
03/01/2011! CS267 Lecture 13! 1!

CS 267: Applications of Parallel
Computers  

 
Graph Partitioning"

James Demmel and Kathy Yelick!
www.cs.berkeley.edu/~demmel/cs267_Spr11!

03/01/2011! CS267 Lecture 13!

Outline of Graph Partitioning Lecture

• Review definition of Graph Partitioning problem"
• Overview of heuristics"
• Partitioning with Nodal Coordinates"

•  Ex: In finite element models, node at point in (x,y) or (x,y,z) space"
• Partitioning without Nodal Coordinates"

•  Ex: In model of WWW, nodes are web pages"
• Multilevel Acceleration"

•  BIG IDEA, appears often in scientific computing"
• Comparison of Methods and Applications"
• Beyond Graph Partitioning: Hypergraphs"

03/01/2011! CS267 Lecture 13! 3!

Definition of Graph Partitioning
•  Given a graph G = (N, E, WN, WE)"

•  N = nodes (or vertices),"
•  WN = node weights"
•  E = edges"
•  WE = edge weights"

•  Ex: N = {tasks}, WN = {task costs}, edge (j,k) in E means task j
sends WE(j,k) words to task k"

•  Choose a partition N = N1 U N2 U … U NP such that"
•  The sum of the node weights in each Nj is “about the same”"
•  The sum of all edge weights of edges connecting all different

pairs Nj and Nk is minimized"
•  Ex: balance the work load, while minimizing communication"
•  Special case of N = N1 U N2: Graph Bisection"

1 (2)
2 (2) 3 (1)

4 (3)

5 (1)

6 (2) 7 (3)

8 (1)
5

4

6

1
2

1

2
1 2 3

03/01/2011! CS267 Lecture 13! 4!

Definition of Graph Partitioning
•  Given a graph G = (N, E, WN, WE)"

•  N = nodes (or vertices),"
•  WN = node weights"
•  E = edges"
•  WE = edge weights"

•  Ex: N = {tasks}, WN = {task costs}, edge (j,k) in E means task j
sends WE(j,k) words to task k"

•  Choose a partition N = N1 U N2 U … U NP such that"
•  The sum of the node weights in each Nj is “about the same”"
•  The sum of all edge weights of edges connecting all different

pairs Nj and Nk is minimized (shown in black)"
•  Ex: balance the work load, while minimizing communication"
•  Special case of N = N1 U N2: Graph Bisection"

1 (2)
2 (2) 3 (1)

4 (3)

5 (1)

6 (2) 7 (3)

8 (1)

4

6

1
2

1

2
1 2 3

5

03/01/2011! CS267 Lecture 13! 5!

Some Applications
•  Telephone network design"

•  Original application, algorithm due to Kernighan"
•  Load Balancing while Minimizing Communication"
•  Sparse Matrix times Vector Multiplication"

•  Solving PDEs"
•  N = {1,…,n}, (j,k) in E if A(j,k) nonzero, "
•  WN(j) = #nonzeros in row j, WE(j,k) = 1"

•  VLSI Layout"
•  N = {units on chip}, E = {wires}, WE(j,k) = wire length"

•  Sparse Gaussian Elimination"
•  Used to reorder rows and columns to increase parallelism, and to

decrease “fill-in”"
•  Data mining and clustering"
•  Physical Mapping of DNA"
•  Image Segmentation"

03/01/2011! CS267 Lecture 13! 6!

Sparse Matrix Vector Multiplication y = y +A*x

… declare A_local, A_remote(1:num_procs), x_local, x_remote, y_local
y_local = y_local + A_local * x_local
for all procs P that need part of x_local

 send(needed part of x_local, P)
for all procs P owning needed part of x_remote

 receive(x_remote, P)
 y_local = y_local + A_remote(P)*x_remote

03/01/2011! CS267 Lecture 13! 7!

Cost of Graph Partitioning
• Many possible partitionings

to search!
•  Just to divide in 2 parts there are: !
 n choose n/2 = n!/((n/2)!)2 ~ !
 sqrt(2/(nπ))*2n possibilities!

• Choosing optimal partitioning is NP-complete!
•  (NP-complete = we can prove it is a hard as other well-known

hard problems in a class Nondeterministic Polynomial time)!
•  Only known exact algorithms have cost = exponential(n)!

• We need good heuristics!

03/01/2011! CS267 Lecture 13!

Outline of Graph Partitioning Lectures

• Review definition of Graph Partitioning problem!
• Overview of heuristics!
•  Partitioning with Nodal Coordinates"

•  Ex: In finite element models, node at point in (x,y) or (x,y,z) space"
•  Partitioning without Nodal Coordinates"

•  Ex: In model of WWW, nodes are web pages"
•  Multilevel Acceleration"

•  BIG IDEA, appears often in scientific computing"
•  Comparison of Methods and Applications"
•  Beyond Graph Partitioning: Hypergraphs"

03/01/2011! CS267 Lecture 13! 9!

First Heuristic: Repeated Graph Bisection
• To partition N into 2k parts!

•  bisect graph recursively k times!
• Henceforth discuss mostly graph bisection!

03/01/2011! CS267 Lecture 13! 10!

Edge Separators vs. Vertex Separators
•  Edge Separator: Es (subset of E) separates G if removing Es from E

leaves two ~equal-sized, disconnected components of N: N1 and N2 !
•  Vertex Separator: Ns (subset of N) separates G if removing Ns and

all incident edges leaves two ~equal-sized, disconnected
components of N: N1 and N2!

•  Making an Ns from an Es: pick one endpoint of each edge in Es!

•  |Ns| ≤ |Es| !
•  Making an Es from an Ns: pick all edges incident on Ns!

•  |Es| ≤ d * |Ns| where d is the maximum degree of the graph !
•  We will find Edge or Vertex Separators, as convenient!

G = (N, E), Nodes N and Edges E
Es = green edges or blue edges
Ns = red vertices

03/01/2011! CS267 Lecture 13! 11!

Overview of Bisection Heuristics
• Partitioning with Nodal Coordinates!

•  Each node has x,y,z coordinates à partition space!

• Partitioning without Nodal Coordinates!
•  E.g., Sparse matrix of Web documents!

•  A(j,k) = # times keyword j appears in URL k!

• Multilevel acceleration (BIG IDEA)!
•  Approximate problem by “coarse graph,” do so recursively!

03/01/2011! CS267 Lecture 13!

Outline of Graph Partitioning Lectures

• Review definition of Graph Partitioning problem!
• Overview of heuristics!
•  Partitioning with Nodal Coordinates"

•  Ex: In finite element models, node at point in (x,y) or (x,y,z) space"
•  Partitioning without Nodal Coordinates"

•  Ex: In model of WWW, nodes are web pages"
•  Multilevel Acceleration"

•  BIG IDEA, appears often in scientific computing"
•  Comparison of Methods and Applications"
•  Beyond Graph Partitioning: Hypergraphs"
"

03/01/2011! CS267 Lecture 13! 13!

Nodal Coordinates: How Well Can We Do?
• A planar graph can be drawn in plane without edge

crossings!
• Ex: m x m grid of m2 nodes: ∃ vertex separator Ns with |

Ns| = m = sqrt(|N|) (see earlier slide for m=5)!
• Theorem (Tarjan, Lipton, 1979): If G is planar, ∃ Ns such

that !
•  N = N1 U Ns U N2 is a partition,!
•  |N1| <= 2/3 |N| and |N2| <= 2/3 |N|!
•  |Ns| <= sqrt(8 * |N|)!

• Theorem motivates intuition of following algorithms!

03/01/2011! CS267 Lecture 13! 14!

Nodal Coordinates: Inertial Partitioning
• For a graph in 2D, choose line with half the nodes on

one side and half on the other!
•  In 3D, choose a plane, but consider 2D for simplicity!

• Choose a line L, and then choose a line L⊥ perpendicular
to it, with half the nodes on either side!

1.  Choose a line L through the points
L given by a*(x-xbar)+b*(y-ybar)=0,
 with a2+b2=1; (a,b) is unit vector ⊥ to L

L

(a,b)
(xbar,ybar)

2.  Project each point to the line
For each nj = (xj,yj), compute coordinate
 Sj = -b*(xj-xbar) + a*(yj-ybar) along L

3.  Compute the median
Let Sbar = median(S1,…,Sn)

4.  Use median to partition the nodes
Let nodes with Sj < Sbar be in N1, rest in N2

L⊥

03/01/2011! CS267 Lecture 13! 15!

Inertial Partitioning: Choosing L
• Clearly prefer L, L⊥ on left below!

• Mathematically, choose L to be a total least squares fit of
the nodes!

•  Minimize sum of squares of distances to L (green lines on last
slide)!

•  Equivalent to choosing L as axis of rotation that minimizes the
moment of inertia of nodes (unit weights) - source of name!

L

L

N1 N2
N1

N2

L⊥

L⊥

03/01/2011! CS267 Lecture 13! 16!

Inertial Partitioning: choosing L (continued)

Σj (length of j-th green line)2
 = Σj [(xj - xbar)2 + (yj - ybar)2 - (-b*(xj - xbar) + a*(yj - ybar))2]
 … Pythagorean Theorem
 = a2 * Σj (xj - xbar)2 + 2*a*b* Σj (xj - xbar)*(xj - ybar) + b2 Σj (yj - ybar)2
 = a2 * X1 + 2*a*b* X2 + b2 * X3
 = [a b] * X1 X2 * a
 X2 X3 b

Minimized by choosing
 (xbar , ybar) = (Σj xj , Σj yj) / n = center of mass
 (a,b) = eigenvector of smallest eigenvalue of X1 X2
 X2 X3

(a,b) is unit vector
perpendicular to L

(a,b)

L

(xbar,ybar)

(xj , yj)

03/01/2011! CS267 Lecture 13! 17!

Nodal Coordinates: Random Spheres
• Generalize nearest neighbor idea of a planar graph to

higher dimensions !
•  Any graph can fit in 3D without edge crossings!
•  Capture intuition of planar graphs of being connected to

“nearest neighbors” but in higher than 2 dimensions!
• For intuition, consider graph defined by a regular 3D mesh!
• An n by n by n mesh of |N| = n3 nodes!

•  Edges to 6 nearest neighbors!
•  Partition by taking plane parallel to 2 axes!
•  Cuts n2 =|N|2/3 = O(|E|2/3) edges!

• For the general graphs!
•  Need a notion of “well-shaped” like mesh!

03/01/2011! CS267 Lecture 13! 18!

Random Spheres: Well Shaped Graphs
• Approach due to Miller, Teng, Thurston, Vavasis!
• Def: A k-ply neighborhood system in d dimensions is a

set {D1,…,Dn} of closed disks in Rd such that no point in
Rd is strictly interior to more than k disks!

• Def: An (α,k) overlap graph is a graph defined in terms
of α ≥ 1 and a k-ply neighborhood system {D1,…,Dn}:
There is a node for each Dj, and an edge from j to i if
expanding the radius of the smaller of Dj and Di by >α
causes the two disks to overlap!

Ex: n-by-n mesh is a (1,1) overlap graph
Ex: Any planar graph is (α,k) overlap for
 some α,k

2D Mesh is
(1,1) overlap
 graph

03/01/2011! CS267 Lecture 13! 19!

Generalizing Lipton/Tarjan to Higher Dimensions
• Theorem (Miller, Teng, Thurston, Vavasis, 1993): Let

G=(N,E) be an (α,k) overlap graph in d dimensions with
n=|N|. Then there is a vertex separator Ns such that !

•  N = N1 U Ns U N2 and!
•  N1 and N2 each has at most n*(d+1)/(d+2) nodes!
•  Ns has at most O(α * k1/d * n(d-1)/d) nodes!

• When d=2, same as Lipton/Tarjan!
• Algorithm:!

•  Choose a sphere S in Rd!
•  Edges that S “cuts” form edge separator Es!
•  Build Ns from Es!
•  Choose S “randomly”, so that it satisfies Theorem with high

probability!

03/01/2011! CS267 Lecture 13! 20!

Stereographic Projection
• Stereographic projection from plane to sphere!

•  In d=2, draw line from p to North Pole, projection p’ of p is
where the line and sphere intersect!

•  Similar in higher dimensions!

p

p’

p = (x,y) p’ = (2x,2y,x2 + y2 –1) / (x2 + y2 + 1)

03/01/2011! CS267 Lecture 13! 21!

Choosing a Random Sphere
• Do stereographic projection from Rd to sphere S in Rd+1!

• Find centerpoint of projected points!
•  Any plane through centerpoint divides points ~evenly!
•  There is a linear programming algorithm, cheaper heuristics!

• Conformally map points on sphere!
•  Rotate points around origin so centerpoint at (0,…0,r) for some r!
•  Dilate points (unproject, multiply by sqrt((1-r)/(1+r)), project)!

•  this maps centerpoint to origin (0,…,0), spreads points around S!

• Pick a random plane through origin!
•  Intersection of plane and sphere S is “circle”!

• Unproject circle!
•  yields desired circle C in Rd!

• Create Ns: j belongs to Ns if α*Dj intersects C!

04/11/2007! CS267 Lecture 23! 22!

Random Sphere Algorithm (Gilbert)

04/11/2007! CS267 Lecture 23! 23!

Random Sphere Algorithm (Gilbert)

03/01/2011! CS267 Lecture 23! 24!

Random Sphere Algorithm (Gilbert)

03/01/2011! CS267 Lecture 13! 25!

Random Sphere Algorithm (Gilbert)

CS267 Lecture 23! 26!

Random Sphere Algorithm (Gilbert)

03/01/2011!

CS267 Lecture 23! 27!

Random Sphere Algorithm (Gilbert)

03/01/2011!

03/01/2011! CS267 Lecture 8! 28!

Nodal Coordinates: Summary
•  Other variations on these algorithms!
•  Algorithms are efficient!
•  Rely on graphs having nodes connected (mostly) to “nearest

neighbors” in space!
•  algorithm does not depend on where actual edges are!!

•  Common when graph arises from physical model!
•  Ignores edges, but can be used as good starting guess for

subsequent partitioners that do examine edges!
•  Can do poorly if graph connection is not spatial:!

•  Details at!
•  www.cs.berkeley.edu/~demmel/cs267/lecture18/lecture18.html!
•  www.cs.ucsb.edu/~gilbert!
•  www.cs.bu.edu/~steng!

03/01/2011! CS267 Lecture 13!

Outline of Graph Partitioning Lectures
• Review definition of Graph Partitioning problem!
• Overview of heuristics!
•  Partitioning with Nodal Coordinates"

•  Ex: In finite element models, node at point in (x,y) or (x,y,z) space"
•  Partitioning without Nodal Coordinates"

•  Ex: In model of WWW, nodes are web pages"
•  Multilevel Acceleration"

•  BIG IDEA, appears often in scientific computing"
•  Comparison of Methods and Applications"
•  Beyond Graph Partitioning: Hypergraphs"
"

03/01/2011! CS267 Lecture 13! 30!

Coordinate-Free: Breadth First Search (BFS)
• Given G(N,E) and a root node r in N, BFS produces!

•  A subgraph T of G (same nodes, subset of edges)"
•  T is a tree rooted at r"
•  Each node assigned a level = distance from r"

Tree edges
Horizontal edges
Inter-level edges

Level 0
Level 1
Level 2
Level 3
Level 4

N1

N2

root

03/01/2011! CS267 Lecture 13! 31!

Breadth First Search (details)
• Queue (First In First Out, or FIFO)!

•  Enqueue(x,Q) adds x to back of Q!
•  x = Dequeue(Q) removes x from front of Q!

• Compute Tree T(NT,ET)!

NT = {(r,0)}, ET = empty set … Initially T = root r, which is at level 0
Enqueue((r,0),Q) … Put root on initially empty Queue Q
Mark r … Mark root as having been processed
While Q not empty … While nodes remain to be processed
 (n,level) = Dequeue(Q) … Get a node to process
 For all unmarked children c of n
 NT = NT U (c,level+1) … Add child c to NT
 ET = ET U (n,c) … Add edge (n,c) to ET
 Enqueue((c,level+1),Q)) … Add child c to Q for processing
 Mark c … Mark c as processed
 Endfor
Endwhile

root

03/01/2011! CS267 Lecture 13! 32!

Partitioning via Breadth First Search
• BFS identifies 3 kinds of edges!

•  Tree Edges - part of T!
•  Horizontal Edges - connect nodes at same level!
•  Interlevel Edges - connect nodes at adjacent levels!

• No edges connect nodes in levels!
 differing by more than 1 (why?)!
• BFS partioning heuristic!

•  N = N1 U N2, where !
•  N1 = {nodes at level <= L}, !
•  N2 = {nodes at level > L}!

•  Choose L so |N1| close to |N2|!

BFS partition of a 2D Mesh
using center as root:
 N1 = levels 0, 1, 2, 3
 N2 = levels 4, 5, 6

root

03/01/2011! CS267 Lecture 13! 33!

Coordinate-Free: Kernighan/Lin
• Take a initial partition and iteratively improve it!

•  Kernighan/Lin (1970), cost = O(|N|3) but easy to understand!
•  Fiduccia/Mattheyses (1982), cost = O(|E|), much better, but

more complicated!
• Given G = (N,E,WE) and a partitioning N = A U B, where

|A| = |B|!
•  T = cost(A,B) = Σ {W(e) where e connects nodes in A and B}!
•  Find subsets X of A and Y of B with |X| = |Y|!
•  Consider swapping X and Y if it decreases cost:!

•  newA = (A – X) U Y and newB = (B – Y) U X!
•  newT = cost(newA , newB) < T = cost(A,B)!

• Need to compute newT efficiently for many possible X
and Y, choose smallest (best)!

03/01/2011! CS267 Lecture 13! 34!

Kernighan/Lin: Preliminary Definitions
• T = cost(A, B), newT = cost(newA, newB)!
• Need an efficient formula for newT; will use!

•  E(a) = external cost of a in A = Σ {W(a,b) for b in B}!
•  I(a) = internal cost of a in A = Σ {W(a,a’) for other a’ in A}!
•  D(a) = cost of a in A = E(a) - I(a)!
•  E(b), I(b) and D(b) defined analogously for b in B!

• Consider swapping X = {a} and Y = {b}!
•  newA = (A - {a}) U {b}, newB = (B - {b}) U {a}!

•  newT = T - (D(a) + D(b) - 2*w(a,b)) ≡ T - gain(a,b)!
•  gain(a,b) measures improvement gotten by swapping a and b!

• Update formulas!
•  newD(a’) = D(a’) + 2*w(a’,a) - 2*w(a’,b) for a’ in A, a’ ≠ a!
•  newD(b’) = D(b’) + 2*w(b’,b) - 2*w(b’,a) for b’ in B, b’ ≠ b!

03/01/2011! CS267 Lecture 13! 35!

Kernighan/Lin Algorithm
 Compute T = cost(A,B) for initial A, B … cost = O(|N|2)
 Repeat
 … One pass greedily computes |N|/2 possible X,Y to swap, picks best
 Compute costs D(n) for all n in N … cost = O(|N|2)
 Unmark all nodes in N … cost = O(|N|)
 While there are unmarked nodes … |N|/2 iterations
 Find an unmarked pair (a,b) maximizing gain(a,b) … cost = O(|N|2)
 Mark a and b (but do not swap them) … cost = O(1)
 Update D(n) for all unmarked n,
 as though a and b had been swapped … cost = O(|N|)
 Endwhile
 … At this point we have computed a sequence of pairs
 … (a1,b1), … , (ak,bk) and gains gain(1),…., gain(k)
 … where k = |N|/2, numbered in the order in which we marked them
 Pick m maximizing Gain = Σk=1 to m gain(k) … cost = O(|N|)
 … Gain is reduction in cost from swapping (a1,b1) through (am,bm)
 If Gain > 0 then … it is worth swapping
 Update newA = A - { a1,…,am } U { b1,…,bm } … cost = O(|N|)
 Update newB = B - { b1,…,bm } U { a1,…,am } … cost = O(|N|)
 Update T = T - Gain … cost = O(1)
 endif
 Until Gain <= 0

03/01/2011! CS267 Lecture 13! 36!

 Comments on Kernighan/Lin Algorithm

• Most expensive line shown in red, O(n3)!
• Some gain(k) may be negative, but if later gains are

large, then final Gain may be positive!
•  can escape “local minima” where switching no pair helps!

• How many times do we Repeat?!
•  K/L tested on very small graphs (|N|<=360) and got

convergence after 2-4 sweeps!
•  For random graphs (of theoretical interest) the probability of

convergence in one step appears to drop like 2-|N|/30!

03/01/2011! CS267 Lecture 13! 37!

Coordinate-Free: Spectral Bisection
• Based on theory of Fiedler (1970s), popularized by

Pothen, Simon, Liou (1990)!
• Motivation, by analogy to a vibrating string!
• Basic definitions!
• Vibrating string, revisited!
•  Implementation via the Lanczos Algorithm!

•  To optimize sparse-matrix-vector multiply, we graph partition!
•  To graph partition, we find an eigenvector of a matrix

associated with the graph!
•  To find an eigenvector, we do sparse-matrix vector multiply!
•  No free lunch ...!

03/01/2011! CS267 Lecture 13! 38!

Motivation for Spectral Bisection
•  Vibrating string!
•  Think of G = 1D mesh as masses (nodes) connected by springs

(edges), i.e. a string that can vibrate!
•  Vibrating string has modes of vibration, or harmonics!
•  Label nodes by whether mode - or + to partition into N- and N+!
•  Same idea for other graphs (eg planar graph ~ trampoline)!

03/01/2011! CS267 Lecture 13! 39!

Basic Definitions
• Definition: The incidence matrix In(G) of a graph G(N,E)

is an |N| by |E| matrix, with one row for each node and
one column for each edge. If edge e=(i,j) then column e
of In(G) is zero except for the i-th and j-th entries, which
are +1 and -1, respectively.!

•  Slightly ambiguous definition because multiplying column e of In(G)
by -1 still satisfies the definition, but this won’t matter...!

• Definition: The Laplacian matrix L(G) of a graph G(N,E)
is an |N| by |N| symmetric matrix, with one row and
column for each node. It is defined by!

•  L(G) (i,i) = degree of node i (number of incident edges)!
•  L(G) (i,j) = -1 if i ≠ j and there is an edge (i,j)!
•  L(G) (i,j) = 0 otherwise!

03/01/2011! CS267 Lecture 13! 40!

Example of In(G) and L(G) for Simple Meshes

03/01/2011! CS267 Lecture 13! 41!

Properties of Incidence and Laplacian matrices
•  Theorem 1: Given G, In(G) and L(G) have the following properties

(proof on Demmel’s 1996 CS267 web page)!
•  L(G) is symmetric. (This means the eigenvalues of L(G) are real and its

eigenvectors are real and orthogonal.)!
•  Let e = [1,…,1]T, i.e. the column vector of all ones. Then L(G)*e=0.!
•  In(G) * (In(G))T = L(G). This is independent of the signs chosen for

each column of In(G).!
•  Suppose L(G)*v = λ*v, v ≠ 0, so that v is an eigenvector and λ an

eigenvalue of L(G). Then!

•  The eigenvalues of L(G) are nonnegative:!
•  0 = λ1 ≤ λ2 ≤ … ≤ λn!

•  The number of connected components of G is equal to the number of
λi equal to 0. In particular, λ2 ≠ 0 if and only if G is connected.!

•  Definition: λ2(L(G)) is the algebraic connectivity of G!

λ = || In(G)T * v ||2 / || v ||2 … ||x||2 = Σk xk2
 = Σ { (v(i)-v(j))2 for all edges e=(i,j) } / Σi v(i)2

Hidden slide

03/01/2011! CS267 Lecture 13! 42!

Properties of Laplacian Matrix
• Theorem 1: Given G, L(G) has the following properties

(proof on 1996 CS267 web page)!
•  L(G) is symmetric. !

•  This means the eigenvalues of L(G) are real and its eigenvectors
are real and orthogonal.!

•  In(G) * (In(G))T = L(G)!
•  The eigenvalues of L(G) are nonnegative:!

•  0 = λ1 ≤ λ2 ≤ … ≤ λn!
•  The number of connected components of G is equal to the

number of λi equal to 0. !
•  Definition: λ2(L(G)) is the algebraic connectivity of G!

•  The magnitude of λ2 measures connectivity!
•  In particular, λ2 ≠ 0 if and only if G is connected.!

03/01/2011! CS267 Lecture 13! 43!

Spectral Bisection Algorithm
• Spectral Bisection Algorithm:!

•  Compute eigenvector v2 corresponding to λ2(L(G))!
•  For each node n of G!

•  if v2(n) < 0 put node n in partition N-!
•  else put node n in partition N+!

• Why does this make sense? First reasons...!
•  Theorem 2 (Fiedler, 1975): Let G be connected, and N- and N+

defined as above. Then N- is connected. If no v2(n) = 0, then N
+ is also connected. (proof on 1996 CS267 web page)!

•  Recall λ2(L(G)) is the algebraic connectivity of G!
•  Theorem 3 (Fiedler): Let G1(N,E1) be a subgraph of G(N,E), so

that G1 is “less connected” than G. Then λ2(L(G1)) ≤ λ2(L(G)) ,
i.e. the algebraic connectivity of G1 is less than or equal to the
algebraic connectivity of G. (proof on 1996 CS267 web page)!

03/01/2011! CS267 Lecture 13! 44!

Spectral Bisection Algorithm
• Spectral Bisection Algorithm:!

•  Compute eigenvector v2 corresponding to λ2(L(G))!
•  For each node n of G!

•  if v2(n) < 0 put node n in partition N-!
•  else put node n in partition N+!

• Why does this make sense? More reasons...!
•  Theorem 4 (Fiedler, 1975): Let G be connected, and N1 and N2

be any partition into part of equal size |N|/2. Then the number of
edges connecting N1 and N2 is at least .25 * |N| * λ2(L(G)).
(proof on 1996 CS267 web page)!

03/01/2010! CS267 Lecture 23! 45!

Motivation for Spectral Bisection (recap)
•  Vibrating string has modes of vibration, or harmonics!
•  Modes computable as follows!

•  Model string as masses connected by springs (a 1D mesh)!
•  Write down F=ma for coupled system, get matrix A!
•  Eigenvalues and eigenvectors of A are frequencies and shapes

of modes !!
•  Label nodes by whether mode - or + to get N- and N+!
•  Same idea for other graphs (eg planar graph ~ trampoline)!

03/01/2010! CS267 Lecture 23! 46!

Details for Vibrating String Analogy
• Force on mass j = k*[x(j-1) - x(j)] + k*[x(j+1) - x(j)]!
 = -k*[-x(j-1) + 2*x(j) - x(j+1)]!
• F=ma yields m*x’’(j) = -k*[-x(j-1) + 2*x(j) - x(j+1)] (*)!
• Writing (*) for j=1,2,…,n yields!

 x(1) 2*x(1) - x(2) 2 -1 x(1) x(1)
 x(2) -x(1) + 2*x(2) - x(3) -1 2 -1 x(2) x(2)
m * d2 … =-k* … =-k* … * … =-k*L* …
 dx2 x(j) -x(j-1) + 2*x(j) - x(j+1) -1 2 -1 x(j) x(j)
 … … … … …
 x(n) 2*x(n-1) - x(n) -1 2 x(n) x(n)

 (-m/k) x’’ = L*x

03/01/2011! CS267 Lecture 13! 47!

Details for Vibrating String (continued)
•  -(m/k) x’’ = L*x, where x = [x1,x2,…,xn]T!
•  Seek solution of form x(t) = sin(α*t) * x0!

•  L*x0 = (m/k)*α2 * x0 = λ * x0!

•  For each integer i, get λ = 2*(1-cos(i*π/(n+1)), x0 = sin(1*i*π/(n+1))!
 sin(2*i*π/(n+1))!
 …!
 sin(n*i*π/(n+1))!
•  Thus x0 is a sine curve with frequency proportional to i!
•  Thus α2 = 2*k/m *(1-cos(i*π/(n+1)) or α ~ sqrt(k/m)*π*i/(n+1)!

•  L = 2 -1 not quite Laplacian of 1D mesh, !
 -1 2 -1 but we can fix that ...!
 ….!
 -1 2!

03/01/2011! CS267 Lecture 13! 48!

Motivation for Spectral Bisection
•  Vibrating string has modes of vibration, or harmonics!
•  Modes computable as follows!

•  Model string as masses connected by springs (a 1D mesh)!
•  Write down F=ma for coupled system, get matrix A!
•  Eigenvalues and eigenvectors of A are frequencies and shapes

of modes !!
•  Label nodes by whether mode - or + to get N- and N+!
•  Same idea for other graphs (eg planar graph ~ trampoline)!

03/01/2011! CS267 Lecture 13! 49!

Eigenvectors of L(1D mesh)

Eigenvector 1
 (all ones)

Eigenvector 2

Eigenvector 3

03/01/2011! CS267 Lecture 13! 50!

2nd eigenvector of L(planar mesh)

02/11/2010!

CS267 Lecture 8! 51!

4th eigenvector of L(planar mesh)

03/01/2011! CS267 Lecture 13! 52!

Computing v2 and λ2 of L(G) using Lanczos
•  Given any n-by-n symmetric matrix A (such as L(G)) Lanczos

computes a k-by-k “approximation” T by doing k matrix-vector
products, k << n!

•  Approximate A’s eigenvalues/vectors using T’s!

Choose an arbitrary starting vector r
b(0) = ||r||
j=0
repeat
 j=j+1
 q(j) = r/b(j-1) … scale a vector (BLAS1)
 r = A*q(j) … matrix vector multiplication, the most expensive step
 r = r - b(j-1)*v(j-1) … “axpy”, or scalar*vector + vector (BLAS1)
 a(j) = v(j)T * r … dot product (BLAS1)
 r = r - a(j)*v(j) … “axpy” (BLAS1)
 b(j) = ||r|| … compute vector norm (BLAS1)
until convergence … details omitted

T = a(1) b(1)
 b(1) a(2) b(2)
 b(2) a(3) b(3)
 … … …
 b(k-2) a(k-1) b(k-1)
 b(k-1) a(k)

03/01/2011! CS267 Lecture 13! 53!

Spectral Bisection: Summary
•  Laplacian matrix represents graph connectivity!
• Second eigenvector gives a graph bisection!

•  Roughly equal “weights” in two parts!
•  Weak connection in the graph will be separator!

•  Implementation via the Lanczos Algorithm!
•  To optimize sparse-matrix-vector multiply, we graph partition!
•  To graph partition, we find an eigenvector of a matrix

associated with the graph!
•  To find an eigenvector, we do sparse-matrix vector multiply!

•  Have we made progress?!
•  The first matrix-vector multiplies are slow, but use them to learn

how to make the rest faster!

03/01/2011! CS267 Lecture 13!

Outline of Graph Partitioning Lectures

• Review definition of Graph Partitioning problem"
• Overview of heuristics"
• Partitioning with Nodal Coordinates"

•  Ex: In finite element models, node at point in (x,y) or (x,y,z) space"
• Partitioning without Nodal Coordinates"

•  Ex: In model of WWW, nodes are web pages"
• Multilevel Acceleration"

•  BIG IDEA, appears often in scientific computing"
• Comparison of Methods and Applications"
• Beyond Graph Partitioning: Hypergraphs"

03/01/2011! CS267 Lecture 13! 55!

Introduction to Multilevel Partitioning
•  If we want to partition G(N,E), but it is too big to do

efficiently, what can we do?!
•  1) Replace G(N,E) by a coarse approximation Gc(Nc,Ec), and

partition Gc instead!
•  2) Use partition of Gc to get a rough partitioning of G, and then

iteratively improve it!
• What if Gc still too big?!

•  Apply same idea recursively!

03/01/2010!

CS267 Lecture 8!

56!

Multilevel Partitioning - High Level Algorithm
 (N+,N-) = Multilevel_Partition(N, E)
 … recursive partitioning routine returns N+ and N- where N = N+ U N-
 if |N| is small
(1) Partition G = (N,E) directly to get N = N+ U N-
 Return (N+, N-)
 else
(2) Coarsen G to get an approximation Gc = (Nc, Ec)
(3) (Nc+ , Nc-) = Multilevel_Partition(Nc, Ec)
(4) Expand (Nc+ , Nc-) to a partition (N+ , N-) of N
(5) Improve the partition (N+ , N-)
 Return (N+ , N-)
 endif

(2,3)

(2,3)

(2,3)

(1)

(4)

(4)

(4)

(5)

(5)

(5)

How do we
 Coarsen?
 Expand?
 Improve?

“V - cycle:”

03/01/2011! CS267 Lecture 13! 57!

Multilevel Kernighan-Lin
• Coarsen graph and expand partition using maximal

matchings!
•  Improve partition using Kernighan-Lin!

03/01/2011! CS267 Lecture 13! 58!

Maximal Matching
• Definition: A matching of a graph G(N,E) is a subset Em of

E such that no two edges in Em share an endpoint!
• Definition: A maximal matching of a graph G(N,E) is a

matching Em to which no more edges can be added and
remain a matching!

• A simple greedy algorithm computes a maximal matching:!
let Em be empty
mark all nodes in N as unmatched
for i = 1 to |N| … visit the nodes in any order
 if i has not been matched
 mark i as matched
 if there is an edge e=(i,j) where j is also unmatched,
 add e to Em
 mark j as matched
 endif
 endif
endfor

03/01/2011! CS267 Lecture 13! 59!

Maximal Matching: Example

03/01/2011! CS267 Lecture 13! 60!

Example of Coarsening

03/01/2011! CS267 Lecture 13! 61!

Coarsening using a maximal matching (details)
1) Construct a maximal matching Em of G(N,E)
for all edges e=(j,k) in Em 2) collapse matched nodes into a single one
 Put node n(e) in Nc
 W(n(e)) = W(j) + W(k) … gray statements update node/edge weights
for all nodes n in N not incident on an edge in Em 3) add unmatched nodes
 Put n in Nc … do not change W(n)
… Now each node r in N is “inside” a unique node n(r) in Nc

… 4) Connect two nodes in Nc if nodes inside them are connected in E
for all edges e=(j,k) in Em
 for each other edge e’=(j,r) or (k,r) in E
 Put edge ee = (n(e),n(r)) in Ec
 W(ee) = W(e’)

If there are multiple edges connecting two nodes in Nc, collapse them,
 adding edge weights

03/01/2011! CS267 Lecture 13! 62!

Expanding a partition of Gc to a partition of G

03/01/2011! CS267 Lecture 13! 63!

Multilevel Spectral Bisection
• Coarsen graph and expand partition using maximal

independent sets!
•  Improve partition using Rayleigh Quotient Iteration!

03/01/2011! CS267 Lecture 13! 64!

Maximal Independent Sets
•  Definition: An independent set of a graph G(N,E) is a subset Ni of N

such that no two nodes in Ni are connected by an edge!
•  Definition: A maximal independent set of a graph G(N,E) is an

independent set Ni to which no more nodes can be added and
remain an independent set!

•  A simple greedy algorithm computes a maximal independent set:!
let Ni be empty
for k = 1 to |N| … visit the nodes in any order
 if node k is not adjacent to any node already in Ni
 add k to Ni
 endif
endfor

03/01/2011! CS267 Lecture 13! 65!

Example of Coarsening

- encloses domain Dk = node of Nc

03/01/2011! CS267 Lecture 13! 66!

Coarsening using Maximal Independent Sets (details)
… Build “domains” D(k) around each node k in Ni to get nodes in Nc
… Add an edge to Ec whenever it would connect two such domains
Ec = empty set
for all nodes k in Ni
 D(k) = ({k}, empty set)
 … first set contains nodes in D(k), second set contains edges in D(k)
unmark all edges in E
repeat
 choose an unmarked edge e = (k,j) from E
 if exactly one of k and j (say k) is in some D(m)
 mark e
 add j and e to D(m)
 else if k and j are in two different D(m)’s (say D(mk) and D(mj))
 mark e
 add edge (mk, mj) to Ec
 else if both k and j are in the same D(m)
 mark e
 add e to D(m)
 else
 leave e unmarked
 endif
until no unmarked edges

03/01/2011! CS267 Lecture 13! 67!

Expanding a partition of Gc to a partition of G
• Need to convert an eigenvector vc of L(Gc) to an

approximate eigenvector v of L(G)!
• Use interpolation:!

For each node j in N
 if j is also a node in Nc, then
 v(j) = vc(j) … use same eigenvector component
 else
 v(j) = average of vc(k) for all neighbors k of j in Nc
 end if
endif

03/01/2011! CS267 Lecture 13! 68!

Example: 1D mesh of 9 nodes

03/01/2011! CS267 Lecture 13! 69!

Improve eigenvector: Rayleigh Quotient Iteration
j = 0
pick starting vector v(0) … from expanding vc
repeat
 j=j+1
 r(j) = vT(j-1) * L(G) * v(j-1)
 … r(j) = Rayleigh Quotient of v(j-1)
 … = good approximate eigenvalue
 v(j) = (L(G) - r(j)*I)-1 * v(j-1)
 … expensive to do exactly, so solve approximately
 … using an iteration called SYMMLQ,
 … which uses matrix-vector multiply (no surprise)
 v(j) = v(j) / || v(j) || … normalize v(j)
until v(j) converges
… Convergence is very fast: cubic

03/01/2011!

CS267 Lecture 8!

70!

Example of convergence for 1D mesh

03/01/2011! CS267 Lecture 13!

Outline of Graph Partitioning Lectures

• Review definition of Graph Partitioning problem"
• Overview of heuristics"
• Partitioning with Nodal Coordinates"

•  Ex: In finite element models, node at point in (x,y) or (x,y,z) space"
• Partitioning without Nodal Coordinates"

•  Ex: In model of WWW, nodes are web pages"
• Multilevel Acceleration"

•  BIG IDEA, appears often in scientific computing"
• Comparison of Methods and Applications"
• Beyond Graph Partitioning: Hypergraphs"
"

03/01/2011! CS267 Lecture 13! 72!

Available Implementations
• Multilevel Kernighan/Lin"

•  METIS (www.cs.umn.edu/~metis)"
•  ParMETIS - parallel version"

• Multilevel Spectral Bisection"
•  S. Barnard and H. Simon, “A fast multilevel implementation

of recursive spectral bisection …”, Proc. 6th SIAM Conf.
On Parallel Processing, 1993"

•  Chaco (www.cs.sandia.gov/CRF/papers_chaco.html)"
• Hybrids possible "

•  Ex: Using Kernighan/Lin to improve a partition from
spectral bisection"

• Recent package, collection of techniques"
•  Zoltan (www.cs.sandia.gov/Zoltan)"

• See www.cs.sandia.gov/~bahendr/partitioning.html"

03/01/2011! CS267 Lecture 13! 73!

Comparison of methods
•  Compare only methods that use edges, not nodal coordinates !

•  CS267 webpage and KK95a (see below) have other comparisons!
•  Metrics!

•  Speed of partitioning!
•  Number of edge cuts!
•  Other application dependent metrics!

•  Summary!
•  No one method best!
•  Multi-level Kernighan/Lin fastest by far, comparable to Spectral in the

number of edge cuts!
•  www-users.cs.umn.edu/~karypis/metis/publications/main.html!
•  see publications KK95a and KK95b!

•  Spectral give much better cuts for some applications !
•  Ex: image segmentation!
•  See “Normalized Cuts and Image Segmentation” by J. Malik, J. Shi!

03/01/2011!

CS267 Lecture 8!

74!

Number of edges cut for a 64-way partition

Graph

144
4ELT
ADD32
AUTO
BBMAT
FINAN512
LHR10
MAP1
MEMPLUS
SHYY161
TORSO

 # of
Nodes

 144649
 15606
 4960
 448695
 38744
 74752
 10672
 267241
 17758
 76480
 201142

 # of
 Edges

1074393
 45878
 9462
3314611
 993481
 261120
 209093
 334931
 54196
 152002
1479989

Description

3D FE Mesh
2D FE Mesh
32 bit adder
3D FE Mesh
2D Stiffness M.
Lin. Prog.
Chem. Eng.
Highway Net.
Memory circuit
Navier-Stokes
3D FE Mesh

Edges cut
 for 64-way
 partition
 88806
 2965
 675
 194436
 55753
 11388
 58784
 1388
 17894
 4365
 117997

Expected
cuts for
2D mesh
 6427
 2111
 1190
 11320
 3326
 4620
 1746
 8736
 2252
 4674
 7579

Expected
cuts for
3D mesh
 31805
 7208
 3357
 67647
 13215
 20481
 5595
 47887
 7856
 20796
 39623

Expected # cuts for 64-way partition of 2D mesh of n nodes
 n1/2 + 2*(n/2)1/2 + 4*(n/4)1/2 + … + 32*(n/32)1/2 ~ 17 * n1/2

Expected # cuts for 64-way partition of 3D mesh of n nodes =
 n2/3 + 2*(n/2)2/3 + 4*(n/4)2/3 + … + 32*(n/32)2/3 ~ 11.5 * n2/3

For Multilevel Kernighan/Lin, as implemented in METIS (see KK95a)

03/01/2011! CS267 Lecture 13! 75!

Speed of 256-way partitioning (from KK95a)

Graph

144
4ELT
ADD32
AUTO
BBMAT
FINAN512
LHR10
MAP1
MEMPLUS
SHYY161
TORSO

 # of
Nodes

 144649
 15606
 4960
 448695
 38744
 74752
 10672
 267241
 17758
 76480
 201142

 # of
 Edges

1074393
 45878
 9462
3314611
 993481
 261120
 209093
 334931
 54196
 152002
1479989

Description

3D FE Mesh
2D FE Mesh
32 bit adder
3D FE Mesh
2D Stiffness M.
Lin. Prog.
Chem. Eng.
Highway Net.
Memory circuit
Navier-Stokes
3D FE Mesh

Multilevel
 Spectral
Bisection
 607.3
 25.0
 18.7
 2214.2
 474.2
 311.0
 142.6
 850.2
 117.9
 130.0
 1053.4

Multilevel
Kernighan/
 Lin
 48.1
 3.1
 1.6
 179.2
 25.5
 18.0
 8.1
 44.8
 4.3
 10.1
 63.9

Partitioning time in seconds

Kernighan/Lin much faster than Spectral Bisection!

03/01/2011! CS267 Lecture 13!

Outline of Graph Partitioning Lectures

• Review definition of Graph Partitioning problem"
• Overview of heuristics"
• Partitioning with Nodal Coordinates"

•  Ex: In finite element models, node at point in (x,y) or (x,y,z) space"
• Partitioning without Nodal Coordinates"

•  Ex: In model of WWW, nodes are web pages"
• Multilevel Acceleration"

•  BIG IDEA, appears often in scientific computing"
• Comparison of Methods and Applications"
• Beyond Graph Partitioning: Hypergraphs"
"

 r1

 r2

 r3

 r4

c1

c2

c3

c4

Beyond simple graph partitioning:	

Representing a sparse matrix as a hypergraph	

 r1

 r2

 r3

 r4

c1

c2

c3

c4

P1

P2

But graph cut is 4!	

	

⇒ Cut size of graph
partition is not an accurate
count of communication
volume	

Source vector entries
corresponding to c2
and c3 are needed by
both partitions – so
total volume of
communication is 2	

Using a graph to partition, versus a hypergraph	

 r1

 r2

 r3

 r4

c1

c2

c3

c4

P1

P2

But graph cut is 3!	

	

	

	

	

⇒ Cut size of graph partition
may not accurately count
communication volume	

Source vector entries
corresponding to c2
and c3 are needed by
both partitions – so
total volume of
communication is 2	

Using a graph to partition, versus a hypergraph	

1 2

3 4

P1

P2

Two Different 2D Mesh Partitioning Strategies	

YY!

Graph:	

Cartesian Partitioning	

Communication Volume per proc (SpMV) = 	

nodes needed by 1 other proc * 1 + nodes
needed by 2 other procs *2 = 14*1 + 1*2 = 16	

	

Total Communication Volume (SpMV) =	

nprocs * (comm per proc) = 4 * 16 = 64	

	

Communication Volume per proc (SpMV) = 	

Upper left/lower right: (10 * 1) + (1 * 2) = 12	

Upper right/lower left: (15 * 1) + (1 * 2) = 17	

	

Total Communication Volume (SpMV) =	

2 * 12 + 2 * 17 = 58	

	

Total SpMV communication volume = 64

Hypergraph:	

MeshPart Algorithm [Ucar, Catalyurek, 2010]	

Total SpMV communication volume = 58

Generalization of the MeshPart Algorithm 	

Source: Ucar and Catalyruk, 2010	

In general, for a PxQ partitioning of an MxN mesh,	

	

MeshPart: vol(M,N,P,Q) = n(3PQ – (P+Q) -1) + (P-1)(3Q-5) + (Q-1)(3P-5),
where n = M/P = N/Q	

	

Cartesian: vol(M,N,P,Q) = 2N(P-1) + 2M(Q-1)	

Suspected to be optimal for certain
size matrices and proc. grids	

For NxN mesh on PxP processor grid:
Usual Cartesian partitioning costs ~4NP words moved
MeshPart costs ~3NP words moved, 25% savings

Experimental Results: Hypergraph vs. Graph Partitioning	

We can see the diagonal-like structure of the MeshPart algorithm in the hypergraph
partitioned meshes, whereas graph partitioning gives us a result closer to Cartesian	

~8% reduction in total communication volume 	

using hypergraph partitioning (PaToH) 	

versus graph partitioning (METIS)	

64x64 Mesh (5-pt stencil), 16 processors	

Hypergraph Partitioning (PaToH)	

Total Comm. Vol = 719	

Max Vol per Proc = 59	

Graph Partitioning (Metis)	

Total Comm. Vol = 777	

Max Vol per Proc = 69	

	

Further Benefits of Hypergraph Model: Nonsymmetric Matrices 	

•  Graph model of matrix has edge (i,j) if either A(i,j) or A(j,i) nonzero	

•  Same graph for A as |A| + |AT|	

•  Ok for symmetric matrices, what about nonsymmetric?	

•  Try A upper triangular	

Graph Partitioning (Metis)	

Total Communication Volume= 254	

Load imbalance ratio = 6%	

Hypergraph Partitioning (PaToH)	

Total Communication Volume= 181	

Load imbalance ratio = 0.1%	

Summary: Graphs versus Hypergraphs
•  Pros and cons	

•  When matrix is non-symmetric, the graph partitioning model
(using A+AT) loses information, resulting in suboptimal
partitioning in terms of communication and load balance.	

•  Even when matrix is symmetric, graph cut size is not an
accurate measurement of communication volume	

•  Hypergraph partitioning model solves both these problems!
•  However, hypergraph partitioning (PaToH) can be much

more expensive than graph partitioning (METIS)	

•  Hypergraph partitioners: PaToH, HMETIS, ZOLTAN
•  For more see Bruce Hendrickson’s web page

•  www.cs.sandia.gov/~bahendr/partitioning.html
•  “Load Balancing Fictions, Falsehoods and Fallacies”
03/03/2011! CS267 Lecture 13! 84!

03/01/2011! CS267 Lecture 13! 85!

Extra Slides"

03/01/2011! CS267 Lecture 13! 86!

Beyond Simple Graph Partitioning
• Undirected graphs model symmetric matrices, not

unsymmetric ones!
• More general graph models include:!

•  Hypergraph: nodes are computation, edges are communication,
but connected to a set (>= 2) of nodes!

•  HMETIS, PATOH, ZOLTAN packages!
•  Bipartite model: use bipartite graph for directed graph!
•  Multi-object, Multi-Constraint model: use when single structure

may involve multiple computations with differing costs!
• For more see Bruce Hendrickson’s web page!

•  www.cs.sandia.gov/~bahendr/partitioning.html!
•  “Load Balancing Myths, Fictions & Legends”!

Graph vs. Hypergraph Partitioning	

Consider a 2-way partition of a 2D mesh:	

The cost of communicating vertex A is 1 – we can send
the value in one message to the other processor	

	

According to the graph model, however the vertex A
contributes 2 to the total communication volume, since
2 edges are cut.	

	

The hypergraph model accurately represents
the cost of communicating A (one hyperedge
cut, so communication volume of 1. 	

	

Result: Unlike graph partitioning model, the hypergraph partitioning model gives
exact communication volume (minimizing cut = minimizing communication) 	

	

Therefore, we expect that hypergraph partitioning approach can do a better job at

minimizing total communication. Let’s look at a simple example…	

	

Edge cut = 10	

	

Hyperedge cut
= 7	

Further Benefits of Hypergraph Model: Nonsymmetric Matrices 	

• Graph model of matrix has edge (i,j) if either A(i,j) or A(j,i) nonzero	

•  Same graph for A as |A| + |AT|	

• Ok for symmetric matrices, what about nonsymmetric?	

Illustrative Bad Example: triangular matrix	

 This results in a suboptimal partition in terms of both communication and load balancing. In this case, 	

	

Total Communication Volume = 60 (optimal is ~12 in this case, subject to load balancing)	

Proc1: 76 nonzeros, Proc 2: 60 nonzeros (~26% imbalance ratio)	

Whereas the hypergraph model can capture nonsymmetry, the graph partitioning model deals with
nonsymmetry by partitioning the graph of A+AT (which in this case is a dense matrix).	

Given A, graph
partition A+AT 	

which gives the
partition for A	

Experimental Results: Illustration of Triangular Example	

Graph Partitioning (Metis)	

Total Communication Volume= 254	

Imbalance ratio = 6%	

Hypergraph Partitioning (PaToH)	

Total Communication Volume= 181	

Imbalance ratio = 0.1%	

Conclusions from this section:	

•  When matrix is non-symmetric, the graph partitioning model (using A+AT) loses

information, resulting in suboptimal partitioning in terms of communication and
load balance.	

•  Even when matrix is symmetric, graph cut size is not an accurate measurement
of communication volume	

•  Hypergraph partitioning model solves both these problems	

03/09/2009! CS267 Lecture 13! 90!

Coordinate-Free Partitioning: Summary
• Several techniques for partitioning without coordinates!

•  Breadth-First Search – simple, but not great partition!
•  Kernighan-Lin – good corrector given reasonable partition!
•  Spectral Method – good partitions, but slow!

• Multilevel methods!
•  Used to speed up problems that are too large/slow!
•  Coarsen, partition, expand, improve!
•  Can be used with K-L and Spectral methods and others!

• Speed/quality!
•  For load balancing of grids, multi-level K-L probably best!
•  For other partitioning problems (vision, clustering, etc.) spectral

may be better!
•  Good software available!

03/09/2009! CS267 Lecture 13! 91!

Is Graph Partitioning a Solved Problem?
•  Myths of partitioning due to Bruce Hendrickson!

1.  Edge cut = communication cost!
2.  Simple graphs are sufficient!
3.  Edge cut is the right metric!
4.  Existing tools solve the problem!
5.  Key is finding the right partition!
6.  Graph partitioning is a solved problem!

•  Slides and myths based on Bruce Hendrickson’s:!
 “Load Balancing Myths, Fictions & Legends”!

03/09/2009! CS267 Lecture 13! 92!

Myth 1: Edge Cut = Communication Cost
• Myth1: The edge-cut deceit!
 edge-cut = communication cost!
• Not quite true:!

•  #vertices on boundary is actual communication volume!
•  Do not communicate same node value twice!

•  Cost of communication depends on # of messages too (α term)!
•  Congestion may also affect communication cost!

• Why is this OK for most applications?!
•  Mesh-based problems match the model: cost is ~ edge cuts!
•  Other problems (data mining, etc.) do not!

03/09/2009! CS267 Lecture 13! 93!

Myth 2: Simple Graphs are Sufficient
• Graphs often used to encode data dependencies!

•  Do X before doing Y!

• Graph partitioning determines data partitioning!
•  Assumes graph nodes can be evaluated in parallel!
•  Communication on edges can also be done in parallel!
•  Only dependence is between sweeps over the graph!

• More general graph models include:!
•  Hypergraph: nodes are computation, edges are communication,

but connected to a set (>= 2) of nodes!
•  Bipartite model: use bipartite graph for directed graph!
•  Multi-object, Multi-Constraint model: use when single structure

may involve multiple computations with differing costs!

03/09/2009! CS267 Lecture 13! 94!

Myth 3: Partition Quality is Paramount
• When structure are changing dynamically during a

simulation, need to partition dynamically!
•  Speed may be more important than quality!
•  Partitioner must run fast in parallel!
•  Partition should be incremental!

•  Change minimally relative to prior one!
•  Must not use too much memory !

• Example from Touheed, Selwood, Jimack and Bersins!
•  1 M elements with adaptive refinement on SGI Origin!
•  Timing data for different partitioning algorithms:!

•  Repartition time from 3.0 to 15.2 secs!
•  Migration time : 17.8 to 37.8 secs!
•  Solve time: 2.54 to 3.11 secs!

03/09/2009! CS267 Lecture 13! 95!

References
• Details of all proofs on Jim Demmel’s 267 web page!
• A. Pothen, H. Simon, K.-P. Liou, “Partitioning sparse

matrices with eigenvectors of graphs”, SIAM J. Mat.
Anal. Appl. 11:430-452 (1990)!

• M. Fiedler, “Algebraic Connectivity of Graphs”, Czech.
Math. J., 23:298-305 (1973)!

• M. Fiedler, Czech. Math. J., 25:619-637 (1975)!
• B. Parlett, “The Symmetric Eigenproblem”, Prentice-Hall,

1980!
• www.cs.berkeley.edu/~ruhe/lantplht/lantplht.html!
• www.netlib.org/laso!

03/109/2009! CS267 Lecture 13! 96!

Summary
• Partitioning with nodal coordinates:!

•  Inertial method!
•  Projection onto a sphere!
•  Algorithms are efficient!
•  Rely on graphs having nodes connected (mostly) to “nearest

neighbors” in space!
• Partitioning without nodal coordinates:!

•  Breadth-First Search – simple, but not great partition!
•  Kernighan-Lin – good corrector given reasonable partition!
•  Spectral Method – good partitions, but slow!

• Today:!
•  Spectral methods revisited!
•  Multilevel methods!

03/09/2009! CS267 Lecture 13! 97!

Another Example
• Definition: The Laplacian matrix L(G) of a graph G(N,E)

is an |N| by |N| symmetric matrix, with one row and
column for each node. It is defined by!

•  L(G) (i,i) = degree of node I (number of incident edges)!
•  L(G) (i,j) = -1 if i != j and there is an edge (i,j)!
•  L(G) (i,j) = 0 otherwise!

2 -1 -1 0 0
-1 2 -1 0 0
-1 -1 4 -1 -1
0 0 -1 2 -1
0 0 -1 -1 2

1

2 3

4

5

G = L(G) =

Hidden slide

