
MapReduce: Simplified Data Processing on
Large Clusters

Nikhil Panpalia

Outline
 What is MapReduce?
 What are Map and Reduce?

 Scalability
 Implementing MapReduce
 opportunities for parallelism
 input, output, execution
 optimizations and extensions

 Fault Tolerance
 Performance
 MapReduce on multicore platforms
 MapReduce on mobile platforms
 Does it work for any computation?

What is MapReduce?

 A framework for processing large-scale data sets using a cluster of

machines.

 Who should use MapReduce?
 A programmer with:

 Lots of data to store and analyze
 Lots of machines available for processing the data
 Doesn’t have the time to become a distributed systems expert who can build

an infrastructure to handle this task

What is MapReduce?

A simple problem

 Search for a pattern “cs395t” in a collection of files

 You would typically run a command like this:
grep -r “cs395t” <directory>

 Now, suppose you have to do this search over
terabytes of data and you have a cluster of machines
at your disposal.

 How can you make this grep faster?
 Build a distributed grep!

Do we really need a distributed solution?

 Why can’t I just use my desktop to do the processing?
 How long does it take to read 1 TB of data?
 Considering an average read speed of 90MB/s[1]: ~3.23 hours
 If you use an SSD with read speed of 350MB/s[2]: ~50 minutes

 How much time it will take for searching through a

terabyte of data? Or maybe sorting it?

 MapReduce can sort 1000 TB of data in 33 minutes![3]

[1] Numbers are for Western Digital 1TB SATA/300 drive.
[2] Numbers are for Crucial 128 GB m4 2.5-Inch Solid State Drive SATA 6Gb/s
[3] using 8000 machines - http://googleresearch.blogspot.com/2011/09/sorting-petabytes-with-mapreduce-next.html

http://googleresearch.blogspot.com/2011/09/sorting-petabytes-with-mapreduce-next.html
http://googleresearch.blogspot.com/2011/09/sorting-petabytes-with-mapreduce-next.html
http://googleresearch.blogspot.com/2011/09/sorting-petabytes-with-mapreduce-next.html
http://googleresearch.blogspot.com/2011/09/sorting-petabytes-with-mapreduce-next.html
http://googleresearch.blogspot.com/2011/09/sorting-petabytes-with-mapreduce-next.html
http://googleresearch.blogspot.com/2011/09/sorting-petabytes-with-mapreduce-next.html
http://googleresearch.blogspot.com/2011/09/sorting-petabytes-with-mapreduce-next.html
http://googleresearch.blogspot.com/2011/09/sorting-petabytes-with-mapreduce-next.html
http://googleresearch.blogspot.com/2011/09/sorting-petabytes-with-mapreduce-next.html

Should I build my own distributed
system/framework?

 It’s hard!
 Machine and network management
 Task management
 Fault tolerance
 Availability despite failures
 Scalability

Understanding Map and Reduce

var a = [1,2,3];

for (i=0; i<a.length; i++)

 a[i] = a[i] * 2;

for (i=0; i<a.length; i++)

 a[i] = a[i] + 2;

Understanding Map and Reduce

I can change it to:

 function map(fn, a) {

 for (i = 0; i < a.length; i++)

 a[i] = fn(a[i]);

 }

map(function(x){return x*2;}, a);

map(function(x){return x+2;}, a);

Understanding Map and Reduce
function sum(a) {
 var s = 0;
 for (i = 0; i < a.length; i++)
 s += a[i];
 return s;
}

function join(a) {
 var s = "";
 for (i = 0; i < a.length; i++)
 s += a[i];
 return s;
}

alert(sum([1,2,3]));
alert(join(["a","b","c"]));

Understanding Map and Reduce
function reduce(fn, a, init) {
 var s = init;
 for (i = 0; i < a.length; i++)
 s = fn(s, a[i]);
 return s;
}

function sum(a) {
 return reduce(function(a, b){return a+b;}, a, 0);
}

function join(a) {
 return reduce(function(a, b){return a+b;}, a, “”);
}

alert(sum([1,2,3]));
alert(join(["a","b","c"]));

Understanding Map and Reduce
 Passing functions as arguments – functional

programming

 map – does something to every element in an array
– can be done in any order!
 amenable to parallelization

 So, if you have 2 CPUs, map will run twice as fast

 map is an example of embarrassingly parallel

computation

Understanding Map and Reduce
 Suppose you have a huge array with elements which

are all the webpages from the Internet

 To search the entire Internet:
 you just need to pass a string_searcher function to map
 reduce will be an identity function
 run a MapReduce job on a cluster
 …that’s it! you are searching the Internet by writing just a

few lines of code!

Map and Reduce

 map – function that takes key/value pairs as input
and generates an intermediate set of key/value pairs

 reduce – function that merges all the intermediate
values associated with the same intermediate key

Map and Reduce

 User needs to define these 2 functions

 Inspired by functional primitives in Lisp

 Functional model – data is immutable, functions

don’t have side-effects
 Allows automatic parallelization and distribution of large-

scale computations easily

MapReduce

map: (k1, v1) list(k2, v2)

reduce: (k2, list(k2, v2)) list(v2)

map shuffle reduce
(input key/value pair (groups all values associated (takes an intermediate key
and produces intermediate with the same intermediate key) and associated intermediate
key/value pairs) values and merges them to
 form a possibly smaller set
 of values)

Example – Word Count
 Problem: counting occurrences of words in a large

collection of documents
 map(String key, String value):
 // key: document name
 // value: document contents
 for each word w in value:
 EmitIntermediate(w, "1");

 reduce(String key, Iterator values):
 // key: a word
 // values: a list of counts
 int result = 0;
 for each v in values:
 result += ParseInt(v);
 Emit(AsString(result));

Word Counting using MapReduce

Example – Word Count
 Other than map and reduce, user needs to provide:
 names of input and output files
 optional tuning parameters (size of split, M, R, etc.)

 User’s code is linked with MapReduce library and

the binary is submitted to a task runner

Other Examples

 Distributed grep
 map emits a line if it matches the given pattern
 reduce just copies input to output

 Counting URL access frequency
 map processes web server logs and outputs <URL, 1>
 reduce sums all numbers for a single URL

Other Examples

 Inverted index
 map function parses document and emits <word, docID>
 reduce gets all pairs for a given word and emits
 <word, list(docID)>

 Distributed sort
 map extracts key for a record and emits <key, record>
 reduce emits all pairs unchanged

Implementing Map and Reduce
 Now, all we need is some “genius” to implement these 2

abstractions – map & reduce

 Exploit parallelism in the computation

 Massively scalable – can run on hundreds or thousands of

machines

 Hide the details of cluster management tasks like scheduling of
tasks, partitioning of data, network communication from the
user

 Fault tolerant (in large clusters failures are a norm rather than
being an exception)

Implementing MR:
Opportunities for Parallelism

 Input – all key/value pairs can be read and

processed in parallel by map

 Intermediate grouping of data – essentially a sorting
problem; can be done in parallel and results can be
merged

 Output – All reducers can work in parallel
 each individual reduction can be parallelized

MR Execution

MR Parallel
 Execution

Implementing MR:
Exploit parallelism using a cluster

 Characteristics of the cluster:
 Lot of commodity PCs connected together
 Network is a scarce resource
 Failures are very common
 Storage is provided by a distributed file system using

inexpensive disks
 File system replication is used to provide reliability and

availability
 A scheduling system decides which jobs will run on which

machines

Distributed File System

 Allows access to files from multiple hosts over the
network

 Support concurrency (multiple clients reading/writing
the same file)

 Support for replication

 GFS: distributed file system used in Google’s
MapReduce is important for achieving good
performance (high availability and durability via
replication)

Google File System (GFS)
 Motivation: redundant storage of massive

amounts of data on cheap unreliable machines

 Assumptions:
 modest number of very large files
 files are write-once, never modified, mostly appended
 fast streaming reads – high throughput desired
 large number of component failures

Google File System (GFS) - Design
 Files stored as chunks (typically of 64MB)

 helps in load balancing and better distribution of data across
machines

 can support files which cannot fit on 1 disk

 Each chunk is replicated multiple times (typically 3)
 provides reliability and higher throughput for reads

 Single master (maintains all metadata) and multiple
chunkservers (store actual data chunks)

 No caching of data (little benefit since data sets are
large)

 Can (theoretically) scale to any number of chunkservers
 Writes at arbitrary positions in files supported but are not

efficient (mostly append operations on files)

Implementing MR:
Distributing the input
 Input data is partitioned into splits of size S and is

processed by M mappers
 splitting the data helps exploit the data parallelism in the input
 number of map tasks is usually more than the number of

available worker machines (better dynamic load balancing)
 splits are of smaller size – typically the size of a filesystem

block
 better load balancing for storage
 faster recovery:

 less repetition of work in case of failures
 repeated work can also be parallelized

 M and S can be configured by the user

(Note: this step is optional if the files blocks are already distributed across
machines by GFS.)

Implementing MR:
Master
 Only 1 Master per MR computation
 Master:
 assigns map and reduce tasks to the idle workers
 informs the location of input data to mappers
 stores the state (idle, in-progress, completed) and identity

of each worker machine
 for each completed map task, master stores the location

and sizes of intermediate files produced by the mapper;
this information is pushed to workers which have in-
progress reduce tasks

MR: Step-by-Step Execution
 Split the input into M pieces and start copies of

program on different machines
 One invocation acts as the master which assigns

work to idle machines
 Map task:
 read the input and parse the key/value pairs
 pass each pair to user-defined Map function
 write intermediate key-value pairs to disk in R files

partitioned by the partitioning function
 pass location of intermediate files back to master

MR: Step-by-Step Execution
 Master notifies the reduce worker
 Reduction is distributed over R tasks which cover

different parts of the intermediate key’s domain
 Reduce task:
 read the intermediate key/value pairs
 sort the data by intermediate key (external sort can be used)
 (note: many different keys can map to the same reduce task)

 iterate over sorted data and for each unique key, pass the key
and set of values to user-defined Reduce function

 output of Reduce is appended to final output for the reduce
partition

 MR completes when all map and reduce tasks have
finished

MR: Output

 The output of MR is R output files (one per reduce
task)

 The partitioning function for intermediate keys can
be defined by the user
 by default, it is “hash(key) mod R” to generate well-

balanced partitions

 Result files can be combined or fed to another MR
job

MR: Handling Faults

 With thousands of machines all made of cheap
hardware, faults are very common

 MR library must tolerate any faults in the machines
of the network gracefully without significantly
impacting the speed of the computation

Fault Tolerance: Scenarios
 worker failure

 master failure

 network failure

 file system or disk failure – data corruption

 malformed records in input

 bugs in user code

Fault Tolerance: Worker Failures
 Master pings every worker periodically (alternatively, the

worker can send a heartbeat message periodically)
 If worker does not respond, master marks it as failed
 Map worker:
 any completed or in-progress tasks are reset to idle state
 completed tasks need to be re-run since output is stored on a

local file system
 all reduce workers notified of this failure (to prevent duplication

of data)
 Reduce worker:
 any in-progress tasks are reset to idle state
 no need to re-run completed tasks since output stored in global

file system

Fault Tolerance: Master Failure
 Master periodically checkpoints its data structures

 On failure, new master can be elected using some

leader election algorithm

 Theoretically, the new master can start off from this
checkpoint

 Implementation: MR job is aborted if the master fails

Fault Tolerance: Network Failure
 Smart replication of input data by underlying file-

system

 Workers unreachable due to network failures are
marked as failed since its hard to distinguish this
case from worker failure

 Network partitions can slow down the entire
computation and may need a lot of work to be re-
done

Fault Tolerance: Filesystem/Disk failure
 Depend on the filesystem replication for reliability

 Each data block is replicated f number of times

(default: 3)
 replication across machines on the same rack (machine

failure)
 replication across machines on different racks (rack

failure)
 replication across data-center (data-center failure)

Fault Tolerance: Malformed input
 Malformed input records could cause the map task to

crash
 Usual course of action: fix the input
 But what if this happens at the end of a long-running

computation?
 Acceptable to skip some records (sometimes)
 word count over very large dataset

 MR library detects bad records which cause crashes
deterministically
 Signal handler catches error and communicates to the master
 If more than 1 failure seen for the same record, master

instructs the mapper to skip that record

Fault Tolerance: Bugs in user code
 Bugs in user provided Map and Reduce functions

could cause crashes on particular records

 This case similar to the failure due to malformed
input

Fault Tolerance: Semantics
 Map and Reduce must be deterministic functions of

their input values
 output produced by the distributed execution is same as

the one produced by non-faulting sequential execution

 Atomic commit of output
 on completion, map task sends names of R intermediate

files to master (master ignores this if the map task was
already completed elsewhere)

 on completion, reduce task atomically renames its
temporary file to final output file (on a global file system)

Locality Optimization
 Effective utilization of network

 Move computation near the input data

 Input data (managed by GFS) stored on local disks
 several copies of each block

 Master considers this block location information when

scheduling map task on a machine

 Most input data is read locally and consumes zero
network bandwidth

Task Granularity
 M map tasks and R reduce tasks
 M and R much larger than the number of machines
 Improves dynamic load balancing (add/remove machines)
 Speeds up recovery

 less work needs to be redone
 work already completed by a failed task can be distributed across

multiple idle workers
 Bounds:

 Master makes O(M+R) scheduling decisions
 Master maintains O(M*R) state in memory

 M is chosen such that each task works on one block of
data (maximize locality)

 R is usually constrained by users to reduce the number
of output files

Stragglers and Backup tasks
 Straggler: machine that takes unusually long to

complete one of the last few map/reduce tasks
 reasons: bad disk, incorrect configuration, heavy load
 significantly lengthens the total time of execution

 Solution: master schedules backup tasks for all in-

progress tasks when MR is near completion
 task marked complete when either primary or backup task

finishes
 tuned such that it does not increase the overall resource

consumption by more than a few percent

Refinements/Extensions
 Partitioning function for intermediate keys
 default: “hash(key) mod R”
 user can provide custom function

 eg: keys are URLs and we want all entries for a host in a single
output file – “hash(Hostname(urlkey)) mod R”

 Ordering guarantees
 within a partition, all intermediate key/values pairs are

processed in increasing key order
 generates a sorted output file per partition

Refinements/Extensions
 Combiner
 same map task produces a lot of values for a single

intermediate key
 if Reduce is commutative and associative:

 user can specify an optional combiner function
 combiner runs on the same machine as the map task
 combiner does partial reduction of the output of map before the

data is send to the reducer
 preserves network bandwidth and speeds up overall computation

 Example – word count
 every map task will produce hundreds of pairs of the form
 <“the”, 1> which will be sent over the network
 combiner can do partial reduction
 only 1 pair is sent to the reducer from every map with key “the”

Refinements/Extensions
 Local Execution
 all map/reduce tasks can be executed locally
 helps with testing/debugging/profiling

 Counters
 count occurrences of various events

Counter* uppercase;
uppercase = GetCounter("uppercase");
map(String name, String contents):
 for each word w in contents:
 if (IsCapitalized(w)):
 uppercase->Increment();
 EmitIntermediate(w, "1");

 updated counters propagated to master periodically

Refinements/Extensions
 Support for arbitrary input types and sources
 user needs to implement a reader interface

 Status Information
 master runs an HTTP server and exports status pages

 progress of computation
 processing rate for input data
 status of map/reduce tasks
 failed workers
 various counters – number of input key/value pairs, number of

output records, etc.

Performance
 Benchmarks:
 MR_Grep - Scan 1010 100-byte records to extract records

matching a pattern (92K matching records)
 MR_Sort - Sort 1010 100-byte records (similar to TeraSort

benchmark)

 Testbed:
 Cluster of 1800 machines
 Each machine has:

 4 GB of memory
 Dual-processor 2 GHz Xeons with HT
 Dual 160 GB IDE disks
 Gigabit Ethernet

Performance
 MR_Grep
 M=15000, R=1 (64 MB input splits)
 total time – 150 secs

 peak rate ~ 31GB/s
 w/o locality optimization, peak rate < 10GB/s

Performance
 MR_Sort
 M=15000, R=4000
 (64 MB input splits)
 1 TB input
 2 TB output
 (2-way replication)
 total time – 891 seconds

Performance
 Impact of Backup Tasks – MR_Sort
 After 960 seconds, all except 5 reduce tasks are

completed – take 300 additional seconds to finish
 MR_sort takes 44% more time overall if backup tasks are

disabled

 Impact of Machine Failures – MR_Sort
 intentionally killed 200 workers some time after the

computation started
 overall time – 933 seconds (+5%)

Chaining MR jobs
 Many problems which cannot be expressed easily with a

single MR job
 use a chain of MR jobs!

Map1 Reduce1 Map2 Reduce2 Map3 Reduce3 …

Example: Count the average number of characters in a line
with has a particular pattern

Distributed grep Average calculator

MR on multicore systems
 MPI and shared-memory threads implementations

are too complex and error-prone

 Needs to be tuned for efficiency on different
platforms by the programmer

 Can we develop a simple interface like MR on

multicore platforms?

MR on multicore systems

 To simplify parallel programming we need 2
components:

 practical programming model - allows to specify

concurrency and locality at a high level

 efficient runtime system – handles low-level mapping,
resource management and fault tolerance

MR on multicore systems
 Phoenix: implementation of MR on shared-memory

symmetric multiprocessor systems

Phoenix
 uses threads instead of machines in a cluster for

parallelism
 communication done via shared-memory instead of

the network
 Phoenix Runtime:
 assigns map and reduce to threads; handles buffer

allocation and communication
 dynamic scheduling for load balancing
 locality optimization via granularity adjustment

(input/output for map should fit in L1 cache)
 detects and recovers from faults
 mainly, hides a lot of low-level details from the

programmer

Phoenix - Performance
 Performance evaluated on 2 systems:
 CMP: 1.2GHz Sun Fire T1200 (8 CPUs, 4 threads/CPU)
 SMP: 250MHz Sun Ultra-Enterprise 6000 (24 CPUs, 1

thread/CPU)

 Computations:
 word count, string match, reverse index, linear regression,

matrix multiply, Kmeans, PCA, histogram of RGB
components in an image

 datasets of different sizes are used for different
computations

MR on mobile platforms

 Misco: MapReduce framework for mobile systems
 uses mobile devices as nodes to schedule map and

reduce tasks
 works on any device which supports Python and has

network connectivity
 tested using 10 Nokia N95 phones connected to a

Linksys router
 can be used by applications which require more

computing power than locally available
 eg: processing images/videos

MapReduce – works everywhere?
 Real time computations
 MR can be used for preprocessing data

 Small datasets
 too much overhead

 Interactive analysis of data
 Anything which requires a lot of communication

between tasks
 Anything where tasks depend on each other
 Stream processing
 reduce waits for map to finish

Criticism for MapReduce
 nothing new – just a specific implementation of 25-

30 year old techniques
 MR imposes “simplified” data processing with cluster of

cheap commodity machines

 not a DBMS
 MR is a framework for one-off processing of data

 sub-optimal implementation (uses brute force

instead of indexing to process data)
 MR can be used to generate indexes but its not an

optimized data storage and retrieval system

Conclusion
 MapReduce programming model has been a huge

success
 easy to use for programmers with no experience in

distributed systems
 hides details of parallelization, load balancing, fault

tolerance, task management from the user
 massively scalable
 provides status monitoring tools

 Many open source implementations
 eg: Hadoop

 Thank you!
 Questions?

Comparison with Parallel DBMS
 Parallel DBMS – similar to MR?
 Parallelize query operation across multiple machines

 MapReduce:
 Distributed file system
 MR scheduler
 Map, Combine and Reduce operations

 Parallel DBMS
 Relational tables
 Data spread over cluster nodes
 SQL for programming

Comparison with Parallel DBMS
 Indexing
 MR:

 No direct support; indexes can be built
 Customized indexes harder to reuse and share

 DBMS
 Use hash or b-tree for indexing
 Fast access to any data

 Data format
 MR:

 No specific format required
 DBMS:

 Relational schema required

Comparison with Parallel DBMS
 Fault Tolerance:
 MR:

 Intermediate results stored to files
 Quicker to recover from faults

 DBMS:
 No storage of intermediate results (send over network)
 Lot of rework needed if a node fails

Comparison with Parallel DBMS
 Performance:
 Cluster configuration:

 100 nodes
 Each 2.4GHz Intel Core 2 Duo, 4GB RAM, 2 256GB SATA

HDDs

 Comparison of:
 Hadoop
 DBMS-X (row store)
 Vertica (column store)

Comparison with Parallel DBMS
 Benchmark – Data Loading
 Hadoop

 Copy file in parallel to HDFS

 DBMS-X
 SQL load in parallel
 Distribute records to machines, build index, compress data

 Vertica

 Load data in parallel; compress data

Comparison with Parallel DBMS

Comparison with Parallel DBMS
 Benchmark – grep for pattern
 Hadoop

 Map outputs line what matches a pattern
 Identity Reduce

 DBMS-X

 SELECT * FROM data WHERE field LIKE “%XYZ%”

 Vertica
 SELECT * FROM data WHERE field LIKE “%XYZ%”

Comparison with Parallel DBMS

Comparison with Parallel DBMS
 Conclusion
 Advantages over MR:

 Provide schema support
 Indexing for faster access to data
 Programming model is more expressive and easier

 Disadvantages over MR:
 Cant work with any arbitrary data
 Load times for data are very high
 MR is better at fault tolerance (less repeated work)

	MapReduce: Simplified Data Processing on Large Clusters
	Outline
	What is MapReduce?
	What is MapReduce?
	A simple problem
	Do we really need a distributed solution?
	Should I build my own distributed system/framework?
	Understanding Map and Reduce
	Understanding Map and Reduce
	Understanding Map and Reduce
	Understanding Map and Reduce
	Understanding Map and Reduce
	Understanding Map and Reduce
	Map and Reduce
	Map and Reduce
	MapReduce
	Slide Number 17
	Example – Word Count
	Slide Number 19
	Example – Word Count
	Other Examples
	Other Examples
	Implementing Map and Reduce
	Implementing MR:�Opportunities for Parallelism
	Slide Number 25
	Slide Number 26
	Implementing MR: �Exploit parallelism using a cluster
	Distributed File System
	Google File System (GFS)
	Google File System (GFS) - Design
	Implementing MR:�Distributing the input
	Implementing MR:�Master
	Slide Number 33
	MR: Step-by-Step Execution
	MR: Step-by-Step Execution
	MR: Output
	MR: Handling Faults
	Fault Tolerance: Scenarios
	Fault Tolerance: Worker Failures
	Fault Tolerance: Master Failure
	Fault Tolerance: Network Failure
	Fault Tolerance: Filesystem/Disk failure
	Fault Tolerance: Malformed input
	Fault Tolerance: Bugs in user code
	Fault Tolerance: Semantics
	Locality Optimization
	Task Granularity
	Stragglers and Backup tasks
	Refinements/Extensions
	Refinements/Extensions
	Refinements/Extensions
	Refinements/Extensions
	Slide Number 53
	Slide Number 54
	Slide Number 55
	Slide Number 56
	Slide Number 57
	Slide Number 58
	Slide Number 59
	Slide Number 60
	Slide Number 61
	Slide Number 62
	Slide Number 63
	Performance
	Performance
	Performance
	Performance
	Slide Number 68
	Chaining MR jobs
	MR on multicore systems
	MR on multicore systems
	MR on multicore systems
	Phoenix
	Slide Number 74
	Phoenix - Performance
	Slide Number 76
	Slide Number 77
	MR on mobile platforms
	MapReduce – works everywhere?
	Criticism for MapReduce
	Conclusion
	Slide Number 82
	Comparison with Parallel DBMS
	Comparison with Parallel DBMS
	Comparison with Parallel DBMS
	Comparison with Parallel DBMS
	Comparison with Parallel DBMS
	Comparison with Parallel DBMS
	Comparison with Parallel DBMS
	Comparison with Parallel DBMS
	Comparison with Parallel DBMS
	Slide Number 92

