
A Family of High-Performance Matrix Multiplication Algorithms∗

John A. Gunnels† Greg M. Henry‡ Robert A. van de Geijn§

A Technical Paper Submitted to the International Conference on Computer Science 2001

Abstract

During the last half-decade, a number of research efforts have centered around developing
software for generating automatically tuned matrix multiplication kernels. These include the
PHiPAC project and the ATLAS project. The software products of both projects employ brute
force to search a parameter space for blockings that accommodate multiple levels of memory
hierarchy. We take a different approach. Using a simple model of hierarchical memories we
employ mathematics to determine a locally-optimal strategy for blocking matrices. The theo-
retical results show that, depending on the shape of the matrices involved, different strategies
are locally-optimal. Rather than determining a blocking strategy at library generation time,
the theoretical results show that ideally one should pursue a heuristic that allows the blocking
strategy to be determined dynamically at run-time as a function of the shapes of the operands.
When the resulting family of algorithms is combined with a highly optimized inner-kernel for a
small matrix multiplication, the approach yields performance that is superior to that of meth-
ods that automatically tune such kernels. Preliminary results, for the Intel Pentium (R) III
processor, support the theoretical insights.

1 Introduction

Research in the development of linear algebra libraries has recently shifted to the automatic gener-
ation and optimization of the matrix multiplication kernels. The idea is that many linear algebra
operations can be implemented in terms of matrix multiplication [3, 11, 7] and that thus it is this
operation that should be highly optimized on different platforms. Since the coding effort is con-
siderable, especially when multiple layers of cache are involved, the general concensus is that this
process should be automated.

In this paper, we develop a theoretical framework that (1) suggests a formula for the block
sizes that should be used at each level of the memory hierarchy, and (2) restricts the possible loop
orderings to a specific family of algorithms for matrix multiplication. Together, we show how to
use these results to build highly optimized matrix multiplication implementations that utilize the
caches in a locally-optimal fashion. The results could be equally well used to limit the search space
that must be examined by packages that automatically tune such kernels.

∗This work was partially performed at the Jet Propulsion Laboratory, California Institute of Technology, under a
contract with the National Aeronautics and Space Administration. The work was funded by the Remote Exploration
and Experimentation Project (a part of the NASA High Performance Computing and Communications Program
funded by the NASA Office of Space Science.)

†Department of Computer Sciences, The University of Texas, Austin, TX 78712, gunnels@cs.utexas.edu
‡Intel Corp., Bldg EY2-05, 5350 NE Elam Young Pkwy, Hillsboro, OR 97124-6461, greg.henry@intel.com
§Department of Computer Sciences, The University of Texas, Austin, TX 78712, rvdg@cs.utexas.edu

1

The current pursuit of highly optimized matrix kernels achieved by coding in a high-level pro-
gramming language started with the implementation of the FORTRAN implementation of Ba-
sic linear Algebra Subprograms (BLAS) [5] for the IBM Power2 [1]. Subsequently, the PHiPAC
project [4] at UC-Berkeley demonstrated that high-performance matrix multiplication kernels can
be written in C and that code generators could be used to automatically generate many different
blockings, allowing automatic tuning. Next, the Automatically Tuned Linear Algebra Software
(ATLAS) project [12] at the University of Tennessee extended the ideas developed as part of the
PHiPAC project by reducing the kernel that is called once matrices are massaged to be in the L1
cache into one specific case: C = AT B + βC for small matrices A, B, and C and reducing the
space searched for optimal blockings. Furthermore it marketed the methodology allowing it to gain
wide-spread acceptance and igniting the current craze in the linear algebra community towards
automatically tuned libraries. Finally, there has been a considerable recent interest in recursive
algorithms and recursive data structures. The idea here is that by recursively partitioning the
operands blocks that fit in the different levels of the caches will automatically be encountered [9].
By storing matrices recursively, blocks that are encountered during the execution of the recursive
algorithms will be in contiguous memory [2, 8, 10].

Other work closely related to this topic is discussed in other papers presented as part of this
session of the conference.

2 Notation and Terminology

2.1 Special cases of matrix multiplication

The general form of a matrix multiply is C ← αAB + βC where C is m × n, A is m × k, and
B is k × n. We will use the following terminology when referring to a matrix multiply when two
dimensions are large and one is small:

Condition Shape

Matrix-panel multiply n is small C = A B + C

Panel-matrix multiply m is small C
=

A
B +

C

Panel-panel multiply k is small C = A
B

+ C

The following observation will become key to understanding concepts encountered in the rest of

the paper: Partition X =
(

X1 · · · XNX

)
=




X̂1
...

X̂MX


 for X ∈ {A,B, C}, where Cj is m×nj ,

Ĉi is mi × n, Ap is m× kp, Âi is mi × k, Bj is k × nj , and B̂p is kp × n. Then C ← AB + C can
be achieved by

2

multiple matrix-panel
multiplies:

Cj ← ABj + Cj for j = 1, . . . , NC C1C2C3 += A B1B1B1

multiple panel-matrix
multiplies:

Ĉi ← ÂiB + Ĉi for i = 1, . . . , MC
Ĉ1

Ĉ2

Ĉ3

+=
Â1

Â2

Â3

B

multiple panel-panel
multiplies

C ←∑NA
p ApB̂p + C C +=A1A2A3

B̂1

B̂2

B̂3

2.2 A cost model for hierarchical memories

The memory hierarchy of a modern microprocessor is often viewed as a pyramid: At the top of the
pyramid, there are the processor registers, with extremely fast access. At the bottom, there are
disks and even slower media. As one goes down the pyramid, while the cost of memory decreases,
the amount of memory increases along with the time required to access that that memory.

We will model the above-mentioned hierarchy naively as follows: (1) The memory hierarchy
consists of H levels, indexed 0, . . . , H − 1. Level 0 corresponds to the registers. We will often
denote the ith level by Li. Notice that on a typical current architecture L1 and L2 correspond the
level 1 and level 2 data caches and L3 corresponds to RAM. (2) Level h of the memory hierarchy
can store Sh floating point numbers. Generally S0 ≤ S1 ≤ · · · ≤ SH−1. (3) Loading a floating point
number stored in level h + 1 to level h costs time ρh. We will assume that ρ0 < ρ1 < · · · < ρH−1.
(4) Storing a floating point number from level h to level h + 1 costs time σh. We will assume that
σ0 < σ1 < · · · < σH−1. (5) If mh × nh matrix C, mh × kh matrix A, and kh × nh matrix B are
all stored in level h of the memory hierarchy then forming C ← AB + C costs time 2mhnhkhγh.
(Notice that γh will depend on mh, nh, and kh).

3 Building-blocks for matrix multiplication

Consider the matrix multiplication C ← AB + C where mh+1 × nh+1 matrix C, mh+1 × kh+1

matrix A, and kh+1 × nh+1 matrix B are all stored in Lh+1. Let us assume that somehow an
efficient matrix multiplication kernel exists for matrices stored in Lh. In this section, we develop
three distinct approaches for matrix multiplication kernels for matrices stored in Lh+1.

Partition

C =




C11 · · · C1N
...

...
CM1 · · · CMN


 , A =




A11 · · · A1K
...

...
AM1 · · · AMK


 , and B =




B11 · · · B1N
...

...
BK1 · · · BKN


(1)

where Cij is mh × nh, Aip is mh × kh, and Bpj is kh × nh. The objective of the game will be to
determine optimal mh, nh, and kh.

3.1 Multiple panel-panel multiplies in Lh

Noting that Cij ←
∑K

p=1 AipBpj + Cij , let us consider the algorithm in Fig. 1 for computing the
matrix multiplication. In that figure the costs of the various operations are shown to the right.
The order of the outer-most loops is irrelevant to the analysis.

3

Algorithm 1
for j = 1, . . . , N

for i = 1, . . . , M
Load Cij from Lh+1 to Lh. mhnhρh

for p = 1, . . . , K
Load Aip from Lh+1 to Lh. mhkhρh

Load Bpj from Lh+1 to Lh. khnhρh

Update Cij ← AipBpj + Cij 2mhnhkhγh

endfor
Store Cij from Lh to Lh+1 mhnhσh

endfor
endfor

Figure 1: Multiple panel-panel multiply based blocked matrix multiplication.

The cost for updating C is given by

mh+1nh+1(ρh + σh) + mh+1nh+1kh+1
ρh

nh
+ mh+1nh+1kh+1

ρh

mh
+ 2mh+1nh+1kh+1γh

Since it also equals 2mh+1nh+1kh+1, solving for γh+1, the effective cost per floating point operation
at level Lh+1, yields

γPP
h+1 =

ρh + σh

2kh+1
+

ρh

2nh
+

ρh

2mh
+ γh

The question now is how to find the mh, nh, and kh that minimize γh+1 under the constraint that
Cij , Aik and Bkj all fit in Lh, i.e., mhnh +mhkh +nhkh ≤ Sh. The smaller kh, the more space in Lh

can be dedicated to Cij and thus the smaller the fractions ρh/mh and ρh/nh can be made. A good
strategy is thus to let essentially all of Lh be dedicated to Cij , i.e., mhnh ≈ Sh. The minimum is
then attained when essentially mh ≈ nh ≈

√
Sh.

Notice that it suffices to have mh+1 = mh or nh+1 = nh for the above cost of γh+1 to be
achieved. Thus, the above already for the special cases




C11

...
CM1


 +=




A11 · · · A1K

...
...

AM1 · · ·AMK







B11
...

BK1


 +=(2)

(
C11 · · · C1N

)
+=

(
A11 · · ·A1K

)



B11 · · · B1N
...

...
BK1 · · · BKN


 +=(3)

Here the distance between single/thin lines is kh and between double/thick lines mh = nh, where
kh is much smaller than mh and nh.

The inner-most loop in Alg. 1 implements multiple panel-panel multiplies since kh is small
relative to mh and nh. Hence the name of this section.

3.2 Multiple matrix-panel multiplies in Lh

Moving the loops over l and i to the outside we obtain the algorithm in Fig. 2(left). Performing an

4

Algorithm 2
for p = 1, . . . , K

for i = 1, . . . ,M
Load Aip from Lh+1 to Lh.
for j = 1, . . . , N

Load Cij from Lh+1 to Lh.
Load Bpj from Lh+1 to Lh.
Update Cij ← AipBpj + Cij

Store Cij from Lh to Lh+1

endfor
endfor

endfor

Algorithm 3
for j = 1, . . . , N

for p = 1, . . . , K
Load Bpj from Lh+1 to Lh.
for i = 1, . . . , M

Load Cij from Lh+1 to Lh.
Load Aip from Lh+1 to Lh.
Update Cij ← AipBpj + Cij

Store Cij from Lh to Lh+1

endfor
endfor

endfor

Figure 2: Multiple matrix-panel (left) and panel-matrix (right) multiply based blocked matrix
multiplication.

analysis similar to that given in Section 3.1 the effective cost of a floating point operation is now
given by

γMP
h+1 =

ρh

2nh+1
+

ρh + σh

2kh
+

ρh

2mh
+ γh(4)

Again, the question is how to find the mh, nh, and kh that minimize γh+1 under the constraint
that Cij , Aik and Bkj all fit in Lh, i.e., mhnh + mhkh + nhkh ≤ Sh. Note that the smaller nh, the
more space in Lh can be dedicated to Ail and thus the smaller the fractions (ρh + σh)/2kh and
ρh/2mh can be made. A good strategy is thus to let essentially all of Lh be dedicated to Ail, i.e.,
mhkh ≈ Sh. The minimum is then attained when essentially mh ≈ kh ≈

√
Sh.

Notice that it suffices to have mh+1 = mh or kh+1 = kh for the above cost of γh+1 to be achieved.
In other words, the above holds for the special cases




C11 · · · C1N

...
...

CM1 · · ·CMN


 +=




A11

...
AM1




(
B11 · · ·B1N

)

+=(5)

(
C11 · · · C1N

)
+=

(
A11 · · · A1K

)



B11 · · · B1N
...

...
BK1 · · · BKN


 +=(6)

The inner-most loop in Alg. 2 implements multiple matrix-panel multiplies since nh is small
relative to mh and kh. Thus the name of this section.

3.3 Multiple panel-matrix multiplies in Lh

Finally, moving the loops over p and j to the outside we obtain the algorithm given in Fig. 2(right).
This time, the effective cost of a floating point operation is given by

γPM
h+1 =

ρh

2mh+1
+

ρh + σh

2kh
+

ρh

2nh
+ γh(7)

Again, the question is how to find the mh, nh, and kh that minimize γh+1 under the constraint
that Cij , Aik and Bkj all fit in Lh, i.e., mhnh + mhkh + nhkh ≤ Sh. Note that the smaller mh, the

5

more space in Lh can be dedicated to Bpj and thus the smaller the fractions (ρh + σh)/2kh and
ρh/2nh can be made. A good strategy in this case is to dedicate essentially all of Lh to Bpj , i.e.,
nhkh ≈ Sh. The minimum is then attained when essentially nh ≈ kh ≈

√
Sh.

Notice that it suffices to have nh+1 = nh and/or kh+1 = kh for the above cost of γh+1 to be
achieved. In other words, the above holds for the special cases




C11 · · · C1N

...
...

CM1 · · ·CMN


 + =




A11

...
AM1




(
B11 · · ·B1N

)
+=(8)




C11

...
CM1


 + =




A11 · · · A1K

...
...

AM1 · · ·AMK







B11

...
BK1


 +=(9)

an observation that will become important later.

3.4 Summary

The conclusions to draw from Sections 2.1 and 3.1–3.3 are: (1) There are three shapes of matrix
multiplication that one expects to encounter at each level of the memory hierarchy: panel-panel,
matrix-panel, and panel-matrix multiplication. (2) If one such shape is encountered at Lh+1, a
locally-optimal approach to utilizing Lh will perform multiple instances with one of the other two
shapes. (3) Given that multiple instances of a given shape are to be performed, the strategy is to
move a submatrix of one of the three operands into Lh (we will call this the resident matrix in Lh),
filling most of that layer, and to amortize the cost of this data movement by streaming submatrices
from the other operands from Lh+1 to Lh.

Interestingly enough, the shapes discussed are exactly those that we encountered when studying
a class of matrix multiplication algorithms on distributed memory architectures [6]. This is not
surprising, since distributed memory is just another layer in the memory hierarchy.

4 A Family of Algorithms

We now show how to turn the observations made in the previous section into a practical implemen-
tation.

High-performance implementations of matrix multiplication typically start with an “inner-
kernel”. This kernel carefully orchestrates the movement of data in and out of the registers and
the computation under the assumption that one or more of the operands are in the L1 cache. For
our implementation on the Intel Pentium (R) III processor, the inner-kernel performs the operation
C = AT B + βC where 64 × 8 matrix A is kept in the L1 cache. Matrices B and C have a large
number of columns, which we view as multiple-panels, with each panel of width one. Thus, our
inner-kernel performs a multiple matrix-panel multiply (MMP) with a transposed resident matrix
A. The technical reasons why this particular shape was selected go beyond the scope of this paper.

While it may appear that we thus only have one of the three kernels for operation in the L1
cache, notice that for the submatrices with which we compute at that level one can instead compute
CT = BT A + CT , reversing the role of A and B. This simple observation allows us to claim that
we also have an inner-kernel that performs a multiple panel-matrix multiply (MPM).

Let us introduce a naming convention for a family of algorithms that perform the discussed
algorithms at different levels of the memory hierarchy:

6

General C = AB + C L3-kernels L2-kernels L1-kernels

+= ¤
¤
¤
¤
¤
¤
¤¤º

-
C
C
C
C
C
C
CCW

+= ¡
¡µ

@
@R

+= ¡
¡µ

@
@R

+= ¡
¡µ

@
@R

+= ¡
¡

¡¡µ

+=

¡
¡

¡¡µ

+=

¢
¢
¢¢̧

-

+=

-

+= -

+=

-
A
A
AAU

+=
MPP-
MPM-
MMP

+=

MPP-
MMP-
MPM

+=

MPM-
MPP-
MPM

+=
MPM-
MPP-
MMP

+=

MPM-
MMP-
MPM

+=
MMP-
MPM-
MMP

+=

MMP-
MPP-
MPM

+=
MMP-
MPP-
MMP

Figure 3: Possible algorithms for matrices in memory level L3 given all L2-kernels.

<kernel at L3>-<kernel at L2>-<kernel at L1>.

For example MPP-MPM-MMP will indicate that the L3-kernel uses multiple panel-panel multiplies,
calls the L2-kernel that uses multiple matrix-panel multiplies, which in turn calls the L1-kernel that
uses multiple panel-matrix multiplies. Given the constraint that only two of the possible three kernel
algorithms are implemented at L1, the tree of algorithms in Fig. 3 can be implemented.

5 Performance

In this section, we report performance attained by the different algorithms. Performance is re-
ported by the rate of computations attained, in millions of floating point operations per second
(MFLOPS/sec). For the usual matrix dimensions m, n, and k, we use the operation count 2mnk
for the matrix multiplication. We tested performance of the operation C = C − AB (α = −1 and
β = 1) since this is the case most frequently encountered when matrix multiplication is used in
libraries such as LAPACK.

We report performance on an Intel Pentium (R) III (650 MHz) processor with a 16 Kbyte L1

7

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
300

350

400

450

500

550
m=n=k=1000 with varying block size for L2 cache

Fraction of L2 cache filled with "resident" matrix

M
F

lo
p

/s
e

c
a

tt
a

in
e

d

MPM−MMP−MPM
MMP−MPM−MMP
MPM−MPP−MPM
MPM−MPP−MMP
ATLAS

0 50 100 150 200 250 300
0

50

100

150

200

250

300

350

400

450

500

550
m=k=128

n

M
F

lo
p

/s
e

c
 a

tt
a

in
e

d

MPM−MMP−MPM
MMP−MPM−MMP
MPM−MPP−MPM
MPM−MPP−MMP
ATLAS

(a) (b)

Figure 4: Left: Performance for fixed dimensions m = n = k = 1000 as a function of the size of the
resident matrix in the L2 cache. Right: Performance as a function of n when m = k = 128 so that
A fits in the L2 cache.

data cache and a 256 Kbyte L2 cache running RedHat Linux 6.2. The inner-kernel, which perform
the operation C ← AT B + βC with 64× 8 matrix A and 64× k matrix B, was hand-coded using
Intel Streaming SIMD Extensions (TM) (SSE). In order to keep the graphs readable, we only report
performance for four of the eight possible algorithms. For reference, we report performance of the
matrix multiply from ATLAS R3.2 for this architecture.

Our first experiment is intended to demonstrate that the block size selected for the matrix
that remains resident in the L2 cache has a clear effect on the overall performance of the matrix
multiplication routine. In Fig. 4(a) we report performance attained as a function of the fraction of
the L2 cache filled with the resident matrix when a matrix multiplication with k = m = n = 1000
is executed. This experiment tests our theory that reuse of data in the L2 cache impacts overall
performance as well as our theory that the resident matrix should occupy “most” of the L2 cache.
Note that performance improves as a larger fraction of the L2 cache is filled with the resident matrix.
Once the resident matrix fills more than half of the L2 cache, performance starts to deminish. This
is consistent with the theory which tells us that some of the cache must be used for the matrices
that are being streamed from main memory. Once more than 3/4 of the L2 cache is filled with the
resident matrix, performs drops significantly. This is consistent with the scenario where parts of
the other matrices start evicting parts of the resident matrix from the L2 cache.

Based on the above experiment, we fix the block size for the resident matrix in the L2 cache to
128× 128, which fills exactly half of this cache, for the remaining experiments.

The next experiment shows that the cost of moving a submatrix into the L2 cache and then
amortizing the cost of this memory operation over as much computation as possible is indeed
observable in practice. In Fig. 4(b) we fix m = k = 128 and vary n. Notice that the curve for
MPM-MMP-MPM, which keeps 128 × 128 matrix A resident in the L2 cache, improves smoothly in
performance as n increases. It is also obvious from this graph that depending on the matrix size,
different algorithms attain superior performance.

In Fig. 5(a) we show performance as a function of m when n and k are fixed to be large.
There is more information in this graph than we can discuss in this paper. Notice for example

8

0 50 100 150 200 250 300
0

50

100

150

200

250

300

350

400

450

500

550
n=k=1000

m

M
F

lo
p

/s
e

c
a

tt
a

in
e

d

MPM−MMP−MPM
MMP−MPM−MMP
MPM−MPP−MPM
MPM−MPP−MMP
ATLAS

0 100 200 300 400 500 600 700 800 900 1000
0

50

100

150

200

250

300

350

400

450

500

550
m=n=k

m=n=k

M
F

lo
p

/s
e

c
 a

tt
a

in
e

d

MPM−MMP−MPM
MMP−MPM−MMP
MPM−MPP−MPM
MPM−MPP−MMP
ATLAS

(a) (b)

Figure 5: Left: Performance when n = k = 1000 as a function of m. Right: Performance when all
operands are square.

that performance of the algorithm that performs multiple panel-matrix multiplies in the L3 cache
and multiple matrix-panel multiplies in the L2 cache, MPM MMP MPM, increases as m increases to a
multiple of 128. This is consistent with the theory.

In Fig. 5(b) we show the obligatory graph that reports performance for square matrices. Notice
the interesting performance dip for multiples of 256. Whenever matrices have a leading dimension
of a multiple of 256 there appears to be interference due to problems with the set associative cache
or Table Look-aside Buffer (TLB) infractions.

6 Conclusion

In this paper, theoretical insight was used to motivate a family of algorithms for matrix multiplica-
tion on hierarchical memory architectures. The approach attempts to amortized the cost of moving
data between memory layers in a fashion that is locally-optimal. Preliminary experimental results
on the Intel Pentium (R) III processor appear to support the theoretical results.

Many questions regarding this subject are not addressed in this paper: For example, the tech-
niques can be trivially extended to the other cases of matrix multiplication: C ← αAT B + βC,
C ← αABT + βC, and C ← αAT BT + βC by transposing matrices at appropriate stages in the
algorithm. Also, while we claim that given different matrix dimensions, m, n, and k, a different
algorithm may be best we do not address how to choose from the different algorithms. We have
developed simple heuristics that yield very satisfactory results. Space limitations do not allow us
to elaborate here. Finally, experiments that support the theory performed on a number of different
architectures are needed to draw definitive conclusions.

Clearly, our techniques can be used to greatly reduce the set of block sizes to be searches at each
level of the memory hierarchy. Our techniques could be combined with techniques for automatically
generating the inner-kernel and/or an automated search for the optimal block sizes.

For additional information visit http://www.cs.utexas.edu/users/flame/ITXGEMM/.

Acknowledgments: We thank Dr. Fred Gustavson for valuable feedback regarding this project.

9

References

[1] R.C. Agarwal, F.G. Gustavson, and M. Zubair. Exploiting functional parallelism of POWER2
to design high-performance numerical algorithms. IBM Journal of Research and Development,
38(5), Sept. 1994.

[2] Bjarne S. Andersen, Fred G. Gustavson, and Jerzy Wasniewski. A recursive formalation of
Cholesky factorization of a matrix in packed storage. LAPACK Working Note 146 CS-00-441,
University of Tennessee, Knoxville, May 2000.

[3] E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Ham-
marling, A. McKenney, S. Ostrouchov, and D. Sorensen. LAPACK Users’ Guide - Release 2.0.
SIAM, 1994.

[4] J. Bilmes, K. Asanovic, C.W. Chin, and J. Demmel. Optimizing matrix multiply using
PHiPAC: a portable, high-performance, ANSI C coding methodology. In Proceedings of the
International Conference on Supercomputing. ACM SIGARC, July 1997.

[5] Jack J. Dongarra, Jeremy Du Croz, Sven Hammarling, and Iain Duff. A set of level 3 basic
linear algebra subprograms. ACM Trans. Math. Soft., 16(1):1–17, March 1990.

[6] John Gunnels, Calvin Lin, Greg Morrow, and Robert van de Geijn. A flexible class of parallel
matrix multiplication algorithms. In Proceedings of First Merged International Parallel Pro-
cessing Symposium and Symposium on Parallel and Distributed Processing (1998 IPPS/SPDP
’98), pages 110–116, 1998.

[7] John A. Gunnels and Robert A. van de Geijn. Formal methods for high-performance linear
algebra libraries. In Ronald F. Boisvert and Ping Tak Peter Tang, editors, The Architecture
of Scientific Software. Kluwer Academic Press, 2001.

[8] F. Gustavson, A. Henriksson, I. Jonsson, B. K̊agström, and P. Ling. Recursive blocked data
formats and BLAS’s for dense linear algebra algorithms. In B. K̊agström et al., editor, Applied
Parallel Computing, Large Scale Scientific and Industrial Problems, volume 1541 of Lecture
Notes in Computer Science, pages 195–206. Springer-Verlag, 1998.

[9] F. G. Gustavson. Recursion leads to automatic variable blocking for dense linear-algebra
algorithms. IBM Journal of Research and Development, 41(6):737–755, November 1997.

[10] Greg Henry. BLAS based on block data structures. Theory Center Technical Report
CTC92TR89, Cornell University, Feb. 1992.

[11] B. K̊agström, P. Ling, and C. Van Loan. GEMM-based level 3 BLAS: High performance model
implementations and performance evaluation benchmark. Technical Report CS-95-315, Univ.
of Tennessee, Nov. 1995.

[12] R. Clint Whaley and Jack J. Dongarra. Automatically tuned linear algebra software. In
Proceedings of SC98, Nov. 1998.

10

A Additional Performance Graphs for the Pentium (R) III

For the benefit of the referees, we include a few additional performance graphs. We do not plan to
include all in the final paper.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
300

350

400

450

500

550
m=n=k=1000 with varying block size for L2 cache

Fraction of L2 cache filled with "resident" matrix

M
F

lo
p

/s
e

c
 a

tt
a

in
e

d

MPM−MMP−MPM
MMP−MPM−MMP
MPM−MPP−MPM
MPM−MPP−MMP
ATLAS

0 50 100 150 200 250 300
0

50

100

150

200

250

300

350

400

450

500

550
m=k=128

n

M
F

lo
p

/s
e

c
 a

tt
a

in
e

d

MPM−MMP−MPM
MMP−MPM−MMP
MPM−MPP−MPM
MPM−MPP−MMP
ATLAS

(a) (b)

0 50 100 150 200 250 300
0

50

100

150

200

250

300

350

400

450

500

550
n=k=128

m

M
F

lo
p

/s
e

c
 a

tt
a

in
e

d

MPM−MMP−MPM
MMP−MPM−MMP
MPM−MPP−MPM
MPM−MPP−MMP
ATLAS

0 50 100 150 200 250 300
0

50

100

150

200

250

300

350

400

450

500

550
m=n=128

k

M
F

lo
p

/s
e

c
 a

tt
a

in
e

d

MPM−MMP−MPM
MMP−MPM−MMP
MPM−MPP−MPM
MPM−MPP−MMP
ATLAS

(c) (d)

11

0 50 100 150 200 250 300
0

50

100

150

200

250

300

350

400

450

500

550
m=k=1000

n

M
F

lo
p

/s
e

c
 a

tt
a

in
e

d

MPM−MMP−MPM
MMP−MPM−MMP
MPM−MPP−MPM
MPM−MPP−MMP
ATLAS

0 50 100 150 200 250 300
0

50

100

150

200

250

300

350

400

450

500

550
n=k=1000

m

M
F

lo
p

/s
e

c
 a

tt
a

in
e

d

MPM−MMP−MPM
MMP−MPM−MMP
MPM−MPP−MPM
MPM−MPP−MMP
ATLAS

(a) (b)

0 50 100 150 200 250 300
0

50

100

150

200

250

300

350

400

450

500

550
m=n=1000

k

M
lo

p
/s

e
c
 a

tt
a

in
e

d

MPM−MMP−MPM
MMP−MPM−MMP
MPM−MPP−MPM
MPM−MPP−MMP
ATLAS

0 100 200 300 400 500 600 700 800 900 1000
0

50

100

150

200

250

300

350

400

450

500

550
m=n=k

m=n=k

M
F

lo
p

/s
e

c
 a

tt
a

in
e

d

MPM−MMP−MPM
MMP−MPM−MMP
MPM−MPP−MPM
MPM−MPP−MMP
ATLAS

(c) (d)

12

