
The PRAM Model
and Algorithms

Advanced Topics Spring 2008

Prof. Robert van Engelen

HPC Fall 2007 21/23/08

Overview

 The PRAM model of parallel computation

 Simulations between PRAM models

 Work-time presentation framework of parallel algorithms

 Example algorithms

HPC Fall 2007 31/23/08

The PRAM Model of Parallel
Computation

 Parallel Random Access Machine (PRAM)

 Natural extension of RAM: each processor is a RAM

 Processors operate synchronously

 Earliest and best-known model of parallel computation

Shared Memory

P1 P2 P3 Pp
…

Shared memory with m locations

p processors, each with private memory

All processors operate synchronously, by
executing load, store, and operations on data

HPC Fall 2007 41/23/08

Synchronous PRAM

 Synchronous PRAM is a SIMD-style model
 All processors execute the same program

 All processors execute the same PRAM step instruction stream
in “lock-step”

 Effect of operation depends on local data

 Instructions can be selectively disabled (if-then-else flow)

 Asynchronous PRAM
 Several competing models

 No lock-step

HPC Fall 2007 51/23/08

Classification of PRAM Model

 A PRAM step (“clock cycle”) consists of three phases
1. Read: each processor may read a value from shared memory
2. Compute: each processor may perform operations on local data
3. Write: each processor may write a value to shared memory

 Model is refined for concurrent read/write capability
 Exclusive Read Exclusive Write (EREW)
 Concurrent Read Exclusive Write (CREW)
 Concurrent Read Concurrent Write (CRCW)

 CRCW PRAM
 Common CRCW: all processors must write the same value
 Arbitrary CRCW: one of the processors succeeds in writing
 Priority CRCW: processor with highest priority succeeds in

writing

HPC Fall 2007 61/23/08

Comparison of PRAM Models

 A model A is less powerful compared to model B if either
 The time complexity is asymptotically less in model B for solving

a problem compared to A

 Or the time complexity is the same and the work complexity is
asymptotically less in model B compared to A

 From weakest to strongest:
 EREW

 CREW

 Common CRCW

 Arbitrary CRCW

 Priority CRCW

HPC Fall 2007 71/23/08

Simulations Between PRAM
Models

 An algorithm designed for a weaker model can be
executed within the same time complexity and work
complexity on a stronger model

 An algorithm designed for a stronger model can be
simulated on a weaker model, either with
 Asymptotically more processors (more work)

 Or asymptotically more time

HPC Fall 2007 81/23/08

Simulating a Priority CRCW on
an EREW PRAM

 Theorem: An algorithm that runs in T time on the p-processor priority
CRCW PRAM can be simulated by EREW PRAM to run in O(T log p)
time
 A concurrent read or write of an p-processor CRCW PRAM can be

implemented on a p-processor EREW PRAM to execute in O(log p) time
 Q1,…,Qp CRCW processors, such that Qi has to read (write) M[ji]
 P1,…,Pp EREW processors
 M1,…,Mp denote shared memory locations for special use
 Pi stores <ji,i> in Mi

 Sort pairs in lexicographically non-decreasing order in O(log p) time
using EREW merge sort algorithm

 Pick representative from each block of pairs that have same first
component in O(1) time

 Representative Pi reads (writes) from M[k] with <k,_> in Mi and copies
data to each M in the block in O(log p) time using EREW segmented
parallel prefix algorithm

 Pi reads data from Mi

HPC Fall 2007 91/23/08

Reduction on the EREW PRAM

 Reduce p values on the p-processor EREW PRAM in
O(log p) time

 Reduction algorithm uses exclusive reads and writes

 Algorithm is the basis of other EREW algorithms

HPC Fall 2007 101/23/08

Sum on the EREW PRAM

Sum of n values using n processors (i)
Input: A[1,…,n], n = 2k

Output: S
begin
 B[i] := A[i]
 for h = 1 to log n do
 if i < n/2h then
 B[i] := B[2i-1] + B[2i]
 if i = 1 then
 S := B[i]
end

HPC Fall 2007 111/23/08

Matrix Multiplication

 Consider n×n matrix multiplication with n3 processors

 Each cij = ∑k=1..n aik bkj can be computed on the CREW
PRAM in parallel using n processors in O(log n) time

 On the EREW PRAM exclusive reads of aij and bij values
can be satisfied by making n copies of a and b, which
takes O(log n) time with n processors (broadcast tree)

 Total time is still O(log n)

 Memory requirement is huge

HPC Fall 2007 121/23/08

Matrix Multiplication on the
CREW PRAM

Matrix multiply with n3 processors (i,j,l)
Input: n×n matrices A and B, n = 2k

Output: C = AB
begin
 C’[i,j,l] := A[i,l]B[l,j]
 for h = 1 to log n do
 if i < n/2h then
 C’[i,j,l] := C’[i,j,2l-1] + C’[i,j,2l]
 if l = 1 then
 C[i,j] := C’[i,j,1]
end

HPC Fall 2007 131/23/08

The WT Scheduling Principle

 The work-time (WT) scheduling principle schedules p
processors to execute an algorithm
 Algorithm has T(n) time steps

 A time step can be parallel, i.e. pardo

 Let Wi(n) be the number of operations (work) performed
in time unit i, 1 < i < T(n)

 Simulate each set of Wi(n) operations in Wi(n)/p
parallel steps, for each 1 < i < T(n)

 The p-processor PRAM takes
∑i Wi(n)/p < ∑i (Wi(n)/p+1) < W(n)/p + T(n)

steps, where W(n) is the total number of operations

HPC Fall 2007 141/23/08

Work-Time Presentation

 The WT presentation can be used to determine
computation and communication requirements of an
algorithm

 The upper-level WT presentation framework describes
the algorithm in terms of a sequence of time units

 The lower-level follows the WT scheduling principle

HPC Fall 2007 151/23/08

Matrix Multiplication on the
CREW PRAM WT-Presentation

Input: n×n matrices A and B, n = 2k

Output: C = AB
begin
 for 1 < i, j, l < n pardo
 C’[i,j,l] := A[i,l]B[l,j]
 for h = 1 to log n do
 for 1 < i, j < n, 1 < l < n/2h pardo
 C’[i,j,l] := C’[i,j,2l-1] + C’[i,j,2l]
 for 1 < i, j < n pardo
 C[i,j] := C’[i,j,1]
end

WT scheduling principle:
O(n3/p + log n) time

HPC Fall 2007 161/23/08

PRAM Recursive Prefix Sum
Algorithm

Input: Array of (x1, x2, …, xn) elements, n = 2k

Output: Prefix sums si, 1 < i < n
begin
 if n = 1 then s1 = x1; exit
 for 1 < i < n/2 pardo
 yi := x2i-1 + x2i

 Recursively compute prefix sums of y and store in z
 for 1 < i < n pardo
 if i is even then si := zi/2

 else if i = 1 then s1 := x1

 else si := z(i-1)/2 + xi

end

HPC Fall 2007 171/23/08

Proof of Work Optimality

 Theorem: The PRAM prefix sum algorithm correctly
computes the prefix sum and takes T(n) = O(log n) time
using a total of W(n) = O(n) operations

 Proof by induction on k, where input size n = 2k

 Base case k = 0: s1 = x1

 Assume correct for n = 2k

 For n = 2k+1

 For all 1 < j < n/2 we have
zj = y1 + y2 + … + yj = (x1 + x2) + (x3 + x4) … + (x2j-1 + x2j)

 Hence, for i = 2j < n we have si = s2j = zj = zi/2

 And i = 2j+1 < n we have si = s2j+1 = s2j + x2j+1 = zj + x2j+1 = z(i-1)/2 + xi

 T(n) = T(n/2) + a ⇒ T(n) = O(log n)

 W(n) = W(n/2) + bn ⇒ W(n) = O(n)

HPC Fall 2007 181/23/08

PRAM Nonrecursive Prefix Sum
Input: Array A of size n = 2k

Output: Prefix sums in C[0,j], 1 < j < n
begin
 for 1 < j < n pardo
 B[0,j] := A[j]
 for h = 1 to log n do
 for 1 < j < n/2h pardo
 B[h,j] := B[h-1,2j-1] + B[h-1,2j]
 for h = log n to 0 do
 for 1 < j < n/2h pardo
 if j is even then C[h,j] := C[h+1,j/2]
 else if i = 1 then C[h,1] := B[h,1]
 else C[h,j] := C[h+1,(j-1)/2] + B[h,j]
end

HPC Fall 2007 191/23/08

First Pass: Bottom-Up

8-21072-635B[0,j] =

A[j] = 8-21072-635

617-48B[1,j] =

234

27

B[2,j] =

B[3,j] =

HPC Fall 2007 201/23/08

Second Pass: Top-Down

8-21072-635B[0,j] =

A[j] = 8-21072-635

617-48B[1,j] =

234

27

B[2,j] =

B[3,j] =
27C[3,j] =

274

272148

271921114285

C[2,j] =

C[1,j] =

C[0,j] =

HPC Fall 2007 211/23/08

Pointer Jumping

 Finding the roots of a forest using pointer-jumping

HPC Fall 2007 221/23/08

Pointer Jumping on the CREW
PRAM

Input: A forest of trees, each with a self-loop at its root,
consisting of arcs (i,P(i)) and nodes i, where 1 < i < n
Output: For each node i, the root S[i]
begin
 for 1 < i < n pardo
 S[i] := P[i]
 while S[i] ≠ S[S[i]] do
 S[i] := S[S[i]]
end

T(n) = O(log h) with h the maximum height of trees
W(n) = O(n log h)

HPC Fall 2007 231/23/08

PRAM Model Summary

 PRAM removes algorithmic details concerning
synchronization and communication, allowing the
algorithm designer to focus on problem properties

 A PRAM algorithm includes an explicit understanding of
the operations performed at each time unit and an
explicit allocation of processors to jobs at each time unit

 PRAM design paradigms have turned out to be robust
and have been mapped efficiently onto many other
parallel models and even network models
 A SIMD network model considers communication diameter,

bisection width, and scalability properties of the network topology
of a parallel machine such as a mesh or hypercube

HPC Fall 2007 241/23/08

Further Reading

 An Introduction to Parallel Algorithms, by J. JaJa, 1992

