per problem
- DFG computation in linear time per variable
4. Conclusions:
- APT isafactored form of the CDG
which requires ‘filtered search’ to answer queries

Part 1.

What is an
Optimal Representation
of
Control Dependence?

Examples of control dependence

< 2z

PO CPL o
T F T
s1 2 St
T F
m S2 S3
Sl is control dependent on p.true ml
S2 is control dependent on p.false /
p and m are control dependent on START->p m2 Sliscontrol dependent on pl.true
S2 is control dependent on p2.true
STAR S3is control dependent on p2.false
m1 is control dependent on pl.false
“7 m2 is control dependent on START->pl

m is control dependent on START->m

m is control dependent on p.true

p is control dependent on START->m

Sl E p is control dependent on p.true

Sl iscontrol dependent on START->m

Control dependence: (Ferrante,Ottenstein,Warren 1987)

(Nodew is control dependent on edge (u ->v) if

- W postdominates v
- if w ==u, w does not postdominate u.

G

START END
V
e E a b ¢ d e
START START->a |/ | / J
b b->c NV
d
l a
d END c
Control Flow Graph Postdominator Tree Control Dependence Relation

/

-~

Queries on Control Dependence Relation:
- cd(e): set of nodes control dependent on edge e
- conds(v): set of control dependences of node v
- cdequiv(v): set of nodes with same control dependences
as node v (in same equivalence class as v)
START
Y%
E a b ¢ d e &
START->a |/ |/ Vi b
b->c V|
d END
Control Dependence Relation Control Flow Graph
Applications: program analysis, scheduling for pipelines, parallelization

N

N

Optimal Control Dependence Computation

= | A

CDR

Preprocessing

OO

N—

cd \. cdequiv

ae
b®
ceo

conds

a>bh @
START ->a @

J)

uer

Query time for CD, CONDS,CDEQUIV setsis proportional to set size
Space and time for preprocessing should be minimal.

|

/

Worst-case size of control dependence relation:

\Y
E a b ¢ d e f
START>a | | || |« |«
f>a || ||l | |
e->hb VIV S
d->c N

n nested repeat-until loops => size of CDR isn(n+3)

EThe size of the CDR can grow quadratically with program sizeJ

/

Control Dependence Graph (CDG)

« bipartite graph between edges and nodes
 connect node Vv to edge e if node v is control dependent on edge e
« connect nodesin same CDEQUIV classinto rings (not shown)

a
START ->a
b
V b->c
E a b c d e C
START->a |/ | / Vi q
b->c J VY

e

Control Dependence Relation Control Dependence Graph

Query time: Proportional to size of output
Preprocessing : O(JE]*]|V]) space and time

There have been many unsuccessful efforts
to reduce the size of the CDG.

** We therefore conjecture that to enumerate [conds sets]
in time proportional to [the size of the set] requires

a data structure of quadratic size."

[Cytron,Ferrante,Sarkar, PLDI 1990]

10

Part |1

APT

and the

Roman Chariots Problem

11

N

Our Solution:;

- reduce control dependence computation to a graph problem called
Roman Chariots Problem

- design adata structurecalled APT (augmented postdominator tree)

(a) which can be built in O(|E|) space and time, and
(b) which can be used to answer CD,CONDS and CDEQUIV queries

In time proportional to output size.

APT is a data structure for
optimal control dependence computation.

12

Key ldea (1): Exploit structure of relation

Analogy: Postdominator relation

- queries. immediate pdom of node, all pdoms of node
_sizeof relationis O(V 2

- relation istransitive, so build transitive reduction (pdom tree)
in O(|E|) time [Harel,Tarjan]
- qQuery time using pdom tree is optimal

=> There is no point in constructing the entire relation

What structure is there in the control dependence relation?

Control dependence relation:

- nodes that are control dependent on an edge e
form a simple path in the postdominator tree

- inatree, asimple path is uniquely specified by its endpoints

Postdominator tree + endpoints of each control dependence pat
can be built in O(]E]) space and time

/

13

-~

Example:

7

START

d END

Control Flow Graph

V
E a b c d e
START->a | ./ | / J
b->c J S

Control Dependence Relation

END

.

Postdominator Tree Path Array A

\

S

O(|E]) Representation of the Control Dependence Relation

/

14

How can we use the
compact representation of the CDR
to answer queries for
CD,CONDS and CDEQUIYV sets
IiNn time proportional to output size?

15

Roman Chariots Problem

ROMA
Path
Route # ~\|
MILANO BOLOGNA | | [MILANO,ROMA]
VERONA Il | [POMPEII,BOLOGNA]
NAPOLI
VENEZIA 11l | [VENEZIA,ROMA]
POMPEII
CORLEONE
. Cities on route ordered by ancestor relation
Tree: - nodes are cities _ ;
- edges are roads In route [x,y], X is descendant of y

Given a tree T, and an array A of chariot routes specified by endpoints,
design a data structure to answer the following queries in optimal time.

(a) CD(n): Which cities are served by chariot n?
(b) CONDS(w): Which chariots serve city w?
(c) CDEQUIV(wW): Which cities are served by the same chariots that serve w?

/

16

CD(n): Which cities are served by chariot n?

Query procedure: (Similar to FOW 87)

- Look up entry for chariot n in Route Array (say itis[x,y])
- Traversenodesintree T, starting at X and ending at y
- Output all nodes encountered in traversal

(cf. CDG: many routes can share tree nodes/edges)

[CD query time is proportional to output size. }

/

17

CONDS(w): Which chariots serve city w?

END
Route
e Chariot #
. START | | [a€]
1 [C, b]

Query procedure:

for each chariot c in Route Array do
let route of ¢ be [X,y];
if wisan ancestor of x
and w is a descendant of y
then output c; fi

od

Can we avoid examining all routes in Route Array?

/

18

Key Idea (11): Cache route information in tree

At each node ninthe tree, keep alist of chariot # s whose bottom node isn.

END
Route
e Chariot #
. START | | [a€]
11| [chl

d ® (1}
Ci{n}

Query procedure: CONDS(w)

for each descendant d of w do
for each routec =[x,y] inlistat d do

if wisadescendant of y

then output c; fi
od
od

[Query time is proportional to # of descendants + size of all lists at descendants]

N /

19

N

Refinement: Sort each list by decreasing length.

1| [f.d]
e " | [f,cl

{IV,IL,11,1} v | [f,b]

N\
Q N | Route
Chariot #
N | | [f.€]
A% %/(d

f

Query procedure: CONDS(w)

for each descendant d of w do
for each routec =[x,y] inlistat d do

If wisadescendant of y
then output c;
else BREAK; fi od

od

At most one ‘non-overlapping’ path is examined at a descendant =>

[Query time is proportional to size of output + # of descendants J

~

/

20

Step 3: Cache route at multiple nodes.

Q) o {1V}

AVATIRIND, ARGVALIRIRY

Two extremes.
(1) Chariot # stored only at bottom node of route
Space: O(|V| + |A])
Query Time: O(|V| + |Output|)

(2) Chariot # stored at al nodes on route
Space: O(|V[*|A])
Query Time: O(|Output))

Can we have a disciplined caching policy to have linear spac
and optimal query time?

21

Key idea (111): Cache a route at multiple nodes

[Divide tree into ZONES

Query procedure:

Visit only nodes below query node
and in the same zone as query node

- J

E Zone construction: For all nodesv, |[Z] < O JA,/ | +1]

=>Query time |A] +1Z | a+1) Ay |

Caching Rule:

- Nodes are partitioned into
- boundary nodes: lowest nodes in zone
- interior nodes: all other nodes

- Caching rule:
- boundary node: store all chariots serving node
- interior node: store all chariots whose bottom node is that node
- Our agorithm: bottom-up, greedy zone construction
=> gpace requirements < |A] + |V]/d

22

How do we construct zones?

Invariant: For any nodev, |Z vi< alA, | +1
where a isadesign parameter.

Query time for CONDS(v) = O(|A /| + |Z y|)
=0((a +1)]Ay |+ 1)
=O(|Ay])

v

@ Build zones bottom-up, making them as large as possible
w/o violating invariant

v isaleaf node => make v aboundary node
v isaninterior node =>

if(1+ X Z >
(% e Rilgren?ul) > AlAyI+1

then make v a boundary node
else make v an interior node

23

a = 1 (some caching)

@\@START

{}
°og| 4 {}

°f) 5 {START->a h->a, g->b,f->c}
e |6 {}
od | 6 {e>d}

c|5 {f->c}

14 {g->b}

413 (START->ah->g

\

AlA,I+1

24

20

o = >> (no caching)

%@START

Th i {}
°g o {}
of |00 {}
ieoo {}

od |on {e>d}

C loo {f->c}
}b w0 {g->b)

qloo {START->a h->a}

A l+1

26

a = <<(full caching)

@\@START

{START ->a, h->a}
og 1 {START->a h->a,g-> b}

(41) 1 {START->a h->a g->b, f->}
G e | 1 {START->a h->a, g->b, f->c, e->d}
G d | 1 {START->a h->a, g->b, f->c, e->d}
% 1 {START->a h->a, g->b, f->c}

b] 1 {START->a h->ag-> b}
¢al 1 {START->a h->a

\

alAl+1

27

-~

N

Summary of CONDS Approach:

Query Time: (a +1) |A
Space: |A| + |V]|/a

vl

- Parameter a isused to partition tree into zones
o << : lower query time, increased space requirements
o >>: higher query time, lower space requirements

- Nodes are partitioned into

- boundary nodes: lowest nodesin zone
- interior nodes: al other nodes

- Caching rule:

- boundary node: store all chariots serving node
- interior node; store all chariots whose bottom node is that node

- Query procedure:

Visit only nodes below query node and in the same zone as query node

28

/ CDEQUIV(v): Which cities are served by same chariots that serve v? \

- Ferrante, Ottenstein, Warren 87: O(|E] 3) using hashing for set equality
- Cytron, Ferrante, Sarkar 90: O(|E]| 2)

- Ball 92: O(|E|) for structured programs
- Podgurski 93: O(|E|) for forward control dependence in general graphs

- Johnson, Pearson, Pingali 94. O(|E|) for general graphs (optimal)

CDEQUIV for Roman Chariots Problem

- cleaned-up version of JPP94 agorithm
- compute two finger prints for CONDS sets

. Size of CONDS set
. Lo:lowest node contained in all routes of CONDS set

Lo(CONDS(a)) = a
Lo(CONDS(d)) =f
Lo(CONDS(e)) =f

Two CONDS sets are equal iff they have the same finger-prints.
\ Can compute finger-prints in O(|V| + |A|) space and time /

30

APT

1. Postdominator tree with bidirectional edges

2. dfs-number[Vv]: integer
- used for ancestorship determination in CONDS query

3. boundary?[v]: boolean
- true if v isa boundary node, false otherwise
- used in CONDS query

4. L[v]: list of chariots #'s/control dependences

- boundary node: all chariots serving v (all control dependences of v)
- interior node: all chariots whose bottom nodeisv (all immediate control dependences of v)

- used in CONDS query

5. R[v]: pointer to CDEQUIV equivalence class
- used in CDEQUIV query

Query time: (a+l) * output-size
Space: |E|] + |V]/ «a

31

Experimental Results

32

5000

4500

4000

3500

3000

2500

Storage

2000

1500

1000

500

4= — — — +

ALPHA =1/16

ALPHA =1

1 — — T

0 10 20 30

40
Nesting Depth

50 60

70

33

300

250

200

Storage
-
a1
o
T

100

50

50

ALPHA =1

60 70 80

90

100

10

20

30

Nesting Depth

34

Storage

12000

depth = 100
10000} !
actual \\predicted
\
8000
6000 - \
\
\
depth = 64
4000}
2000
depth = 32
0 1 1 1
-8 -6 -4 -2 0 2

log(ALPHA)

35

Worst Case Query Time

500

450

400

350

w
o
o

N
a
o

N
o
o

[y
(o)
o

100

50

depth = 100

depth = 64

depth = 32

depth =4

-2 0 2 4
log(ALPHA)

36

Preprocessing Time (secs)

x 107

»
T

depth = 64
5l p
4+
PDOM: depth = 64
3 -
ol depth = 32
PDOM: depth = 32
1 -
_ ! depth:/A/ﬂk | [
0
-8 -6 -4 -2 0 4 6
Log(ALPHA)

37

0.012

0.01

0.008

0.006

Preprocessing Time (secs)

0.004

0.002

ALPHA =1

ALPHA = 1/16

50

60

Nesting Depth

70

80

90

100

38

Storage

9000

8000

7000

6000

5000

4000

3000

2000

1000

Caching in APT for SPEC Integer Benchmarks

- espresso

eqgntott

(] Full Caching

B Some Caching: ALPHA =1

Il No Caching

ccl
I egn

ceep

39

Storage

12000

10000

8000

6000

4000

2000

spice

I

doduc

13

dljdg
tomcatv
ora

wave

DFuII Caching

I Some Caching:

I No Caching

13

dljsp

swm

hy
su2co

ALPHA =1

ydro2d

nasa’fpppp

40

Storage

800

+
+: Full Caching
700 *: Some Caching: ALPHA =1 |
0: No Caching

600 N |

+

++

500 a

L 7 + o

+
400 + + + a
O
300 " 4 : + o F 3 o |
e+
fi +i+++ ek O © ©
RS o o) o)
200 Fr8t b0 ® o g © -
8 o o o
0@ 8
% ' l l l l l l
0 50 100 150 200 250 300 350 400 450

Program Size: Nodes

500

41

350

300

N
a1
o

200

150

Height of Postdominator Tree

=
o
o

50

50

100

150

1
200 250 300
Program Size

350

400

450

500

42

Comparison with factoring:

- Factoring attempts to reduce size of CDG by making nodes
‘share’ control dependences in the representation (CFS 90)

L —@

Nodes Edges Nodes ES,
‘merge’ point

- Our caching approach can be viewed as factoring in which
‘filtered search’ is used to answer queries (Chazelle)

O

_I f {{II}}

43

Other Applications of APT

Control Dependence Dataflow Analysis
CONDS e SSA,GSA
CDEQUIV lerdte DFG,PDW,VDG,....
CD

ADT : augmented dominator tree (APT on reverse CFG)

ADT and APT

- can be used to build SSA form in O(|E|) per variable
- subsumes algorithm of Cytroneta (o <<)

- subsumes algorithm of Sreedhar and Gao (O >>)

- can be used to build DFG in O(|E]) time per variable
- SESE determination in O(|E|) time
- see Johnson, Pearson, Pingali (PLDI 94)
Johnson’sthesis at Cornell

44

-~

- phi-placement = iterated dominance frontier computation

SSA Computation

- exploit the fact that conds relation is same as
edge dominance frontier relation in reverse graph

Solution: Use APT on reverse graph = ADT on CFG

- First, look at DF(S) where Sis given offline
Algorithm: Sort S by level, and query in bottom-up order

Two nodesin S belonging to same zone

Zone

- to compute DF(b), visit sub-zone below b
- after this, to compute DF(a), no need to visit subzone below a!

N

45

N

Algorithm:

- Sort nodesin Shy level.
- Remove nodes from sorted list by decreasing level order,
and query in ADT

- After anodeisqueried, mark itin ADT
so further queries that reach v do not look below v.

Time = O(]V] + |A]) (O|E]) in CFG terms

What if set for querying is given online?
- We can use same strategy provided nodes are presented for querying
In bottom-up order.
- Happily, if nisin DF(m), then level(n) <= level(m) !!
=> use a priority queue for ‘dynamic sorting’
- Priority queue implementation: (k = # of keys = height of ADT)
- van Emde Boas: O(log(log(k))) per insertion and deletion
- Sreedhar and Gao: use an array of sizek

46

/Example:

START

START
'\. \Vj
ce END "hla b o x y
y->a VoV
b ¢ x>b |V |V v/
a->C
a e y->END |V |V |V |V |V
xe DF(node) = destination(EDF(node))

DF({b}) = {b,c,END}

DF({c}) = {c,END}

Dominator tree

phi({ax}) ={ab,c}

a C

y 4

Dominance Frontier

phi({c}) ={c}

EDF

~

48

-~

N

Remarks:

- Time to build SSA form: O(|E|) per variable
- Subsumes algorithms of Cytron etal and Sreedhar and Gao
a <<:Cytroneta [91] - O(|E[*|V|) per variable
o >>: Sreedhar and Gao (PLDI 95) - O(|E]|) per variable

- Same idea can be used to build sparse dataflow evaluator graphs
for other dataflow problems

- What isbest valueof o ? Interesting tradeoff

- small value: repeatedly discover that some node
Isin transitive closure

- large value: time to compute individual DF sets may be large

- Intermediate value may be best!

50

=200

Repeat-until Loop: Nesting

0.03

N 1o} -
S 2 9
o e o

0.025
0.005

o
1uswaoe|d uonounj—iyd 1o} awi

Lo
—

-10

-15

Node Number

Log2(ALPHA)

51

Time (secs)

4.5

Time for phi—function Placement

N
al
T

N
T

=
a1
T

-10 -5 0 5 10
log2(ALPHA)

15

52

Conclusions

1. APT data structure;

Query time: (a+1) * output-size
Preprocessing Spaceand Time: O(|g| + [V|/ a)
Control Dependence Dataflow Analysis
CONDS (v): optimal SSA: O(|E]|) per variable
CDEQUIV (v): optimal SDEG: O(|E|) per problem
CD(e): optimal DFG: O(|E]|) per variable

2. Key concepts

- exploit structure of control dependence relation
- intelligent caching of information

53

~

Applications of Technology

DCPI: Digital Continuous Profiling Infrastructure uses control
dependence equivalence algorithm to reduce overhead of
program profiling http://www.research.digital.com/SRC/dcpi/
IBM VLIW Comp:iler: Ebcioglu et al use Dependence Flow
Graph (DFG) as their IF in VLIW compiler work

http:/ /www.research.ibm.com /vliw/

Aristotle Analysis System: Ohio State University // uses weak
control dependence algorithms

Toby compiler (IBM), Intel,...: use some of the control

dependence algorithms

/

54

