The PRAM Model
and Algorithms

Advanced Topics Spring 2008
Prof. Robert van Engelen

Overview

The PRAM model of parallel computation

Simulations between PRAM models

Work-time presentation framework of parallel algorithms
Example algorithms

1/23/08 HPC Fall 2007

Computation

Parallel Random Access Machine (PRAM)

Natural extension of RAM: each processor is a RAM
Processors operate synchronously

Earliest and best-known model of parallel computation

Shared Memory

Shared memory with m locations

|

|

P,

Py

1/23/08

I p processors, each with private memory

P, All processors operate synchronously, by
executing load, store, and operations on data

HPC Fall 2007 3

. *

ik = Rl EF
Ay T 2N 3
i <) ’,:%ﬁ L
[1 s ol T It ") i
AIT) Eo A

Synchronous PRAM

m Synchronous PRAM is a SIMD-style model
All processors execute the same program

All processors execute the same PRAM step instruction stream
in “lock-step”

Effect of operation depends on local data
Instructions can be selectively disabled (if-then-else flow)

m Asynchronous PRAM

Several competing models
No lock-step

1/23/08 HPC Fall 2007 4

m A PRAM step (“clock cycle”) consists of three phases
Read: each processor may read a value from shared memory
Compute: each processor may perform operations on local data
Write: each processor may write a value to shared memory

m Model is refined for concurrent read/write capability
Exclusive Read Exclusive Write (EREW)
Concurrent Read Exclusive Write (CREW)
Concurrent Read Concurrent Write (CRCW)

m CRCW PRAM

Common CRCW: all processors must write the same value
Arbitrary CRCW: one of the processors succeeds in writing

Priority CRCW: processor with highest priority succeeds in
writing

1/23/08 HPC Fall 2007 5

Comparison of PRAM Models

m A model A is less powerful compared to model B if either

The time complexity is asymptotically less in model B for solving
a problem compared to A

Or the time complexity is the same and the work complexity is
asymptotically less in model B compared to A

m From weakest to strongest:

1/23/08

EREW

CREW

Common CRCW
Arbitrary CRCW
Priority CRCW

HPC Fall 2007 6

- Simulations Between PRAM
Models

m An algorithm designed for a weaker model can be
executed within the same time complexity and work
complexity on a stronger model

m An algorithm designed for a stronger model can be
simulated on a weaker model, either with

Asymptotically more processors (more work)
Or asymptotically more time

1/23/08 HPC Fall 2007

e
"-

"m;"?Slmulatlng a Priority CRCW on

an EREW PRAM

m Theorem: An algorithm that runs in T time on the p-processor priority
CRCW PRAM can be simulated by EREW PRAM to run in O(T log p)
time

1/23/08

A concurrent read or write of an p-processor CRCW PRAM can be
implemented on a p-processor EREW PRAM to execute in O(log p) time

Q;,...,Q, CRCW processors, such that Q; has to read (write) M[j]
P,,...,P, EREW processors

M,,....M, denote shared memory locations for special use

P stores <j,i> in M,

Sort pairs in lexicographically non-decreasing order in O(log p) time
using EREW merge sort algorithm

Pick representative from each block of pairs that have same first
component in O(1) time

Representative P, reads (writes) from M[k] with <k,_> in M, and copies
data to each M in the block in O(log p) time using EREW segmented
parallel prefix algorithm

P reads data from M,
HPC Fall 2007 8

m Reduce p values on the p-processor EREW PRAM in
O(log p) time

m Reduction algorithm uses exclusive reads and writes

m Algorithm is the basis of other EREW algorithms

1/23/08 HPC Fall 2007

1/23/08

Sum on the EREW PRAM

Sum of »n values using n processors (i)
Input: A[1,...,n], n=2%

Output: §
begin
Bli] .= A[i]

for =1 to log n do
if i < n/2" then
Bli] .= B[2i-1] + B[2i]
if i=1 then
S := BJi]
end

HPC Fall 2007

10

Matrix Multiplication

m Consider nxn matrix multiplication with n3 processors

m Each c; = Y-, , ay b, can be computed on the CREW
PRAM in parallel using n processors in O(log n) time

= On the EREW PRAM exclusive reads of a; and b; values
can be satisfied by making n copies of a and b, which
takes O(log n) time with n processors (broadcast tree)

m Total time is still O(log n)
m Memory requirement is huge

1/23/08 HPC Fall 2007 11

1/23/08

B k"ul: k|
Matrix Multiplication on the

CREW PRAM

Matrix multiply with »n3 processors (i,7,/)
Input: nxn matrices 4 and B, n = 2k
Output: C=A4B
begin
C'lij1] = A[i11B[l]]
for =1 to log n do
if i < n/2" then
C'lijl] = Clij2[-1] + CTij,2]]
if /=1 then
Clij]:= CTij1]
end

HPC Fall 2007

12

The work-time (WT) scheduling principle schedules p
processors to execute an algorithm

Algorithm has T(n) time steps

A time step can be parallel, i.e. pardo
Let W(n) be the number of operations (work) performed
intime uniti, 1 <i< T(n)
Simulate each set of W(n) operations in [W/(n)/p]
parallel steps, for each 1 <i< T(n)

The p-processor PRAM takes
2i[Win)ip] < 2 (LW(n)ip]+1) < [W(n)/p] + T(n)
steps, where W(n) is the total number of operations

1/23/08 HPC Fall 2007 13

Work-Time Presentation

m The WT presentation can be used to determine
computation and communication requirements of an
algorithm

m The upper-level WT presentation framework describes
the algorithm in terms of a sequence of time units

m The lower-level follows the WT scheduling principle

1/23/08 HPC Fall 2007

14

Matrix Multiplication on the
CREW PRAM WT-Presentation

Input: nxn matrices 4 and B, n = 2k
Output: C=A4B
begin
for 1 <i,j, [<npardo
C’lij, 1] = A[il]B[L]]
for =1 to log n do
for 1 <i j<mn, 1<I[<n/2"pardo
C'lijl] = Clij2[-11+ C’li,j,2(]
for 1 <i,j <n pardo
Clij] = Clij 1]
end

1/23/08 HPC Fall 2007

WT scheduling principle:
O(n3/p + log n) time

15

1/23/08

PRAM Recursive Prefix Sum

Algorithm

Input: Array of (x,, x,, ..., x,) elements, n = 2%
Output: Prefix sums s, 1 <i<n
begin
if n=1 then s, = x; exit
for 1 <i<n/2 pardo
Vi T Xpi T Xy,
Recursively compute prefix sums of y and store 1n z
for 1 <i<npardo
if i 1s even then s; .=z,
else if i = 1 then s, :=x,
else s; ==z, T X,
end

HPC Fall 2007

16

Proof of Work Optimality

m Theorem: The PRAM prefix sum algorithm correctly
computes the prefix sum and takes T(n) = O(log n) time
using a total of W(n) = O(n) operations

m Proof by induction on k, where input size n = 2k

Base case k= 0: s, = x,
Assume correct for n = 2k
For n = 2k*

m Forall 1 <j<n/2we have

Zi=yt Yot Y= (Xt X)) (Xt X)Lt (Xt X))

= Hence, fori=2j<nwehaves;=s, =z=2z,

= Andi=2j+1 <nwehave s;= 8y, =Sy + Xy = Z;+ Xy = Zjiqyp + X
T(n)=T(n/2) + a = T(n) = O(log n)
W(n) = W(n/2) + bn = W(n) = O(n)

1/23/08 HPC Fall 2007 17

PRAM Nonrecursive Prefix Sum

1/23/08

Input: Array A of size n = 2*
Output: Prefix sums in C[0,/], 1 <j<n
begin
for 1 <j <mn pardo
B0,] = A[j]
for =1 to log n do
for 1 <j <n/2" pardo
B[hj] := B[h-1,2j-1] + B[h-1,2/]
for 1 =1logn to 0 do
for 1 <j <n/2" pardo
if j 1s even then C[A,j] .= C[h+1,j/2]
else if i = 1 then C[A,1] .= B[h,1]
else C[h] := C[h+1,(j-1)/2] + B[h]
end

HPC Fall 2007

18

First Pass: Bottom-Up

B[3.j]= 27
/\
B[2j] = 4 23
AN AN
B[1,j]= 8 -4 17 6
AN ANYANYAN
B[0j]=] 5 3 | 6 | 2 7 | 10 | 2 | 8

[T I T T [1]

Aljl=1 5 | 3 | 6 | 2 | 7 | 10| 2 | 8

1/23/08 HPC Fall 2007

19

B[3,]= 27
C[3,/] = Py
B[2,j] = 4 23
C[2,j]= 4 07

] \ N
Bllj]1=| 8 \ -4 17, | \ 6
C[1j]= 8 4 TR Y 7

\ \ \ \

BlOj]1=[5 [\3\] 6,[\2\] 7]\ 2,/\8
Cl0j]1=|Y | Y8 [*27| Y4 [*117V| 921 [*197| V7

Alj]1=] 5 3 | 6 | 2 7 |10 | 2 | 8

1/23/08 HPC Fall 2007

Pointer Jumping

m Finding the roots of a forest using pointer-jumping

Ir,__.d 'Ir"_"-\.."].g ,-:.B) '__:j..:
Pt P, &6 o
- - -" Ld_:l 5
‘a o P12 R o K
- { 12
@) 011 f’
37 £ RS r ° o 11
O\ é 2
13,
8 g
-9§ O o
0 7 K> 9 12
1 O O
X _® 67' 10
@ ¢ ““:_;
34

1/23/08 HPC Fall 2007 21

PRAM

Input: A forest of trees, each with a self-loop at its root,
consisting of arcs (i,P(i)) and nodes i, where 1 <i<n
Output: For each node i, the root Si]

begin
for 1 <i<n pardo
S|i] = P[i]

while S[i] = S[S[i]] do
Sli] == S[S[i]]

end

T(n) = O(log h) with h the maximum height of trees
W(n) = O(n log h)

1/23/08 HPC Fall 2007

PRAM Model Summary

m PRAM removes algorithmic details concerning
synchronization and communication, allowing the
algorithm designer to focus on problem properties

m A PRAM algorithm includes an explicit understanding of
the operations performed at each time unit and an
explicit allocation of processors to jobs at each time unit

m PRAM design paradigms have turned out to be robust
and have been mapped efficiently onto many other
parallel models and even network models

A SIMD network model considers communication diameter,
bisection width, and scalability properties of the network topology
of a parallel machine such as a mesh or hypercube

1/23/08 HPC Fall 2007 23

Further Reading

m An Introduction to Parallel Algorithms, by J. Jada, 1992

1/23/08 HPC Fall 2007

24

