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What is MapReduce? 
 
 A framework for processing large-scale data sets using a cluster of 

machines. 
 
 
 Who should use MapReduce? 
    A programmer with: 

 Lots of data to store and analyze 
 Lots of machines available for processing the data 
 Doesn’t have the time to become a distributed systems expert who can build 

an infrastructure to handle this task 

 



What is MapReduce? 



A simple problem 
 

 Search for a pattern “cs395t” in a collection of files 
 

 You would typically run a command like this: 
grep -r “cs395t” <directory> 
 

 Now, suppose you have to do this search over 
terabytes of data and you have a cluster of machines 
at your disposal.  

   How can you make this grep faster? 
   Build a distributed grep! 



Do we really need a distributed solution? 
 

 Why can’t I just use my desktop to do the processing? 
 How long does it take to read 1 TB of data? 
   Considering an average read speed of 90MB/s[1]: ~3.23 hours 
   If you use an SSD with read speed of 350MB/s[2]: ~50 minutes 

 
 How much time it will take for searching through a 

terabyte of data? Or maybe sorting it? 
 
  MapReduce can sort 1000 TB of data in 33 minutes![3] 

 
[1] Numbers are for Western Digital 1TB SATA/300 drive. 
[2] Numbers are for Crucial 128 GB m4 2.5-Inch Solid State Drive SATA 6Gb/s  
[3] using 8000 machines - http://googleresearch.blogspot.com/2011/09/sorting-petabytes-with-mapreduce-next.html 
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Should I build my own distributed 
system/framework? 

 
 It’s hard!  
 Machine and network management 
 Task management 
 Fault tolerance 
 Availability despite failures 
 Scalability 
 

 



Understanding Map and Reduce 
 

 

var a = [1,2,3]; 

 

for (i=0; i<a.length; i++)  

 a[i] = a[i] * 2; 

 

for (i=0; i<a.length; i++) 

 a[i] = a[i] + 2; 



Understanding Map and Reduce 
 

I can change it to: 
 

 function map(fn, a) { 

     for (i = 0; i < a.length; i++) 

         a[i] = fn(a[i]); 

 } 

 

map(function(x){return x*2;}, a); 

map(function(x){return x+2;}, a); 



Understanding Map and Reduce 
function sum(a) { 
        var s = 0; 
        for (i = 0; i < a.length; i++) 
            s += a[i]; 
        return s; 
} 
     
function join(a) { 
        var s = ""; 
        for (i = 0; i < a.length; i++) 
            s += a[i]; 
        return s; 
} 
     
alert(sum([1,2,3])); 
alert(join(["a","b","c"])); 



Understanding Map and Reduce 
function reduce(fn, a, init) { 
        var s = init; 
        for (i = 0; i < a.length; i++) 
            s = fn( s, a[i] ); 
        return s; 
} 
     
function sum(a) { 
 return reduce(function(a, b){return a+b;}, a, 0); 
}   
 
function join(a) { 
 return reduce(function(a, b){return a+b;}, a, “” ); 
} 
 
alert(sum([1,2,3])); 
alert(join(["a","b","c"])); 



Understanding Map and Reduce 
 Passing functions as arguments – functional 

programming 
 

 map – does something to every element in an array 
– can be done in any order! 
 amenable to parallelization 

 
 So, if you have 2 CPUs, map will run twice as fast 

 
 map is an example of embarrassingly parallel 

computation 
 



Understanding Map and Reduce 
 Suppose you have a huge array with elements which 

are all the webpages from the Internet 
 

 To search the entire Internet: 
 you just need to pass a string_searcher function to map  
 reduce will be an identity function 
 run a MapReduce job on a cluster 
 …that’s it! you are searching the Internet by writing just a 

few lines of code! 
 



Map and Reduce 
 

 map – function that takes key/value pairs as input 
and generates an intermediate set of key/value pairs 
 
 

 reduce – function that merges all the intermediate 
values associated with the same intermediate key 
 



Map and Reduce 
 

 User needs to define these 2 functions 
 

 Inspired by functional primitives in Lisp 
 
 Functional model – data is immutable, functions 

don’t have side-effects 
 Allows automatic parallelization and distribution of large-

scale computations easily 



MapReduce 
 

map:  (k1, v1)  list(k2, v2) 

reduce:  (k2, list(k2, v2))  list(v2) 

 
 

map                     shuffle     reduce 
(input key/value pair     (groups all values associated           (takes an intermediate key  
and produces intermediate     with the same intermediate key)            and associated intermediate 
key/value pairs)                values and merges them to 
                 form a possibly smaller set 
                 of values) 





Example – Word Count 
 Problem: counting occurrences of words in a large 

collection of documents 
 map(String key, String value): 
   // key: document name 
   // value: document contents 
        for each word w in value: 
          EmitIntermediate(w, "1"); 
        
      reduce(String key, Iterator values): 
   // key: a word 
   // values: a list of counts 
   int result = 0; 
   for each v in values: 
     result += ParseInt(v); 
   Emit(AsString(result)); 



Word Counting using MapReduce 



Example – Word Count 
 Other than map and reduce, user needs to provide: 
 names of input and output files 
 optional tuning parameters (size of split, M, R, etc.) 

 
 User’s code is linked with MapReduce library and 

the binary is submitted to a task runner 



Other Examples 
 

 Distributed grep 
 map emits a line if it matches the given pattern 
 reduce just copies input to output 
 
 

 Counting URL access frequency 
 map processes web server logs and outputs <URL, 1> 
 reduce sums all numbers for a single URL 

 
 



Other Examples 
 

 Inverted index 
 map function parses document and emits <word, docID> 
 reduce gets all pairs for a given word and emits  
  <word, list(docID)> 
 

 Distributed sort 
 map extracts key for a record and emits <key, record> 
 reduce emits all pairs unchanged 

 
 



Implementing Map and Reduce 
 Now, all we need is some “genius” to implement these 2 

abstractions – map & reduce 
 
 Exploit parallelism in the computation 
 
 Massively scalable – can run on hundreds or thousands of 

machines 
 

 Hide the details of cluster management tasks like scheduling of 
tasks, partitioning of data, network communication from the 
user 
 

 Fault tolerant (in large clusters failures are a norm rather than 
being an exception) 
 

 



Implementing MR: 
Opportunities for Parallelism 

 
 Input – all key/value pairs can be read and 

processed in parallel by map 
 

 Intermediate grouping of data – essentially a sorting 
problem; can be done in parallel and results can be 
merged 
 

 Output – All reducers can work in parallel 
 each individual reduction can be parallelized 
 
 



MR Execution 



MR Parallel 
  Execution 



Implementing MR:  
Exploit parallelism using a cluster 

 
 Characteristics of the cluster: 
 Lot of commodity PCs connected together 
 Network is a scarce resource 
 Failures are very common 
 Storage is provided by a distributed file system using 

inexpensive disks 
 File system replication is used to provide reliability and 

availability 
 A scheduling system decides which jobs will run on which 

machines 



Distributed File System 
 

 Allows access to files from multiple hosts over the 
network 

 Support concurrency (multiple clients reading/writing 
the same file) 

 Support for replication 
 

 GFS: distributed file system used in Google’s 
MapReduce is important for achieving good 
performance (high availability and durability via 
replication) 
 



Google File System (GFS) 
 Motivation: redundant storage of massive 

amounts of data on cheap unreliable machines 
 

 Assumptions: 
 modest number of very large files 
 files are write-once, never modified, mostly appended 
 fast streaming reads – high throughput desired 
 large number of component failures  
 

 



Google File System (GFS) - Design 
 Files stored as chunks (typically of 64MB) 

 helps in load balancing and better distribution of data across 
machines 

 can support files which cannot fit on 1 disk 

 Each chunk is replicated multiple times (typically 3) 
 provides reliability and higher throughput for reads 

 Single master (maintains all metadata) and multiple 
chunkservers (store actual data chunks) 

 No caching of data (little benefit since data sets are 
large) 

 Can (theoretically) scale to any number of chunkservers 
 Writes at arbitrary positions in files supported but are not 

efficient (mostly append operations on files) 
 
 
 

 



Implementing MR: 
Distributing the input 
 Input data is partitioned into splits of size S and is 

processed by M mappers 
 splitting the data helps exploit the data parallelism in the input 
 number of map tasks is usually more than the number of 

available worker machines (better dynamic load balancing) 
 splits are of smaller size – typically the size of a filesystem 

block 
 better load balancing for storage 
 faster recovery: 

 less repetition of work in case of failures  
 repeated work can also be parallelized 

 M and S can be configured by the user 
 

(Note: this step is optional if the files blocks are already distributed across 
machines by GFS.) 



Implementing MR: 
Master 
 Only 1 Master per MR computation 
 Master: 
 assigns map and reduce tasks to the idle workers 
 informs the location of input data to mappers  
 stores the state (idle, in-progress, completed) and identity 

of each worker machine 
 for each completed map task, master stores the location 

and sizes of intermediate files produced by the mapper; 
this information is pushed to workers which have in-
progress reduce tasks 

 
 





MR: Step-by-Step Execution 
 Split the input into M pieces and start copies of 

program on different machines 
 One invocation acts as the master which assigns 

work to idle machines 
 Map task: 
 read the input and parse the key/value pairs 
 pass each pair to user-defined Map function 
 write intermediate key-value pairs to disk in R files 

partitioned by the partitioning function 
 pass location of intermediate files back to master 

 



MR: Step-by-Step Execution 
 Master notifies the reduce worker 
 Reduction is distributed over R tasks which cover 

different parts of the intermediate key’s domain 
 Reduce task: 
 read the intermediate key/value pairs 
 sort the data by intermediate key (external sort can be used) 
     (note: many different keys can map to the same reduce task) 

 iterate over sorted data and for each unique key, pass the key 
and set of values to user-defined Reduce function 

 output of Reduce is appended to final output for the reduce 
partition 

 MR completes when all map and reduce tasks have 
finished 

 
 
 



MR: Output 
 

 The output of MR is R output files (one per reduce 
task) 
 

 The partitioning function for intermediate keys can 
be defined by the user 
 by default, it is “hash(key) mod R” to generate well-

balanced partitions 
 

 Result files can be combined or fed to another MR 
job 
 



MR: Handling Faults 
 

 With thousands of machines all made of cheap 
hardware, faults are very common 
 

 MR library must tolerate any faults in the machines 
of the network gracefully without significantly 
impacting the speed of the computation 
 
 



Fault Tolerance: Scenarios 
 worker failure 

 
 master failure 

 
 network failure 

 
 file system or disk failure – data corruption 

 
 malformed records in input 

 
 bugs in user code 

 
 



Fault Tolerance: Worker Failures 
 Master pings every worker periodically (alternatively, the 

worker can send a heartbeat message periodically) 
 If worker does not respond, master marks it as failed 
 Map worker: 
 any completed or in-progress tasks are reset to idle state 
 completed  tasks need to be re-run since output is stored on a 

local file system 
 all reduce workers notified of this failure (to prevent duplication 

of data) 
 Reduce worker: 
 any in-progress tasks are reset to idle state 
 no need to re-run completed tasks since output stored in global 

file system 
 
 

 



Fault Tolerance: Master Failure 
 Master periodically checkpoints its data structures 

 
 On failure, new master can be elected using some 

leader election algorithm 
 

 Theoretically, the new master can start off from this 
checkpoint 
 

 Implementation: MR job is aborted if the master fails 
 
 

 



Fault Tolerance: Network Failure 
 Smart replication of input data by underlying file-

system 
 

 Workers unreachable due to network failures are 
marked as failed since its hard to distinguish this 
case from worker failure 
 

 Network partitions can slow down the entire 
computation and may need a lot of work to be re-
done 
 

 



Fault Tolerance: Filesystem/Disk failure 
 Depend on the filesystem replication for reliability 

 
 Each data block is replicated f number of times 

(default: 3) 
 replication across machines on the same rack (machine 

failure) 
 replication across machines on different racks (rack 

failure) 
 replication across data-center (data-center failure) 



Fault Tolerance: Malformed input 
 Malformed input records could cause the map task to 

crash 
 Usual course of action: fix the input 
 But what if this happens at the end of a long-running 

computation? 
 Acceptable to skip some records (sometimes) 
 word count over very large dataset 

 MR library detects bad records which cause crashes 
deterministically 
 Signal handler catches error and communicates to the master 
 If more than 1 failure seen for the same record, master 

instructs the mapper to skip that record 
 



Fault Tolerance: Bugs in user code 
 Bugs in user provided Map and Reduce functions 

could cause crashes on particular records 
 

 This case similar to the failure due to malformed 
input 

 



Fault Tolerance: Semantics 
 Map and Reduce must be deterministic functions of 

their input values 
 output produced by the distributed execution is same as 

the one produced by non-faulting sequential execution 
 

 Atomic commit of output 
 on completion, map task sends names of R intermediate 

files to master (master ignores this if the map task was 
already completed elsewhere) 

 on completion, reduce task atomically renames its 
temporary file to final output file (on a global file system) 
 



Locality Optimization 
 Effective utilization of network 

 
 Move computation near the input data 

 
 Input data (managed by GFS) stored on local disks 
 several copies of each block 

 
 Master considers this block location information when 

scheduling map task on a machine 
 

 Most input data is read locally and consumes zero 
network bandwidth 
 
 



Task Granularity 
 M map tasks and R reduce tasks 
 M and R much larger than the number of machines 
 Improves dynamic load balancing (add/remove machines) 
 Speeds up recovery 

 less work needs to be redone 
 work already completed by a failed task can be distributed across 

multiple idle workers 
 Bounds: 

 Master makes O(M+R) scheduling decisions 
 Master maintains O(M*R) state in memory 

 M is chosen such that each task works on one block of 
data (maximize locality) 

 R is usually constrained by users to reduce the number 
of output files 
 



Stragglers and Backup tasks 
 Straggler: machine that takes unusually long to 

complete one of the last few map/reduce tasks 
 reasons: bad disk, incorrect configuration, heavy load 
 significantly lengthens the total time of execution 

 
 Solution: master schedules backup tasks for all in-

progress tasks when MR is near completion 
 task marked complete when either primary or backup task 

finishes 
 tuned such that it does not increase the overall resource 

consumption by more than a few percent 
 
 



Refinements/Extensions 
 Partitioning function for intermediate keys 
 default: “hash(key) mod R” 
 user can provide custom function  

 eg: keys are URLs and we want all entries for a host in a single 
output file – “hash(Hostname(urlkey)) mod R” 

 
 Ordering guarantees 
 within a partition, all intermediate key/values pairs are 

processed in increasing key order 
 generates a sorted output file per partition 

 
 



Refinements/Extensions 
 Combiner 
 same map task produces a lot of values for a single 

intermediate key 
 if Reduce is commutative and associative: 

 user can specify an optional combiner function 
 combiner runs on the same machine as the map task 
 combiner does partial reduction of the output of map before the 

data is send to the reducer 
 preserves network bandwidth and speeds up overall computation 

 Example – word count 
 every map task will produce hundreds of pairs of the form  
   <“the”, 1> which will be sent over the network 
 combiner can do partial reduction 
 only 1 pair is sent to the reducer from every map with key “the” 

 
 
 
 



Refinements/Extensions 
 Local Execution 
 all map/reduce tasks can be executed locally 
 helps with testing/debugging/profiling 
 

 Counters 
 count occurrences of various events 

Counter* uppercase; 
uppercase = GetCounter("uppercase"); 
map(String name, String contents): 
 for each word w in contents: 
  if (IsCapitalized(w)): 
   uppercase->Increment(); 
  EmitIntermediate(w, "1"); 

 updated counters propagated to master periodically 
 
 
 



Refinements/Extensions 
 Support for arbitrary input types and sources 
 user needs to implement a reader interface 
 

 Status Information 
 master runs an HTTP server and exports status pages 

 progress of computation 
 processing rate for input data 
 status of map/reduce tasks 
 failed workers 
 various counters – number of input key/value pairs, number of 

output records, etc. 
 
 
 

























Performance 
 Benchmarks: 
 MR_Grep - Scan 1010 100-byte records to extract records 

matching a pattern (92K matching records) 
 MR_Sort - Sort 1010 100-byte records (similar to TeraSort 

benchmark) 
 

 Testbed: 
 Cluster of 1800 machines 
 Each machine has: 

 4 GB of memory  
 Dual-processor 2 GHz Xeons with HT 
 Dual 160 GB IDE disks 
 Gigabit Ethernet 



Performance 
 MR_Grep 
 M=15000, R=1 (64 MB input splits) 
 total time – 150 secs 

 
 
 
 
 
 
 

 peak rate ~ 31GB/s 
 w/o locality optimization, peak rate < 10GB/s 



Performance 
 MR_Sort 
 M=15000, R=4000 
   (64 MB input splits) 
 1 TB input 
 2 TB output  
   (2-way replication) 
 total time – 891 seconds 

 



Performance 
 Impact of Backup Tasks – MR_Sort 
 After 960 seconds, all except 5 reduce tasks are 

completed – take 300 additional seconds to finish 
 MR_sort takes 44% more time overall if backup tasks are 

disabled 
 

 Impact of Machine Failures – MR_Sort 
 intentionally killed 200 workers some time after the 

computation started 
 overall time – 933 seconds (+5%) 





Chaining MR jobs 
 Many problems which cannot be expressed easily with a 

single MR job 
 use a chain of MR jobs! 

 
Map1  Reduce1  Map2  Reduce2  Map3  Reduce3  … 
 
 

Example: Count the average number of characters in a line 
with has a particular pattern 
 
Distributed grep  Average calculator 



MR on multicore systems 
 MPI and shared-memory threads implementations 

are too complex and error-prone 
 

 Needs to be tuned for efficiency on different 
platforms by the programmer 

 
 Can we develop a simple interface like MR on 

multicore platforms? 



MR on multicore systems 
 

 To simplify parallel programming we need 2 
components: 

 
 practical programming model -  allows to specify 

concurrency and locality at a high level 
 

 efficient runtime system – handles low-level mapping, 
resource management and fault tolerance 
 

 



MR on multicore systems 
 Phoenix: implementation of MR on shared-memory 

symmetric multiprocessor systems 
 



Phoenix 
 uses threads instead of machines in a cluster for 

parallelism 
 communication done via shared-memory instead of  

the network 
 Phoenix Runtime: 
 assigns map and reduce to threads; handles buffer 

allocation and communication 
 dynamic scheduling for load balancing  
 locality optimization via granularity adjustment 

(input/output for map should fit in L1 cache) 
 detects and recovers from faults 
 mainly, hides a lot of low-level details from the 

programmer 
 





Phoenix - Performance 
 Performance evaluated on 2 systems: 
 CMP: 1.2GHz Sun Fire T1200 (8 CPUs, 4 threads/CPU) 
 SMP: 250MHz Sun Ultra-Enterprise 6000 (24 CPUs, 1 

thread/CPU) 
 

 Computations: 
 word count, string match, reverse index, linear regression, 

matrix multiply, Kmeans, PCA, histogram of RGB 
components in an image 

 datasets of different sizes are used for different 
computations 

 
 



 
 



 
 



MR on mobile platforms 
 

 Misco: MapReduce framework for mobile systems 
 uses mobile devices as nodes to schedule map and 

reduce tasks 
 works on any device which supports Python and has 

network connectivity 
 tested using 10 Nokia N95 phones connected to a 

Linksys router 
 can be used by applications which require more 

computing power than locally available 
 eg: processing images/videos 



MapReduce – works everywhere? 
 Real time computations 
 MR can be used for preprocessing data 

 Small datasets 
 too much overhead 

 Interactive analysis of data 
 Anything which requires a lot of communication 

between tasks 
 Anything where tasks depend on each other 
 Stream processing 
 reduce waits for map to finish 



Criticism for MapReduce 
 nothing new – just a specific implementation of 25-

30 year old techniques 
 MR imposes “simplified” data processing with cluster of 

cheap commodity machines 
 

 not a DBMS 
 MR is a framework for one-off processing of data 

 
 sub-optimal implementation (uses brute force 

instead of indexing to process data) 
 MR can be used to generate indexes but its not an 

optimized data storage and retrieval system 
 



Conclusion 
 MapReduce programming model has been a huge 

success 
 easy to use for programmers with no experience in 

distributed systems 
 hides details of parallelization, load balancing, fault 

tolerance, task management from the user 
 massively scalable 
 provides status monitoring tools 

 
 Many open source implementations 
 eg: Hadoop 



 
 

 Thank you! 
    Questions? 



Comparison with Parallel DBMS 
 Parallel DBMS – similar to MR? 
 Parallelize query operation across multiple machines 
 

 MapReduce: 
 Distributed file system 
 MR scheduler 
 Map, Combine and Reduce operations 
 

 Parallel DBMS 
 Relational tables 
 Data spread over cluster nodes 
 SQL for programming 

  
 



Comparison with Parallel DBMS 
 Indexing 
 MR: 

 No direct support; indexes can be built 
 Customized indexes harder to reuse and share 

 DBMS 
 Use hash or b-tree for indexing 
 Fast access to any data 

 
 Data format 
 MR: 

 No specific format required 
 DBMS: 

 Relational schema required 



Comparison with Parallel DBMS 
 Fault Tolerance: 
 MR: 

 Intermediate results stored to files 
 Quicker to recover from faults 

 DBMS: 
 No storage of intermediate results (send over network) 
 Lot of rework needed if a node fails 

 

 
 



Comparison with Parallel DBMS 
 Performance: 
 Cluster configuration: 

 100 nodes 
 Each 2.4GHz Intel Core 2 Duo, 4GB RAM, 2 256GB SATA 

HDDs 
 

 Comparison of: 
 Hadoop 
 DBMS-X (row store) 
 Vertica (column store) 

 



Comparison with Parallel DBMS 
 Benchmark – Data Loading 
 Hadoop 

 Copy file in parallel to HDFS 
 

 DBMS-X  
 SQL load in parallel 
 Distribute records to machines, build index, compress data 

 
 Vertica 

 Load data in parallel; compress data 
  

 



Comparison with Parallel DBMS 
  

 



Comparison with Parallel DBMS 
 Benchmark – grep for pattern 
 Hadoop 

 Map outputs line what matches a pattern 
 Identity Reduce 

 
 DBMS-X  

 SELECT * FROM data WHERE field LIKE “%XYZ%” 
 

 Vertica 
 SELECT * FROM data WHERE field LIKE “%XYZ%” 
  

 
  

 



Comparison with Parallel DBMS 
  

 



Comparison with Parallel DBMS 
 Conclusion 
 Advantages over MR: 

 Provide schema support 
 Indexing for faster access to data 
 Programming model is more expressive and easier  

 Disadvantages over MR: 
 Cant work with any arbitrary data 
 Load times for data are very high 
 MR is better at fault tolerance (less repeated work) 
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