
The PRAM Model
and Algorithms

Advanced Topics Spring 2008

Prof. Robert van Engelen

HPC Fall 2007 21/23/08

Overview

 The PRAM model of parallel computation

 Simulations between PRAM models

 Work-time presentation framework of parallel algorithms

 Example algorithms

HPC Fall 2007 31/23/08

The PRAM Model of Parallel
Computation

 Parallel Random Access Machine (PRAM)

 Natural extension of RAM: each processor is a RAM

 Processors operate synchronously

 Earliest and best-known model of parallel computation

Shared Memory

P1 P2 P3 Pp
…

Shared memory with m locations

p processors, each with private memory

All processors operate synchronously, by
executing load, store, and operations on data

HPC Fall 2007 41/23/08

Synchronous PRAM

 Synchronous PRAM is a SIMD-style model
 All processors execute the same program

 All processors execute the same PRAM step instruction stream
in “lock-step”

 Effect of operation depends on local data

 Instructions can be selectively disabled (if-then-else flow)

 Asynchronous PRAM
 Several competing models

 No lock-step

HPC Fall 2007 51/23/08

Classification of PRAM Model

 A PRAM step (“clock cycle”) consists of three phases
1. Read: each processor may read a value from shared memory
2. Compute: each processor may perform operations on local data
3. Write: each processor may write a value to shared memory

 Model is refined for concurrent read/write capability
 Exclusive Read Exclusive Write (EREW)
 Concurrent Read Exclusive Write (CREW)
 Concurrent Read Concurrent Write (CRCW)

 CRCW PRAM
 Common CRCW: all processors must write the same value
 Arbitrary CRCW: one of the processors succeeds in writing
 Priority CRCW: processor with highest priority succeeds in

writing

HPC Fall 2007 61/23/08

Comparison of PRAM Models

 A model A is less powerful compared to model B if either
 The time complexity is asymptotically less in model B for solving

a problem compared to A

 Or the time complexity is the same and the work complexity is
asymptotically less in model B compared to A

 From weakest to strongest:
 EREW

 CREW

 Common CRCW

 Arbitrary CRCW

 Priority CRCW

HPC Fall 2007 71/23/08

Simulations Between PRAM
Models

 An algorithm designed for a weaker model can be
executed within the same time complexity and work
complexity on a stronger model

 An algorithm designed for a stronger model can be
simulated on a weaker model, either with
 Asymptotically more processors (more work)

 Or asymptotically more time

HPC Fall 2007 81/23/08

Simulating a Priority CRCW on
an EREW PRAM

 Theorem: An algorithm that runs in T time on the p-processor priority
CRCW PRAM can be simulated by EREW PRAM to run in O(T log p)
time
 A concurrent read or write of an p-processor CRCW PRAM can be

implemented on a p-processor EREW PRAM to execute in O(log p) time
 Q1,…,Qp CRCW processors, such that Qi has to read (write) M[ji]
 P1,…,Pp EREW processors
 M1,…,Mp denote shared memory locations for special use
 Pi stores <ji,i> in Mi

 Sort pairs in lexicographically non-decreasing order in O(log p) time
using EREW merge sort algorithm

 Pick representative from each block of pairs that have same first
component in O(1) time

 Representative Pi reads (writes) from M[k] with <k,_> in Mi and copies
data to each M in the block in O(log p) time using EREW segmented
parallel prefix algorithm

 Pi reads data from Mi

HPC Fall 2007 91/23/08

Reduction on the EREW PRAM

 Reduce p values on the p-processor EREW PRAM in
O(log p) time

 Reduction algorithm uses exclusive reads and writes

 Algorithm is the basis of other EREW algorithms

HPC Fall 2007 101/23/08

Sum on the EREW PRAM

Sum of n values using n processors (i)
Input: A[1,…,n], n = 2k

Output: S
begin
 B[i] := A[i]
 for h = 1 to log n do
 if i < n/2h then
 B[i] := B[2i-1] + B[2i]
 if i = 1 then
 S := B[i]
end

HPC Fall 2007 111/23/08

Matrix Multiplication

 Consider n×n matrix multiplication with n3 processors

 Each cij = ∑k=1..n aik bkj can be computed on the CREW
PRAM in parallel using n processors in O(log n) time

 On the EREW PRAM exclusive reads of aij and bij values
can be satisfied by making n copies of a and b, which
takes O(log n) time with n processors (broadcast tree)

 Total time is still O(log n)

 Memory requirement is huge

HPC Fall 2007 121/23/08

Matrix Multiplication on the
CREW PRAM

Matrix multiply with n3 processors (i,j,l)
Input: n×n matrices A and B, n = 2k

Output: C = AB
begin
 C’[i,j,l] := A[i,l]B[l,j]
 for h = 1 to log n do
 if i < n/2h then
 C’[i,j,l] := C’[i,j,2l-1] + C’[i,j,2l]
 if l = 1 then
 C[i,j] := C’[i,j,1]
end

HPC Fall 2007 131/23/08

The WT Scheduling Principle

 The work-time (WT) scheduling principle schedules p
processors to execute an algorithm
 Algorithm has T(n) time steps

 A time step can be parallel, i.e. pardo

 Let Wi(n) be the number of operations (work) performed
in time unit i, 1 < i < T(n)

 Simulate each set of Wi(n) operations in Wi(n)/p
parallel steps, for each 1 < i < T(n)

 The p-processor PRAM takes
∑i Wi(n)/p < ∑i (Wi(n)/p+1) < W(n)/p + T(n)

steps, where W(n) is the total number of operations

HPC Fall 2007 141/23/08

Work-Time Presentation

 The WT presentation can be used to determine
computation and communication requirements of an
algorithm

 The upper-level WT presentation framework describes
the algorithm in terms of a sequence of time units

 The lower-level follows the WT scheduling principle

HPC Fall 2007 151/23/08

Matrix Multiplication on the
CREW PRAM WT-Presentation

Input: n×n matrices A and B, n = 2k

Output: C = AB
begin
 for 1 < i, j, l < n pardo
 C’[i,j,l] := A[i,l]B[l,j]
 for h = 1 to log n do
 for 1 < i, j < n, 1 < l < n/2h pardo
 C’[i,j,l] := C’[i,j,2l-1] + C’[i,j,2l]
 for 1 < i, j < n pardo
 C[i,j] := C’[i,j,1]
end

WT scheduling principle:
O(n3/p + log n) time

HPC Fall 2007 161/23/08

PRAM Recursive Prefix Sum
Algorithm

Input: Array of (x1, x2, …, xn) elements, n = 2k

Output: Prefix sums si, 1 < i < n
begin
 if n = 1 then s1 = x1; exit
 for 1 < i < n/2 pardo
 yi := x2i-1 + x2i

 Recursively compute prefix sums of y and store in z
 for 1 < i < n pardo
 if i is even then si := zi/2

 else if i = 1 then s1 := x1

 else si := z(i-1)/2 + xi

end

HPC Fall 2007 171/23/08

Proof of Work Optimality

 Theorem: The PRAM prefix sum algorithm correctly
computes the prefix sum and takes T(n) = O(log n) time
using a total of W(n) = O(n) operations

 Proof by induction on k, where input size n = 2k

 Base case k = 0: s1 = x1

 Assume correct for n = 2k

 For n = 2k+1

 For all 1 < j < n/2 we have
zj = y1 + y2 + … + yj = (x1 + x2) + (x3 + x4) … + (x2j-1 + x2j)

 Hence, for i = 2j < n we have si = s2j = zj = zi/2

 And i = 2j+1 < n we have si = s2j+1 = s2j + x2j+1 = zj + x2j+1 = z(i-1)/2 + xi

 T(n) = T(n/2) + a ⇒ T(n) = O(log n)

 W(n) = W(n/2) + bn ⇒ W(n) = O(n)

HPC Fall 2007 181/23/08

PRAM Nonrecursive Prefix Sum
Input: Array A of size n = 2k

Output: Prefix sums in C[0,j], 1 < j < n
begin
 for 1 < j < n pardo
 B[0,j] := A[j]
 for h = 1 to log n do
 for 1 < j < n/2h pardo
 B[h,j] := B[h-1,2j-1] + B[h-1,2j]
 for h = log n to 0 do
 for 1 < j < n/2h pardo
 if j is even then C[h,j] := C[h+1,j/2]
 else if i = 1 then C[h,1] := B[h,1]
 else C[h,j] := C[h+1,(j-1)/2] + B[h,j]
end

HPC Fall 2007 191/23/08

First Pass: Bottom-Up

8-21072-635B[0,j] =

A[j] = 8-21072-635

617-48B[1,j] =

234

27

B[2,j] =

B[3,j] =

HPC Fall 2007 201/23/08

Second Pass: Top-Down

8-21072-635B[0,j] =

A[j] = 8-21072-635

617-48B[1,j] =

234

27

B[2,j] =

B[3,j] =
27C[3,j] =

274

272148

271921114285

C[2,j] =

C[1,j] =

C[0,j] =

HPC Fall 2007 211/23/08

Pointer Jumping

 Finding the roots of a forest using pointer-jumping

HPC Fall 2007 221/23/08

Pointer Jumping on the CREW
PRAM

Input: A forest of trees, each with a self-loop at its root,
consisting of arcs (i,P(i)) and nodes i, where 1 < i < n
Output: For each node i, the root S[i]
begin
 for 1 < i < n pardo
 S[i] := P[i]
 while S[i] ≠ S[S[i]] do
 S[i] := S[S[i]]
end

T(n) = O(log h) with h the maximum height of trees
W(n) = O(n log h)

HPC Fall 2007 231/23/08

PRAM Model Summary

 PRAM removes algorithmic details concerning
synchronization and communication, allowing the
algorithm designer to focus on problem properties

 A PRAM algorithm includes an explicit understanding of
the operations performed at each time unit and an
explicit allocation of processors to jobs at each time unit

 PRAM design paradigms have turned out to be robust
and have been mapped efficiently onto many other
parallel models and even network models
 A SIMD network model considers communication diameter,

bisection width, and scalability properties of the network topology
of a parallel machine such as a mesh or hypercube

HPC Fall 2007 241/23/08

Further Reading

 An Introduction to Parallel Algorithms, by J. JaJa, 1992

