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Organization

1. Optimal Representation of Control dependence
- Definition
- Isthe control dependence graph (O(|E[*|V|) space/time) optimal ?

2. Our approach:
- Reduce problem to ROMAN CHARIOTS PROBLEM
- Build APT datastructurein O(|E| + |V]) space/time

=> APT isanoptima representation of control dependence

3. Other applications of APT:

- SSA computation in linear time per variable
- SDEG computation in linear time per problem
- DFG computation in linear time per variable
4. Conclusions:
- APT isafactored form of the CDG
which requires ‘filtered search’ to answer queries




Part 1.

What is an
Optimal Representation
of
Control Dependence?




Examples of control dependence
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Control dependence: (Ferrante,Ottenstein,Warren 1987)

( Nodew is control dependent on edge (u ->v) if

- W postdominates v
- if w ==u, w does not postdominate u.
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Queries on Control Dependence Relation:
- cd(e): set of nodes control dependent on edge e
- conds(v):  set of control dependences of node v
- cdequiv(v): set of nodes with same control dependences
as node v (in same equivalence class as v)
START
Y%
E a b ¢ d e &
START->a |/ |/ Vi b
b->c V|
d END
Control Dependence Relation Control Flow Graph
Applications: program analysis, scheduling for pipelines, parallelization

N




N

Optimal Control Dependence Computation
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Query time for CD, CONDS,CDEQUIV setsis proportional to set size
Space and time for preprocessing should be minimal.
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Worst-case size of control dependence relation:
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E a b ¢ d e f
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e->hb VIV S
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n nested repeat-until loops => size of CDR isn(n+3)

EThe size of the CDR can grow quadratically with program sizeJ
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Control Dependence Graph (CDG)

« bipartite graph between edges and nodes
 connect node Vv to edge e if node v is control dependent on edge e
« connect nodesin same CDEQUIV classinto rings (not shown)
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b
V b->c
E a b c d e C
START->a |/ | / Vi q
b->c J VY

e

Control Dependence Relation Control Dependence Graph

Query time: Proportional to size of output
Preprocessing : O(JE]*]|V]) space and time




There have been many unsuccessful efforts
to reduce the size of the CDG.

** We therefore conjecture that to enumerate [conds sets]
in time proportional to [the size of the set] requires

a data structure of quadratic size."

[Cytron,Ferrante,Sarkar, PLDI 1990]
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Part |1

APT

and the

Roman Chariots Problem
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Our Solution:;

- reduce control dependence computation to a graph problem called
Roman Chariots Problem

- design adata structurecalled  APT (augmented postdominator tree)

(a) which can be built in O(|E|) space and time, and
(b) which can be used to answer CD,CONDS and CDEQUIV queries

In time proportional to output size.

APT is a data structure for
optimal control dependence computation.
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Key ldea (1): Exploit structure of relation

Analogy: Postdominator relation

- queries. immediate pdom of node, all pdoms of node
_sizeof relationis O(V 2

- relation istransitive, so build transitive reduction (pdom tree)
in O(|E|) time [Harel,Tarjan]
- qQuery time using pdom tree is optimal

=> There is no point in constructing the entire relation

What structure is there in the control dependence relation?

Control dependence relation:

- nodes that are control dependent on an edge e
form a simple path in the postdominator tree

- inatree, asimple path is uniquely specified by its endpoints

Postdominator tree + endpoints of each control dependence pat
can be built in O(]E]) space and time

/
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Example:
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Control Flow Graph
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Control Dependence Relation

END
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Postdominator Tree Path Array A

\

S

O(|E]) Representation of the Control Dependence Relation

/
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How can we use the
compact representation of the CDR
to answer queries for
CD,CONDS and CDEQUIYV sets
IiNn time proportional to output size?
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Roman Chariots Problem

ROMA
Path
Route # ~\|
MILANO BOLOGNA | | [MILANO,ROMA]
VERONA Il | [POMPEII,BOLOGNA]
NAPOLI
VENEZIA 11l | [VENEZIA,ROMA]
POMPEII
CORLEONE
. Cities on route ordered by ancestor relation
Tree: - nodes are cities _ ;
- edges are roads In route [x,y], X is descendant of y

Given a tree T, and an array A of chariot routes specified by endpoints,
design a data structure to answer the following queries in optimal time.

(a) CD(n): Which cities are served by chariot n?
(b) CONDS(w): Which chariots serve city w?
(c) CDEQUIV(wW): Which cities are served by the same chariots that serve w?

/
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CD(n): Which cities are served by chariot n?

Query procedure: (Similar to FOW 87)

- Look up entry for chariot n in Route Array (say itis[x,y])
- Traversenodesintree T, starting at X and ending at y
- Output all nodes encountered in traversal

(cf. CDG: many routes can share tree nodes/edges)

[ CD query time is proportional to output size. }

/
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CONDS(w): Which chariots serve city w?

END
Route
e Chariot #
. START | | [a€]
1 [C, b]

Query procedure:

for each chariot c in Route Array do
let route of ¢ be [X,y];
if wisan ancestor of x
and w is a descendant of y
then output c; fi

od

Can we avoid examining all routes in Route Array?

/
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Key Idea (11): Cache route information in tree

At each node ninthe tree, keep alist of chariot # s whose bottom node isn.

END
Route
e Chariot #
. START | | [a€]
11| [chl

d ® (1}
Ci{n}

Query procedure: CONDS(w)

for each descendant d of w do
for each routec =[x,y] inlistat d do

if wisadescendant of y

then output c; fi
od
od

[Query time is proportional to # of descendants + size of all lists at descendants ]

N /
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Refinement: Sort each list by decreasing length.

1| [f.d]
e " | [f,cl

{IV,IL,11,1} v | [f,b]

N\
Q N | Route
Chariot #
N | | [f.€]
A% %/( d

f

Query procedure: CONDS(w)

for each descendant d of w do
for each routec =[x,y] inlistat d do

If wisadescendant of y
then output c;
else BREAK; fi od

od

At most one ‘non-overlapping’ path is examined at a descendant =>

[Query time is proportional to size of output + # of descendants J

~

/
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Step 3: Cache route at multiple nodes.

Q) o {1V}

AVATIRIND, ARGVALIRIRY

Two extremes.
(1) Chariot # stored only at bottom node of route
Space: O(|V| + |A])
Query Time: O(|V| + |Output|)

(2) Chariot # stored at al nodes on route
Space: O(|V[*|A])
Query Time: O(|Output))

Can we have a disciplined caching policy to have linear spac
and optimal query time?
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Key idea (111): Cache a route at multiple nodes

[ Divide tree into ZONES

Query procedure:

Visit only nodes below query node
and in the same zone as query node

- J

E Zone construction: For all nodesv, |[Z ] < O JA,/ | +1 ]

=>Query time  |A ] +1Z | a+1) Ay |

Caching Rule:

- Nodes are partitioned into
- boundary nodes: lowest nodes in zone
- interior nodes: all other nodes

- Caching rule:
- boundary node: store all chariots serving node
- interior node: store all chariots whose bottom node is that node
- Our agorithm: bottom-up, greedy zone construction
=> gpace requirements < |A] + |V]/d
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How do we construct zones?

Invariant: For any nodev, |Z vi< alA, | +1
where a isadesign parameter.

Query time for CONDS(v) = O(|A /| + |Z y|)
=0((a +1)]Ay |+ 1)
=O(|Ay])

v

@ Build zones bottom-up, making them as large as possible
w/o violating invariant

v isaleaf node => make v aboundary node
v isaninterior node =>

if(1+ X Z >
(% e Rilgren?ul) > AlAyI+1

then make v a boundary node
else make v an interior node
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a = 1 (some caching)

@\@START

{}
°og| 4 {}

°f ) 5 {START->a h->a, g->b,f->c}
e |6 {}
od | 6 {e>d}

c|5 {f->c}

14 {g->b}

413 (START->ah->g

\

AlA,I+1
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o = >> (no caching)

%@START

Th i {}
°g o {}
of |00 {}
ieoo {}

od |on {e>d}

C loo {f->c}
}b w0 {g->b)

qloo {START->a h->a}

A l+1
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a = <<(full caching)

@\@START

{START ->a, h->a}
og 1 {START->a h->a,g-> b}

(41) 1 {START->a h->a g->b, f->}
G e | 1 {START->a h->a, g->b, f->c, e->d}
G d | 1 {START->a h->a, g->b, f->c, e->d}
% 1 {START->a h->a, g->b, f->c}

b] 1 {START->a h->ag-> b}
¢al 1 {START->a h->a

\

alAl+1
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Summary of CONDS Approach:

Query Time: (a +1) |A
Space: |A| + |V]|/a

vl

- Parameter a isused to partition tree into zones
o << : lower query time, increased space requirements
o >>: higher query time, lower space requirements

- Nodes are partitioned into

- boundary nodes: lowest nodesin zone
- interior nodes: al other nodes

- Caching rule:

- boundary node: store all chariots serving node
- interior node; store all chariots whose bottom node is that node

- Query procedure:

Visit only nodes below query node and in the same zone as query node

28







/ CDEQUIV(v): Which cities are served by same chariots that serve v? \

- Ferrante, Ottenstein, Warren 87: O(|E] 3) using hashing for set equality
- Cytron, Ferrante, Sarkar 90: O(|E]| 2)

- Ball 92: O(|E|) for structured programs
- Podgurski 93: O(|E|) for forward control dependence in general graphs

- Johnson, Pearson, Pingali 94. O(|E|) for general graphs (optimal)

CDEQUIV for Roman Chariots Problem

- cleaned-up version of JPP94 agorithm
- compute two finger prints for CONDS sets

. Size of CONDS set
. Lo:lowest node contained in all routes of CONDS set

Lo(CONDS(a)) = a
Lo(CONDS(d)) =f
Lo(CONDS(e)) =f

Two CONDS sets are equal iff they have the same finger-prints.
\ Can compute finger-prints in O(|V| + |A|) space and time /
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APT

1. Postdominator tree with bidirectional edges

2. dfs-number[Vv]: integer
- used for ancestorship determination in CONDS query

3. boundary?[v]: boolean
- true if v isa boundary node, false otherwise
- used in CONDS query

4. L[v]: list of chariots #'s/control dependences

- boundary node: all chariots serving v (all control dependences of v)
- interior node: all chariots whose bottom nodeisv (all immediate control dependences of v)

- used in CONDS query

5. R[v]: pointer to CDEQUIV equivalence class
- used in CDEQUIV query

Query time: (a+l) * output-size
Space: |E|] + |V]/ «a
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Experimental Results
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Worst Case Query Time
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Preprocessing Time (secs)

x 107

»
T

depth = 64
5l p
4+
PDOM: depth = 64
3 -
ol depth = 32
PDOM: depth = 32
1 -
_ ! depth:/A/ﬂk | [
0
-8 -6 -4 -2 0 4 6
Log(ALPHA)

37




0.012

0.01

0.008

0.006

Preprocessing Time (secs)

0.004

0.002

ALPHA =1

ALPHA = 1/16

50

60

Nesting Depth

70

80

90

100

38




Storage

9000

8000

7000

6000

5000

4000

3000

2000

1000

Caching in APT for SPEC Integer Benchmarks

- espresso

eqgntott

(] Full Caching

B Some Caching: ALPHA =1

Il No Caching

ccl
I egn

ceep

39




Storage

12000

10000

8000

6000

4000

2000

spice

I

doduc

13

dljdg
tomcatv
ora

wave

DFuII Caching

I Some Caching:

I No Caching

13

dljsp

swm

hy
su2co

ALPHA =1

ydro2d

nasa’fpppp

40




Storage

800

+
+: Full Caching
700 *: Some Caching: ALPHA =1 |
0: No Caching

600 N |

+

++

500 a

L 7 + o

+
400 + + + a
O
300 " 4 : + o F 3 o |
e+
fi +i+++ ek O © ©
RS o o) o)
200 Fr8t b0 ® o g © -
8 o o o
0@ 8
% ' l l l l l l
0 50 100 150 200 250 300 350 400 450

Program Size: Nodes

500

41




350

300

N
a1
o

200

150

Height of Postdominator Tree

=
o
o

50

50

100

150

1
200 250 300
Program Size

350

400

450

500

42




Comparison with factoring:

- Factoring attempts to reduce size of CDG by making nodes
‘share’ control dependences in the representation (CFS 90)

L —@

Nodes Edges Nodes ES,
‘merge’ point

- Our caching approach can be viewed as factoring in which
‘filtered search’ is used to answer queries (Chazelle)

O

_I f {{II}}
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Other Applications of APT

Control Dependence Dataflow Analysis
CONDS e SSA,GSA
CDEQUIV lerdte DFG,PDW,VDG,....
CD

ADT : augmented dominator tree (APT on reverse CFG)

ADT and APT

- can be used to build SSA form in O(|E|) per variable
- subsumes algorithm of Cytroneta ( o <<)

- subsumes algorithm of Sreedhar and Gao ( O >>)

- can be used to build DFG in O(|E]) time per variable
- SESE determination in O(|E|) time
- see Johnson, Pearson, Pingali (PLDI 94)
Johnson’sthesis at Cornell
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- phi-placement = iterated dominance frontier computation

SSA Computation

- exploit the fact that conds relation is same as
edge dominance frontier relation in reverse graph

Solution: Use APT on reverse graph = ADT on CFG

- First, look at DF(S) where Sis given offline
Algorithm: Sort S by level, and query in bottom-up order

Two nodesin S belonging to same zone

Zone

- to compute DF(b), visit sub-zone below b
- after this, to compute DF(a), no need to visit subzone below a!

N
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Algorithm:

- Sort nodesin Shy level.
- Remove nodes from sorted list by decreasing level order,
and query in ADT

- After anodeisqueried, mark itin  ADT
so further queries that reach v do not look below v.

Time = O(]V] + |A]) (O|E]) in CFG terms

What if set for querying is given online?
- We can use same strategy provided nodes are presented for querying
In bottom-up order.
- Happily, if nisin DF(m), then level(n) <= level(m) !!
=> use a priority queue for ‘dynamic sorting’
- Priority queue implementation: (k = # of keys = height of ADT)
- van Emde Boas: O(log(log(k))) per insertion and deletion
- Sreedhar and Gao: use an array of sizek
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/Example:

START

START
'\. \Vj
ce END "hla b o x y
y->a VoV
b ¢ x>b |V |V v/
a->C
a e y->END |V |V |V |V |V
xe DF(node) = destination(EDF(node))

DF({b}) = {b,c,END}

DF({c}) = {c,END}

Dominator tree

phi({ax}) ={ab,c}

a C

y 4

Dominance Frontier

phi({c}) ={c}

EDF

~
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Remarks:

- Time to build SSA form: O(|E|) per variable
- Subsumes algorithms of Cytron etal and Sreedhar and Gao
a <<:Cytroneta [91] - O(|E[*|V|) per variable
o >>: Sreedhar and Gao (PLDI 95) - O(|E]|) per variable

- Same idea can be used to build sparse dataflow evaluator graphs
for other dataflow problems

- What isbest valueof o ? Interesting tradeoff

- small value: repeatedly discover that some node
Isin transitive closure

- large value: time to compute individual DF sets may be large

- Intermediate value may be best!
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Conclusions

1. APT data structure;

Query time: ( a+1) * output-size
Preprocessing Spaceand Time: O(|g| + [V|/ a )
Control Dependence Dataflow Analysis
CONDS (v): optimal SSA: O(|E]|) per variable
CDEQUIV (v): optimal SDEG: O(|E|) per problem
CD(e): optimal DFG: O(|E]|) per variable

2. Key concepts

- exploit structure of control dependence relation
- intelligent caching of information
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Applications of Technology

DCPI: Digital Continuous Profiling Infrastructure uses control
dependence equivalence algorithm to reduce overhead of
program profiling http://www.research.digital.com/SRC/dcpi/
IBM VLIW Comp:iler: Ebcioglu et al use Dependence Flow
Graph (DFG) as their IF in VLIW compiler work

http:/ /www.research.ibm.com /vliw/

Aristotle Analysis System: Ohio State University // uses weak
control dependence algorithms

Toby compiler (IBM), Intel,...: use some of the control

dependence algorithms

/
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