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Outline of Graph Partitioning Lecture 

• Review definition of Graph Partitioning problem"
• Overview of heuristics"
• Partitioning with Nodal Coordinates"

•  Ex: In finite element models, node at point in (x,y) or (x,y,z) space"
• Partitioning without Nodal Coordinates"

•  Ex: In model of WWW,  nodes are web pages"
• Multilevel Acceleration"

•  BIG IDEA, appears often in scientific computing"
• Comparison of Methods and Applications"
• Beyond Graph Partitioning: Hypergraphs"
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Definition of Graph Partitioning 
•  Given a graph G = (N, E, WN, WE)"

•  N = nodes (or vertices),"
•  WN = node weights"
•  E = edges"
•  WE = edge weights"

•  Ex: N = {tasks}, WN = {task costs}, edge (j,k) in E means task j 
sends WE(j,k) words to task k"

•  Choose a partition N = N1 U N2 U … U NP such that"
•  The sum of the node weights in each Nj is “about the same”"
•  The sum of all edge weights of edges connecting all different 

pairs Nj  and Nk is minimized"
•  Ex: balance the work load, while minimizing communication"
•  Special case of N = N1 U N2:   Graph Bisection"
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Definition of Graph Partitioning 
•  Given a graph G = (N, E, WN, WE)"

•  N = nodes (or vertices),"
•  WN = node weights"
•  E = edges"
•  WE = edge weights"

•  Ex: N = {tasks}, WN = {task costs}, edge (j,k) in E means task j 
sends WE(j,k) words to task k"

•  Choose a partition N = N1 U N2 U … U NP such that"
•  The sum of the node weights in each Nj is “about the same”"
•  The sum of all edge weights of edges connecting all different 

pairs Nj  and Nk is minimized (shown in black)"
•  Ex: balance the work load, while minimizing communication"
•  Special case of N = N1 U N2:   Graph Bisection"
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Some Applications 
•  Telephone network design"

•  Original application, algorithm due to Kernighan"
•  Load Balancing while Minimizing Communication"
•  Sparse Matrix times Vector Multiplication"

•  Solving PDEs"
•  N = {1,…,n},     (j,k) in E if  A(j,k) nonzero, "
•  WN(j) = #nonzeros in row j,   WE(j,k) = 1"

•  VLSI Layout"
•  N = {units on chip},  E = {wires}, WE(j,k) = wire length"

•  Sparse Gaussian Elimination"
•  Used to reorder rows and columns to increase parallelism, and to 

decrease “fill-in”"
•  Data mining and clustering"
•  Physical Mapping of DNA"
•  Image Segmentation"
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Sparse Matrix Vector Multiplication y = y +A*x 

… declare A_local, A_remote(1:num_procs), x_local, x_remote, y_local 
y_local = y_local + A_local * x_local 
for all procs P that need part of x_local 

 send(needed part of x_local, P) 
for all procs P owning needed part of x_remote 

 receive(x_remote, P) 
 y_local = y_local + A_remote(P)*x_remote 
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Cost of Graph Partitioning 
• Many possible partitionings                                             

to search!
•  Just to divide in 2 parts there are: !
      n choose n/2 = n!/((n/2)!)2 ~ !
      sqrt(2/(nπ))*2n  possibilities!

• Choosing optimal partitioning is NP-complete!
•  (NP-complete = we can prove it is a hard as other well-known 

hard problems in a class Nondeterministic Polynomial time)!
•  Only known exact algorithms have cost = exponential(n)!

• We need good heuristics!
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Outline of Graph Partitioning Lectures 

• Review definition of Graph Partitioning problem!
• Overview of heuristics!
•  Partitioning with Nodal Coordinates"

•  Ex: In finite element models, node at point in (x,y) or (x,y,z) space"
•  Partitioning without Nodal Coordinates"

•  Ex: In model of WWW,  nodes are web pages"
•  Multilevel Acceleration"

•  BIG IDEA, appears often in scientific computing"
•  Comparison of Methods and Applications"
•  Beyond Graph Partitioning: Hypergraphs"
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First Heuristic: Repeated Graph Bisection 
• To partition N into 2k parts!

•  bisect graph recursively k times!
• Henceforth discuss mostly graph bisection!
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Edge Separators vs. Vertex Separators 
•  Edge Separator: Es (subset of E) separates G if removing Es from E 

leaves two ~equal-sized, disconnected components of N: N1 and N2 !
•  Vertex Separator: Ns (subset of N) separates G if removing Ns and 

all incident edges leaves two ~equal-sized, disconnected 
components of N: N1 and N2!

•  Making an Ns from an Es: pick one endpoint of each edge in Es!

•  |Ns| ≤ |Es| !
•  Making an Es from an Ns: pick all edges incident on Ns!

•  |Es| ≤ d * |Ns| where d is the maximum degree of the graph !
•  We will find Edge or Vertex Separators, as convenient!

G = (N, E), Nodes N and Edges E 
Es = green edges or blue edges 
Ns = red vertices 
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Overview of Bisection Heuristics 
• Partitioning with Nodal Coordinates!

•  Each node has x,y,z coordinates à partition space!

• Partitioning without Nodal Coordinates!
•  E.g., Sparse matrix of Web documents!

•  A(j,k) = # times keyword j appears in URL k!

• Multilevel acceleration   (BIG IDEA)!
•  Approximate problem by “coarse graph,” do so recursively!
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Outline of Graph Partitioning Lectures 

• Review definition of Graph Partitioning problem!
• Overview of heuristics!
•  Partitioning with Nodal Coordinates"

•  Ex: In finite element models, node at point in (x,y) or (x,y,z) space"
•  Partitioning without Nodal Coordinates"

•  Ex: In model of WWW,  nodes are web pages"
•  Multilevel Acceleration"

•  BIG IDEA, appears often in scientific computing"
•  Comparison of Methods and Applications"
•  Beyond Graph Partitioning: Hypergraphs"
"
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Nodal Coordinates: How Well Can We Do? 
• A planar graph can be drawn in plane without edge 

crossings!
• Ex: m x m grid of m2 nodes: ∃ vertex separator Ns with |

Ns| = m = sqrt(|N|) (see earlier slide for m=5 )!
• Theorem (Tarjan, Lipton, 1979): If G is planar, ∃ Ns such 

that !
•  N = N1 U Ns U N2 is a partition,!
•  |N1| <= 2/3 |N|  and  |N2| <= 2/3 |N|!
•  |Ns| <= sqrt(8 * |N|)!

• Theorem motivates intuition of following algorithms!
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Nodal Coordinates: Inertial Partitioning 
• For a graph in 2D, choose line with half the nodes on 

one side and half on the other!
•  In 3D, choose a plane, but consider 2D for simplicity!

• Choose a line L, and then choose a line L⊥ perpendicular 
to it, with half the nodes on either side!

1.  Choose a line L through the points 
L given by a*(x-xbar)+b*(y-ybar)=0, 
      with a2+b2=1; (a,b) is unit vector ⊥ to L  

L 

(a,b) 
(xbar,ybar) 

2.  Project each point to the line 
For each nj = (xj,yj), compute coordinate 
     Sj = -b*(xj-xbar) + a*(yj-ybar) along L 

3.  Compute the median 
Let Sbar = median(S1,…,Sn) 

4.  Use median to partition the nodes 
Let nodes with Sj < Sbar be in N1, rest in N2  

L⊥ 
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Inertial Partitioning: Choosing L 
• Clearly prefer L, L⊥ on left below!

• Mathematically, choose L to be a total least squares fit of 
the nodes!

•  Minimize sum of squares of distances to L (green lines on last 
slide)!

•  Equivalent to choosing L as axis of rotation that minimizes the 
moment of inertia of nodes (unit weights) - source of name!

L 

L 

N1 N2 
N1 

N2 

L⊥ 

L⊥ 
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Inertial Partitioning: choosing L (continued) 

Σj (length of j-th green line)2 
   = Σj  [ (xj - xbar)2 + (yj - ybar)2 - (-b*(xj - xbar) + a*(yj - ybar))2 ] 
                    …   Pythagorean Theorem 
   = a2 * Σj (xj - xbar)2  +  2*a*b* Σj (xj - xbar)*(xj - ybar)  +  b2 Σj (yj - ybar)2 
   = a2 * X1                   +  2*a*b*  X2                                  +  b2 * X3 
   = [a b] *  X1   X2   *  a 
                  X2   X3      b 
 
Minimized by choosing 
       (xbar , ybar) = (Σj xj , Σj yj) / n = center of mass 
       (a,b) = eigenvector of smallest eigenvalue of    X1  X2 
                                                                                      X2  X3 

(a,b) is unit vector 
perpendicular to L 

(a,b) 

L 

(xbar,ybar) 

(xj , yj ) 
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Nodal Coordinates: Random Spheres 
• Generalize nearest neighbor idea of a planar graph to 

higher dimensions !
•  Any graph can fit in 3D without edge crossings!
•  Capture intuition of planar graphs of being connected to      

“nearest neighbors” but in higher than 2 dimensions!
• For intuition, consider graph defined by a regular 3D mesh!
• An n by n by n mesh of |N| = n3 nodes!

•  Edges to 6 nearest neighbors!
•  Partition by taking plane parallel to 2 axes!
•  Cuts n2 =|N|2/3 = O(|E|2/3) edges!

• For the general graphs!
•  Need a notion of “well-shaped” like mesh!
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Random Spheres: Well Shaped Graphs 
• Approach due to Miller, Teng, Thurston, Vavasis!
• Def: A k-ply neighborhood system in d dimensions is a 

set {D1,…,Dn} of closed disks in Rd such that no point in 
Rd is strictly interior to more than k disks!

• Def: An (α,k) overlap graph is a graph defined in terms 
of α ≥ 1 and a k-ply neighborhood system {D1,…,Dn}: 
There is a node for each Dj, and an edge from j to i if 
expanding the radius of the smaller of Dj and Di by >α 
causes the two disks to overlap!

Ex: n-by-n mesh is a (1,1) overlap graph 
Ex: Any planar graph is (α,k) overlap for 
      some α,k 

2D Mesh is  
(1,1) overlap 
 graph 
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Generalizing Lipton/Tarjan to Higher Dimensions 
• Theorem (Miller, Teng, Thurston, Vavasis, 1993): Let 

G=(N,E) be an (α,k) overlap graph in d dimensions with 
n=|N|. Then there is a vertex separator Ns such that !

•  N = N1 U Ns U N2 and!
•  N1 and N2 each has at most n*(d+1)/(d+2) nodes!
•  Ns has at most O(α * k1/d * n(d-1)/d ) nodes!

• When d=2, same as Lipton/Tarjan!
• Algorithm:!

•  Choose a sphere S in Rd!
•  Edges that S “cuts” form edge separator Es!
•  Build Ns from Es!
•  Choose S “randomly”, so that it satisfies Theorem with high 

probability!
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Stereographic Projection 
• Stereographic projection from plane to sphere!

•  In d=2, draw line from p to North Pole, projection p’ of p is 
where the line and sphere intersect!

•  Similar in higher dimensions!

p 

p’ 

p = (x,y)          p’ = (2x,2y,x2 + y2 –1) / (x2 + y2 + 1) 
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Choosing a Random Sphere 
• Do stereographic projection from Rd to sphere S in Rd+1!

• Find centerpoint of projected points!
•  Any plane through centerpoint divides points ~evenly!
•  There is a linear programming algorithm, cheaper heuristics!

• Conformally map points on sphere!
•  Rotate points around origin so centerpoint at (0,…0,r) for some r!
•  Dilate  points (unproject, multiply by sqrt((1-r)/(1+r)), project)!

•  this maps centerpoint to origin (0,…,0), spreads points around S!

• Pick a random plane through origin!
•  Intersection of plane and sphere S is “circle”!

• Unproject circle!
•  yields desired circle C in Rd!

• Create Ns: j belongs to Ns if α*Dj intersects  C!
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Random Sphere Algorithm (Gilbert) 
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Random Sphere Algorithm (Gilbert) 
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Random Sphere Algorithm (Gilbert) 
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Random Sphere Algorithm (Gilbert) 
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Random Sphere Algorithm (Gilbert) 

03/01/2011!
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Random Sphere Algorithm (Gilbert) 

03/01/2011!
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Nodal Coordinates: Summary 
•  Other variations on these algorithms!
•  Algorithms are efficient!
•  Rely on graphs having nodes connected (mostly) to “nearest 

neighbors” in space!
•  algorithm does not depend on where actual edges are!!

•  Common when graph arises from physical model!
•  Ignores edges, but can be used as good starting guess for 

subsequent partitioners that do examine edges!
•  Can do poorly if graph connection is not spatial:!

•  Details at!
•  www.cs.berkeley.edu/~demmel/cs267/lecture18/lecture18.html!
•  www.cs.ucsb.edu/~gilbert!
•  www.cs.bu.edu/~steng!
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Outline of Graph Partitioning Lectures 
• Review definition of Graph Partitioning problem!
• Overview of heuristics!
•  Partitioning with Nodal Coordinates"

•  Ex: In finite element models, node at point in (x,y) or (x,y,z) space"
•  Partitioning without Nodal Coordinates"

•  Ex: In model of WWW,  nodes are web pages"
•  Multilevel Acceleration"

•  BIG IDEA, appears often in scientific computing"
•  Comparison of Methods and Applications"
•  Beyond Graph Partitioning: Hypergraphs"
"
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Coordinate-Free:  Breadth First Search (BFS) 
• Given G(N,E) and a root node r in N, BFS produces!

•  A subgraph T of G (same nodes, subset of edges)"
•  T is a tree rooted at r"
•  Each node assigned a level = distance from r"

Tree edges 
Horizontal edges 
Inter-level edges 

Level 0 
Level 1 
Level 2 
Level 3 
Level 4 

N1 

N2 

root 
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Breadth First Search (details) 
• Queue (First In First Out, or FIFO)!

•  Enqueue(x,Q) adds x to back of Q!
•  x = Dequeue(Q) removes x from front of Q!

• Compute Tree T(NT,ET)!

NT = {(r,0)}, ET = empty set            … Initially T = root r, which is at level 0 
Enqueue((r,0),Q)                             … Put root on initially empty Queue Q 
Mark r                                              … Mark root as having been processed 
While Q not empty                         … While nodes remain to be processed 
       (n,level) = Dequeue(Q)            … Get a node to process 
       For all unmarked children c of n 
              NT = NT U (c,level+1)        …  Add child c to NT 
              ET = ET U (n,c)                  …  Add edge (n,c) to ET 
              Enqueue((c,level+1),Q))   … Add child c to Q for processing 
              Mark c                                … Mark c as processed 
       Endfor 
Endwhile 
 

root 
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Partitioning via Breadth First Search 
• BFS identifies 3 kinds of edges!

•  Tree Edges - part of T!
•  Horizontal Edges - connect nodes at same level!
•  Interlevel Edges - connect nodes at adjacent levels!

• No edges connect nodes in levels!
       differing by more than 1 (why?)!
• BFS partioning heuristic!

•  N = N1 U N2, where !
•  N1 = {nodes at level <= L},  !
•  N2 = {nodes at level > L}!

•  Choose L so |N1| close to |N2|!

BFS partition of a 2D Mesh 
using center as root: 
  N1 = levels 0, 1, 2, 3 
  N2 = levels 4, 5, 6 

root 
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Coordinate-Free: Kernighan/Lin 
• Take a initial partition and iteratively improve it!

•  Kernighan/Lin (1970), cost = O(|N|3) but easy to understand!
•  Fiduccia/Mattheyses (1982), cost = O(|E|), much better, but 

more complicated!
• Given G = (N,E,WE) and a partitioning N = A U B, where 

|A| = |B|!
•  T = cost(A,B) = Σ {W(e) where e connects nodes in A and B}!
•  Find subsets X of A and Y of B with |X| = |Y|!
•  Consider swapping X and Y if it decreases cost:!

•  newA = (A – X) U Y    and    newB = (B – Y) U X!
•  newT = cost(newA , newB) < T = cost(A,B)!

• Need to compute newT efficiently for many possible X 
and Y, choose smallest (best)!
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Kernighan/Lin: Preliminary Definitions 
• T = cost(A, B),   newT = cost(newA, newB)!
• Need an efficient formula for newT; will use!

•  E(a) = external cost of a in A = Σ {W(a,b) for b in B}!
•  I(a)  = internal  cost of a in A = Σ {W(a,a’) for other a’ in A}!
•  D(a) = cost of a in A               = E(a) - I(a)!
•  E(b), I(b) and D(b) defined analogously for b in B!

• Consider swapping X = {a} and Y = {b}!
•  newA = (A - {a}) U {b},   newB = (B - {b}) U {a}!

•  newT = T - ( D(a) + D(b) - 2*w(a,b) ) ≡ T - gain(a,b)!
•  gain(a,b) measures improvement gotten by swapping a and b!

• Update formulas!
•  newD(a’) = D(a’) + 2*w(a’,a) - 2*w(a’,b)   for a’ in A, a’ ≠ a!
•  newD(b’) = D(b’) + 2*w(b’,b) - 2*w(b’,a)   for b’ in B, b’ ≠ b!
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Kernighan/Lin Algorithm 
    Compute  T = cost(A,B) for initial A, B                                    … cost = O(|N|2) 
    Repeat  
           … One pass greedily computes |N|/2 possible X,Y to swap, picks best 
           Compute costs D(n) for all n in N                                          … cost = O(|N|2) 
           Unmark all nodes in N                                                            … cost = O(|N|)  
           While there are unmarked nodes                                           … |N|/2 iterations 
                 Find an unmarked pair (a,b) maximizing gain(a,b)             … cost = O(|N|2)  
                Mark a and b (but do not swap them)                                   … cost = O(1) 
                Update D(n) for all unmarked n,  
                        as though a and b had been swapped                      … cost = O(|N|)  
            Endwhile 
                … At this point we have computed a sequence of pairs 
                …  (a1,b1), … , (ak,bk)   and gains gain(1),…., gain(k) 
                … where k = |N|/2, numbered in the order in which we marked them 
           Pick m maximizing Gain = Σk=1 to m   gain(k)                         … cost = O(|N|) 
                … Gain is reduction in cost from swapping (a1,b1) through (am,bm) 
           If Gain > 0 then   … it is worth swapping 
                 Update newA = A - { a1,…,am } U { b1,…,bm }              … cost = O(|N|) 
                 Update newB = B - { b1,…,bm } U { a1,…,am }              … cost = O(|N|) 
                 Update T = T - Gain                                                          … cost = O(1) 
           endif 
     Until Gain <= 0 
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 Comments on Kernighan/Lin Algorithm 

• Most expensive line shown in red, O(n3)!
• Some gain(k) may be negative, but if later gains are 

large, then final Gain may be positive!
•  can escape “local minima” where switching no pair helps!

• How many times do we Repeat?!
•  K/L tested on very small graphs (|N|<=360) and got 

convergence after 2-4 sweeps!
•  For random graphs (of theoretical interest) the probability of 

convergence in one step appears to drop like 2-|N|/30!



03/01/2011! CS267 Lecture 13! 37!

Coordinate-Free: Spectral Bisection 
• Based on theory of Fiedler (1970s), popularized by 

Pothen, Simon, Liou (1990)!
• Motivation, by analogy to a vibrating string!
• Basic definitions!
• Vibrating string, revisited!
•  Implementation via the Lanczos Algorithm!

•  To optimize sparse-matrix-vector multiply, we graph partition!
•  To graph partition, we find an eigenvector of a matrix 

associated with the graph!
•  To find an eigenvector, we do sparse-matrix vector multiply!
•  No free lunch ...!
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Motivation for Spectral Bisection 
•  Vibrating string!
•  Think of G = 1D mesh as masses (nodes) connected by springs 

(edges), i.e. a string that can vibrate!
•  Vibrating string has modes of vibration, or harmonics!
•  Label nodes by whether mode - or + to partition into N- and N+!
•  Same idea for other graphs (eg planar graph ~ trampoline)!
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Basic Definitions 
• Definition: The incidence matrix In(G) of a graph G(N,E) 

is an |N| by |E| matrix, with one row for each node and 
one column for each edge. If edge e=(i,j) then column e 
of In(G) is zero except for the i-th and j-th entries, which 
are +1 and -1, respectively.!

•  Slightly ambiguous definition because multiplying column e of In(G) 
by -1 still satisfies the definition, but this won’t matter...!

• Definition: The Laplacian matrix L(G) of a graph G(N,E) 
is an |N| by |N| symmetric matrix, with one row and 
column for each node. It is defined by!

•  L(G) (i,i) = degree of node i (number of incident edges)!
•  L(G) (i,j) = -1 if i ≠ j and there is an edge (i,j)!
•  L(G) (i,j) = 0 otherwise!



03/01/2011! CS267 Lecture 13! 40!

Example of In(G) and L(G) for Simple Meshes 
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Properties of Incidence and Laplacian matrices 
•  Theorem 1: Given G, In(G) and L(G) have the following properties  

(proof on Demmel’s 1996 CS267 web page)!
•  L(G) is symmetric. (This means the eigenvalues of L(G) are real and its 

eigenvectors are real and orthogonal.)!
•  Let e = [1,…,1]T, i.e. the column vector of all ones. Then L(G)*e=0.!
•  In(G) * (In(G))T = L(G). This is independent of the signs chosen for 

each column of In(G).!
•  Suppose L(G)*v = λ*v, v ≠ 0, so that  v is an eigenvector and λ an 

eigenvalue of L(G). Then!

•  The eigenvalues of L(G) are nonnegative:!
•  0 = λ1 ≤ λ2  ≤ …  ≤ λn!

•  The number of connected components of G is equal to the number of 
λi equal to 0. In particular, λ2 ≠ 0 if and only if G is connected.!

•  Definition: λ2(L(G)) is the algebraic connectivity of G!

λ = || In(G)T * v ||2 / || v ||2                                                    … ||x||2 = Σk xk2  
   =  Σ { (v(i)-v(j))2 for all edges e=(i,j) } / Σi v(i)2 

Hidden slide 
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Properties of Laplacian Matrix 
• Theorem 1: Given G, L(G) has the following properties  

(proof on  1996 CS267 web page)!
•  L(G) is symmetric. !

•  This means the eigenvalues of L(G) are real and its eigenvectors 
are real and orthogonal.!

•  In(G) * (In(G))T = L(G)!
•  The eigenvalues of L(G) are nonnegative:!

•  0 = λ1 ≤ λ2 ≤ … ≤ λn!
•  The number of connected components of G is equal to the 

number of λi equal to 0. !
•  Definition: λ2(L(G)) is the algebraic connectivity of G!

•  The magnitude of λ2 measures connectivity!
•  In particular, λ2 ≠ 0 if and only if G is connected.!
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Spectral Bisection Algorithm 
• Spectral Bisection Algorithm:!

•  Compute eigenvector v2 corresponding to λ2(L(G))!
•  For each node n of G!

•  if v2(n) < 0 put node n in partition N-!
•  else put node n in partition N+!

• Why does this make sense? First reasons...!
•  Theorem 2 (Fiedler, 1975): Let G be connected, and N- and N+ 

defined as above. Then N- is connected. If no v2(n) = 0, then N
+ is also connected. (proof on 1996 CS267 web page)!

•  Recall λ2(L(G)) is the algebraic connectivity of G!
•   Theorem 3 (Fiedler): Let G1(N,E1) be a subgraph of G(N,E), so 

that G1 is “less connected” than G. Then λ2(L(G1))  ≤  λ2(L(G)) , 
i.e. the algebraic connectivity of G1 is less than or equal to the 
algebraic connectivity of G. (proof on 1996 CS267 web page)!



03/01/2011! CS267 Lecture 13! 44!

Spectral Bisection Algorithm 
• Spectral Bisection Algorithm:!

•  Compute eigenvector v2 corresponding to λ2(L(G))!
•  For each node n of G!

•  if v2(n) < 0 put node n in partition N-!
•  else put node n in partition N+!

• Why does this make sense? More reasons...!
•  Theorem 4 (Fiedler, 1975): Let G be connected, and N1 and N2 

be any partition into part of equal size |N|/2. Then the number of 
edges connecting N1 and N2 is at least   .25 * |N| *  λ2(L(G)).        
(proof on 1996 CS267 web page)!
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Motivation for Spectral Bisection (recap) 
•  Vibrating string has modes of vibration, or harmonics!
•  Modes computable as follows!

•  Model string as masses connected by springs (a 1D mesh)!
•  Write down F=ma for coupled system, get matrix A!
•  Eigenvalues and eigenvectors of A are frequencies and shapes 

of modes !!
•  Label nodes by whether mode - or + to get N- and N+!
•  Same idea for other graphs (eg planar graph ~ trampoline)!
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Details for Vibrating String Analogy 
• Force on mass j = k*[x(j-1) - x(j)]  + k*[x(j+1) - x(j)]!
                               = -k*[-x(j-1) + 2*x(j) - x(j+1)]!
• F=ma yields  m*x’’(j) =  -k*[-x(j-1) + 2*x(j) - x(j+1)]    (*)!
• Writing (*) for j=1,2,…,n yields!

                 x(1)            2*x(1) - x(2)                          2   -1                           x(1)                 x(1) 
                 x(2)            -x(1) + 2*x(2) - x(3)              -1    2    -1                   x(2)                 x(2) 
m * d2       …     =-k*     …                               =-k*            …                 *   …      =-k*L*     …  
      dx2     x(j)             -x(j-1) + 2*x(j) - x(j+1)                       -1   2   -1        x(j)                  x(j) 
                 …               …                                                              …           …                     …  
                 x(n)            2*x(n-1) - x(n)                                          -1   2       x(n)                 x(n)  

    (-m/k) x’’ = L*x      
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Details for Vibrating String (continued) 
•  -(m/k) x’’ = L*x, where x = [x1,x2,…,xn ]T!
•  Seek solution of form x(t) = sin(α*t) * x0!

•  L*x0 = (m/k)*α2 * x0 = λ * x0!

•  For each integer i, get   λ = 2*(1-cos(i*π/(n+1)),  x0  =   sin(1*i*π/(n+1))!
                                                                                           sin(2*i*π/(n+1))!
                                                                                                        …!
                                                                                           sin(n*i*π/(n+1))!
•  Thus x0 is a sine curve with frequency proportional to i!
•  Thus α2 = 2*k/m *(1-cos(i*π/(n+1)) or α ~ sqrt(k/m)*π*i/(n+1)!

•  L  =   2  -1                   not quite Laplacian of 1D mesh, !
           -1   2   -1                 but we can fix that ...!
                  ….!
                      -1    2!
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Motivation for Spectral Bisection 
•  Vibrating string has modes of vibration, or harmonics!
•  Modes computable as follows!

•  Model string as masses connected by springs (a 1D mesh)!
•  Write down F=ma for coupled system, get matrix A!
•  Eigenvalues and eigenvectors of A are frequencies and shapes 

of modes !!
•  Label nodes by whether mode - or + to get N- and N+!
•  Same idea for other graphs (eg planar graph ~ trampoline)!



03/01/2011! CS267 Lecture 13! 49!

Eigenvectors of L(1D mesh) 

Eigenvector 1 
  (all ones) 

Eigenvector 2 

Eigenvector 3 
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2nd eigenvector of L(planar mesh) 



02/11/2010!
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4th eigenvector of L(planar mesh) 
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Computing v2 and λ2 of L(G) using Lanczos 
•  Given any n-by-n symmetric matrix A (such as L(G))  Lanczos 

computes a k-by-k “approximation”  T by doing k matrix-vector 
products, k << n!

•  Approximate A’s eigenvalues/vectors using T’s!

Choose an arbitrary starting vector r 
b(0) = ||r|| 
j=0 
repeat 
     j=j+1 
     q(j) = r/b(j-1)               … scale a vector (BLAS1) 
     r = A*q(j)                     … matrix vector multiplication, the most expensive step 
     r = r - b(j-1)*v(j-1)       …  “axpy”, or scalar*vector + vector (BLAS1) 
    a(j) = v(j)T * r               … dot product (BLAS1) 
    r = r - a(j)*v(j)               … “axpy” (BLAS1) 
    b(j) = ||r||                      … compute vector norm (BLAS1) 
until convergence          … details omitted 

T =  a(1)   b(1) 
        b(1)  a(2)    b(2) 
                b(2)    a(3)    b(3) 
                          …        …      …  
                                     b(k-2)   a(k-1)  b(k-1) 
                                                  b(k-1)  a(k) 
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Spectral Bisection: Summary 
•  Laplacian matrix represents graph connectivity!
• Second eigenvector gives a graph bisection!

•  Roughly equal “weights” in two parts!
•  Weak connection in the graph will be separator!

•  Implementation via the Lanczos Algorithm!
•  To optimize sparse-matrix-vector multiply, we graph partition!
•  To graph partition, we find an eigenvector of a matrix 

associated with the graph!
•  To find an eigenvector, we do sparse-matrix vector multiply!

•  Have we made progress?!
•  The first matrix-vector multiplies are slow, but use them to learn 

how to make the rest faster!
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Outline of Graph Partitioning Lectures 

• Review definition of Graph Partitioning problem"
• Overview of heuristics"
• Partitioning with Nodal Coordinates"

•  Ex: In finite element models, node at point in (x,y) or (x,y,z) space"
• Partitioning without Nodal Coordinates"

•  Ex: In model of WWW,  nodes are web pages"
• Multilevel Acceleration"

•  BIG IDEA, appears often in scientific computing"
• Comparison of Methods and Applications"
• Beyond Graph Partitioning: Hypergraphs"
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Introduction to Multilevel Partitioning 
•  If we want to partition G(N,E), but it is too big to do 

efficiently, what can we do?!
•  1) Replace G(N,E) by a coarse approximation Gc(Nc,Ec), and 

partition Gc instead!
•  2) Use partition of Gc to get a rough partitioning of G, and then 

iteratively improve it!
• What if Gc still too big?!

•  Apply same idea recursively!
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Multilevel Partitioning - High Level Algorithm 
       (N+,N- ) = Multilevel_Partition( N, E ) 
             … recursive partitioning routine returns N+ and N- where N = N+ U N- 
             if |N| is small 
(1)               Partition G = (N,E)  directly to get N = N+ U N- 
                   Return (N+, N- ) 
             else 
(2)               Coarsen G to get an approximation Gc = (Nc, Ec) 
(3)               (Nc+ , Nc- ) = Multilevel_Partition( Nc, Ec ) 
(4)               Expand (Nc+ , Nc- ) to a partition  (N+ , N- ) of N 
(5)               Improve the partition ( N+ , N- ) 
                   Return ( N+ , N- ) 
             endif 

(2,3) 

(2,3) 

(2,3) 

(1) 

(4) 

(4) 

(4) 

(5) 

(5) 

(5) 

How do we 
    Coarsen? 
    Expand? 
    Improve? 

“V - cycle:” 
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Multilevel Kernighan-Lin 
• Coarsen graph and expand partition using maximal 

matchings!
•  Improve partition using Kernighan-Lin!
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Maximal Matching 
• Definition: A matching of a graph G(N,E) is a subset Em of 

E such that no two edges in Em share an endpoint!
• Definition: A maximal matching of a graph G(N,E) is a 

matching Em to which no more edges can be added and 
remain a matching!

• A simple greedy algorithm computes a maximal matching:!
let Em be empty 
mark all nodes in N as unmatched 
for i = 1 to |N|      … visit the nodes in any order 
     if i has not been matched 
            mark i as matched 
            if there is an edge e=(i,j)  where j is also unmatched,  
                  add e to Em 
                  mark j as matched 
             endif 
     endif 
endfor 
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Maximal Matching:  Example 
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Example of Coarsening 
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Coarsening using a maximal matching (details) 
1) Construct a maximal matching  Em of G(N,E) 
for all edges e=(j,k) in Em             2) collapse matched nodes into a single one 
     Put node n(e) in Nc 
      W(n(e)) = W(j) + W(k)     … gray statements update node/edge weights 
for all nodes n in N not incident on an edge in Em  3) add unmatched nodes 
     Put n in Nc      … do not change W(n) 
… Now each node r in N is “inside” a unique node n(r) in Nc 
 
… 4) Connect two nodes in Nc if nodes inside them are connected in E 
for all edges e=(j,k) in Em   
     for each other edge e’=(j,r) or (k,r) in E  
           Put edge ee = (n(e),n(r)) in Ec    
             W(ee) = W(e’) 
      
If there are multiple edges connecting two nodes in Nc, collapse them, 
          adding edge weights                  
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Expanding a partition of Gc to a partition of G 
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Multilevel Spectral Bisection 
• Coarsen graph and expand partition using  maximal 

independent sets!
•  Improve partition using Rayleigh Quotient Iteration!
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Maximal Independent Sets 
•  Definition: An independent set of a graph G(N,E) is a subset Ni of N 

such that no two nodes in Ni are connected by an edge!
•  Definition: A maximal independent set of a graph G(N,E) is an 

independent set Ni to which no more nodes can be added and 
remain an independent set!

•  A simple greedy algorithm computes a maximal independent set:!
let Ni be empty 
for k = 1 to |N|      … visit the nodes in any order 
     if  node k is not adjacent to any node already in Ni 
          add k to Ni 
     endif 
endfor 
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Example of Coarsening 

- encloses domain Dk = node of Nc 
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Coarsening using Maximal Independent Sets (details) 
… Build “domains” D(k) around each node k in Ni to get nodes in Nc 
… Add an edge to Ec whenever it would connect two such domains 
Ec = empty set 
for all nodes k in Ni 
     D(k) = ( {k}, empty set )      
     … first set contains nodes in D(k), second set contains edges in D(k) 
unmark all edges in E 
repeat 
     choose an unmarked edge e = (k,j) from E 
     if exactly one of k and j (say k) is in some D(m) 
           mark e 
           add j and e to D(m) 
     else if k and j are in two different D(m)’s (say D(mk) and D(mj)) 
           mark e 
           add edge (mk, mj) to Ec 
     else if both k and j are in the same D(m) 
           mark e 
           add e to D(m) 
     else 
           leave e unmarked 
     endif 
until no unmarked edges 
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Expanding a partition of Gc to a partition of G 
• Need to convert an eigenvector vc of L(Gc) to an 

approximate eigenvector v of L(G)!
• Use interpolation:!

For each node j in N 
     if  j is also a node in Nc, then 
            v(j) = vc(j)    … use same eigenvector component 
     else 
            v(j) = average of vc(k) for all neighbors k of j in Nc 
     end if 
endif 
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Example: 1D mesh of 9 nodes 
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Improve eigenvector: Rayleigh Quotient Iteration 
j = 0 
pick starting vector v(0)   … from expanding vc 
repeat 
       j=j+1 
       r(j) = vT(j-1) * L(G) * v(j-1)    
       …  r(j) = Rayleigh Quotient of v(j-1)  
       …        = good approximate eigenvalue 
       v(j) = (L(G) - r(j)*I)-1 * v(j-1) 
       … expensive to do exactly, so solve approximately 
       … using an iteration called SYMMLQ,  
       … which uses matrix-vector multiply (no surprise) 
       v(j) = v(j) / || v(j) ||     … normalize v(j)  
until v(j) converges 
… Convergence is very fast: cubic 
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Example of convergence for 1D mesh 
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Outline of Graph Partitioning Lectures 

• Review definition of Graph Partitioning problem"
• Overview of heuristics"
• Partitioning with Nodal Coordinates"

•  Ex: In finite element models, node at point in (x,y) or (x,y,z) space"
• Partitioning without Nodal Coordinates"

•  Ex: In model of WWW,  nodes are web pages"
• Multilevel Acceleration"

•  BIG IDEA, appears often in scientific computing"
• Comparison of Methods and Applications"
• Beyond Graph Partitioning: Hypergraphs"
"
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Available Implementations 
• Multilevel Kernighan/Lin"

•  METIS (www.cs.umn.edu/~metis)"
•  ParMETIS - parallel version"

• Multilevel Spectral Bisection"
•  S. Barnard and H. Simon, “A fast multilevel implementation 

of recursive spectral bisection …”, Proc. 6th SIAM Conf. 
On Parallel Processing, 1993"

•  Chaco (www.cs.sandia.gov/CRF/papers_chaco.html)"
• Hybrids possible "

•  Ex: Using Kernighan/Lin to improve a partition from 
spectral bisection"

• Recent package, collection of techniques"
•  Zoltan (www.cs.sandia.gov/Zoltan)"

• See www.cs.sandia.gov/~bahendr/partitioning.html"
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Comparison of methods 
•  Compare only methods that use edges, not nodal coordinates !

•  CS267 webpage and KK95a (see below) have other comparisons!
•  Metrics!

•  Speed of partitioning!
•  Number of edge cuts!
•  Other application dependent metrics!

•  Summary!
•  No one method best!
•  Multi-level Kernighan/Lin fastest by far, comparable to Spectral in the 

number of edge cuts!
•  www-users.cs.umn.edu/~karypis/metis/publications/main.html!
•  see publications KK95a and KK95b!

•  Spectral give much better cuts for some applications !
•  Ex: image segmentation!
•  See “Normalized Cuts and Image Segmentation” by J. Malik, J. Shi!
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Number of edges cut for a 64-way partition 

Graph 
 
144 
4ELT 
ADD32 
AUTO 
BBMAT 
FINAN512 
LHR10 
MAP1 
MEMPLUS 
SHYY161 
TORSO 

   # of  
Nodes 
 
  144649 
    15606 
      4960 
  448695 
    38744 
    74752 
    10672 
  267241 
    17758 
    76480 
  201142 

    # of 
 Edges 
 
1074393 
    45878 
      9462 
3314611 
  993481 
  261120 
  209093 
  334931 
    54196 
  152002 
1479989 
 

Description 
 
3D FE Mesh 
2D FE Mesh 
32 bit adder 
3D FE Mesh 
2D Stiffness M. 
Lin. Prog. 
Chem. Eng. 
Highway Net. 
Memory circuit 
Navier-Stokes 
3D FE Mesh 

# Edges cut 
 for 64-way  
  partition  
        88806 
          2965 
            675 
      194436 
        55753 
        11388 
        58784 
          1388 
        17894 
          4365 
      117997 

Expected 
# cuts for 
2D mesh 
     6427 
     2111 
     1190 
   11320 
     3326 
     4620 
    1746 
    8736 
    2252 
    4674 
    7579 

Expected 
# cuts for 
3D mesh 
  31805 
    7208 
      3357 
   67647 
   13215 
   20481 
     5595 
   47887 
     7856 
   20796 
   39623 

Expected # cuts for 64-way partition of 2D mesh of n nodes  
       n1/2 + 2*(n/2)1/2 + 4*(n/4)1/2 + … + 32*(n/32)1/2 ~ 17 * n1/2 
 
Expected # cuts for 64-way partition of 3D mesh of n nodes =  
       n2/3 + 2*(n/2)2/3 + 4*(n/4)2/3 + … + 32*(n/32)2/3 ~ 11.5 * n2/3 

For Multilevel Kernighan/Lin, as implemented in METIS  (see KK95a) 
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Speed of 256-way partitioning (from KK95a) 

Graph 
 
144 
4ELT 
ADD32 
AUTO 
BBMAT 
FINAN512 
LHR10 
MAP1 
MEMPLUS 
SHYY161 
TORSO 

   # of  
Nodes 
 
  144649 
    15606 
      4960 
  448695 
    38744 
    74752 
    10672 
  267241 
    17758 
    76480 
  201142 

    # of 
 Edges 
 
1074393 
    45878 
      9462 
3314611 
  993481 
  261120 
  209093 
  334931 
    54196 
  152002 
1479989 
 

Description 
 
3D FE Mesh 
2D FE Mesh 
32 bit adder 
3D FE Mesh 
2D Stiffness M. 
Lin. Prog. 
Chem. Eng. 
Highway Net. 
Memory circuit 
Navier-Stokes 
3D FE Mesh 

Multilevel 
 Spectral 
Bisection 
        607.3 
          25.0 
          18.7 
      2214.2 
        474.2 
        311.0 
        142.6 
        850.2 
        117.9 
        130.0 
      1053.4 

Multilevel 
Kernighan/ 
      Lin 
       48.1 
         3.1 
         1.6 
     179.2 
       25.5 
       18.0 
         8.1 
       44.8 
         4.3 
       10.1 
       63.9 

Partitioning time in seconds 

Kernighan/Lin much faster than Spectral Bisection! 



03/01/2011! CS267 Lecture 13!

Outline of Graph Partitioning Lectures 

• Review definition of Graph Partitioning problem"
• Overview of heuristics"
• Partitioning with Nodal Coordinates"

•  Ex: In finite element models, node at point in (x,y) or (x,y,z) space"
• Partitioning without Nodal Coordinates"

•  Ex: In model of WWW,  nodes are web pages"
• Multilevel Acceleration"

•  BIG IDEA, appears often in scientific computing"
• Comparison of Methods and Applications"
• Beyond Graph Partitioning: Hypergraphs"
"



 r1 

 r2 

 r3 

 r4 

c1 

c2 

c3 

c4 

Beyond simple graph partitioning:	


Representing a sparse matrix as a hypergraph	





 r1 

 r2 

 r3 

 r4 

c1 

c2 

c3 

c4 

P1 

P2 

But graph cut is 4!	


	


⇒ Cut size of graph 
partition is not an accurate 
count of communication 
volume	



Source vector  entries 
corresponding to  c2 
and c3 are needed by 
both partitions –  so 
total volume of 
communication is 2	



Using a graph to partition, versus a hypergraph	





 r1 

 r2 

 r3 

 r4 

c1 

c2 

c3 

c4 

P1 

P2 

But graph cut is 3!	


	


	


	


	


⇒ Cut size of graph partition 
may not accurately count 
communication volume	



Source vector  entries 
corresponding to  c2 
and c3 are needed by 
both partitions –  so 
total volume of 
communication is 2	



Using a graph to partition, versus a hypergraph	



1 2

3 4

P1 

P2 



Two Different 2D Mesh Partitioning Strategies	



YY!

Graph:	


Cartesian Partitioning	



Communication Volume per proc (SpMV) = 	


nodes needed by 1 other proc * 1 + nodes 
needed by 2 other procs *2 = 14*1 + 1*2 = 16	


	


Total Communication Volume (SpMV) =	


nprocs * (comm per proc) = 4  * 16 = 64	


	



Communication Volume per proc (SpMV) = 	


Upper left/lower right: ( 10 * 1 ) + ( 1 * 2 ) = 12	


Upper right/lower left: ( 15 * 1) + ( 1 * 2 ) = 17	


	


Total Communication Volume (SpMV) =	


2 * 12 + 2 * 17 = 58	


	



Total SpMV communication volume = 64  

Hypergraph:	


MeshPart Algorithm [Ucar, Catalyurek, 2010]	



Total SpMV communication volume = 58  



Generalization of the MeshPart Algorithm 	



Source: Ucar and Catalyruk, 2010	



In general, for a PxQ partitioning of an MxN mesh,	


	


MeshPart: vol(M,N,P,Q) = n(3PQ – (P+Q) -1) + (P-1)(3Q-5) + (Q-1)(3P-5),    
where n = M/P = N/Q	


	


Cartesian: vol(M,N,P,Q) = 2N(P-1) + 2M(Q-1)	



Suspected to be optimal for certain 
size matrices and proc. grids	



For NxN mesh on PxP processor grid: 
Usual Cartesian partitioning costs ~4NP words moved 
MeshPart costs ~3NP words moved,  25% savings 



Experimental Results:  Hypergraph vs. Graph Partitioning	



We can see the diagonal-like structure of the MeshPart algorithm in the hypergraph 
partitioned meshes, whereas graph partitioning gives us a result closer to Cartesian	



~8% reduction in total communication volume 	


using hypergraph partitioning (PaToH) 	



versus graph partitioning (METIS)	



64x64 Mesh (5-pt stencil), 16 processors	



Hypergraph Partitioning (PaToH)	


Total Comm. Vol = 719	


Max Vol per Proc = 59	



Graph Partitioning  (Metis)	


Total Comm. Vol = 777	


Max Vol per Proc = 69	



	





Further Benefits of Hypergraph Model: Nonsymmetric Matrices 	



•  Graph model of matrix has edge (i,j) if either A(i,j) or A(j,i) nonzero	


•  Same graph for A as |A| + |AT|	


•  Ok for symmetric matrices, what about nonsymmetric?	



•  Try A upper triangular	



Graph Partitioning (Metis)	


Total Communication Volume= 254	



Load imbalance ratio = 6%	



Hypergraph Partitioning (PaToH)	


Total Communication Volume= 181	



Load imbalance ratio = 0.1%	





Summary: Graphs versus Hypergraphs 
•  Pros and cons	



•  When matrix is non-symmetric, the graph partitioning model 
(using A+AT ) loses information, resulting in suboptimal 
partitioning in terms of communication and load balance.	



•  Even when matrix is symmetric,  graph cut size is not an 
accurate measurement of communication volume	



•  Hypergraph partitioning model solves both these problems!
•  However, hypergraph partitioning (PaToH) can be much 

more expensive than graph partitioning (METIS)	


•  Hypergraph partitioners: PaToH, HMETIS, ZOLTAN 
•  For more see Bruce Hendrickson’s web page 

•  www.cs.sandia.gov/~bahendr/partitioning.html 
•  “Load Balancing Fictions, Falsehoods and Fallacies” 
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Extra Slides"



03/01/2011! CS267 Lecture 13! 86!

Beyond Simple Graph Partitioning 
• Undirected graphs model symmetric matrices, not 

unsymmetric ones!
• More general graph models include:!

•  Hypergraph: nodes are computation, edges are communication, 
but connected to a set (>= 2) of nodes!

•  HMETIS, PATOH, ZOLTAN packages!
•  Bipartite model: use bipartite graph for directed graph!
•  Multi-object, Multi-Constraint model: use when single structure 

may involve multiple computations with differing costs!
• For more see Bruce Hendrickson’s web page!

•  www.cs.sandia.gov/~bahendr/partitioning.html!
•  “Load Balancing Myths, Fictions & Legends”!



Graph vs. Hypergraph Partitioning	


Consider a 2-way partition of a 2D mesh:	



The cost of communicating vertex A is 1 – we can send 
the value in one message to the other processor	


	


According to the graph model,  however  the vertex A 
contributes 2 to the total communication volume, since 
2 edges are cut.	


	



The hypergraph model accurately  represents 
the cost of communicating A (one hyperedge 
cut, so communication volume of 1.  	


	



Result: Unlike graph partitioning model, the hypergraph partitioning model gives 
exact communication volume (minimizing cut = minimizing communication) 	



	


Therefore, we expect that hypergraph partitioning approach can do a better job at 

minimizing total communication. Let’s look at a simple example…	


	



Edge cut = 10	


	



Hyperedge cut 
= 7	





Further Benefits of Hypergraph Model: Nonsymmetric Matrices 	



• Graph model of matrix has edge (i,j) if either A(i,j) or A(j,i) nonzero	


•  Same graph for A as |A| + |AT|	


• Ok for symmetric matrices, what about nonsymmetric?	



Illustrative Bad Example: triangular matrix	



 This results in a suboptimal partition in terms of both communication and load balancing. In this case, 	


	



Total Communication Volume = 60 (optimal is ~12 in this case, subject to load balancing)	


Proc1: 76 nonzeros, Proc 2: 60 nonzeros (~26% imbalance ratio)	



Whereas the hypergraph model can capture nonsymmetry, the graph partitioning model deals with 
nonsymmetry by partitioning the graph of A+AT  (which in this case is a dense matrix).	



Given A, graph 
partition A+AT 	



which gives the 
partition for A	





Experimental Results: Illustration of Triangular Example	



Graph Partitioning (Metis)	


Total Communication Volume= 254	



Imbalance ratio = 6%	



Hypergraph Partitioning (PaToH)	


Total Communication Volume= 181	



Imbalance ratio = 0.1%	



Conclusions from this section:	


•  When matrix is non-symmetric, the graph partitioning model (using A+AT ) loses 

information, resulting in suboptimal partitioning in terms of communication and 
load balance.	



•  Even when matrix is symmetric,  graph cut size is not an accurate measurement 
of communication volume	



•  Hypergraph partitioning model solves both these problems	
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Coordinate-Free Partitioning: Summary 
• Several techniques for partitioning without coordinates!

•  Breadth-First Search – simple, but not great partition!
•  Kernighan-Lin – good corrector given reasonable partition!
•  Spectral Method – good partitions, but slow!

• Multilevel methods!
•  Used to speed up problems that are too large/slow!
•  Coarsen, partition, expand, improve!
•  Can be used with K-L and Spectral methods and others!

• Speed/quality!
•  For load balancing of grids, multi-level K-L probably best!
•  For other partitioning problems (vision, clustering, etc.) spectral 

may be better!
•  Good software available!
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Is Graph Partitioning a Solved Problem? 
•  Myths of partitioning due to Bruce Hendrickson!

1.  Edge cut = communication cost!
2.  Simple graphs are sufficient!
3.  Edge cut is the right metric!
4.  Existing tools solve the problem!
5.  Key is finding the right partition!
6.  Graph partitioning is a solved problem!

•  Slides and myths based on Bruce Hendrickson’s:!
   “Load Balancing Myths, Fictions & Legends”!
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Myth 1: Edge Cut = Communication Cost 
• Myth1: The edge-cut deceit!
             edge-cut = communication cost!
• Not quite true:!

•  #vertices on boundary is actual communication volume!
•  Do not communicate same node value twice!

•  Cost of communication depends on # of messages too (α term)!
•  Congestion may also affect communication cost!

• Why is this OK for most applications?!
•  Mesh-based problems match the model: cost is ~ edge cuts!
•  Other problems (data mining, etc.) do not!
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Myth 2: Simple Graphs are Sufficient 
• Graphs often used to encode data dependencies!

•  Do X before doing Y!

• Graph partitioning determines data partitioning!
•  Assumes graph nodes can be evaluated in parallel!
•  Communication on edges can also be done in parallel!
•  Only dependence is between sweeps over the graph!

• More general graph models include:!
•  Hypergraph: nodes are computation, edges are communication, 

but connected to a set (>= 2) of nodes!
•  Bipartite model: use bipartite graph for directed graph!
•  Multi-object, Multi-Constraint model: use when single structure 

may involve multiple computations with differing costs!
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Myth 3: Partition Quality is Paramount 
• When structure are changing dynamically during a 

simulation, need to partition dynamically!
•  Speed may be more important than quality!
•  Partitioner must run fast in parallel!
•  Partition should be incremental!

•  Change minimally relative to prior one!
•  Must not use too much memory !

• Example from Touheed, Selwood, Jimack and Bersins!
•  1 M elements with adaptive refinement on SGI Origin!
•  Timing data for different partitioning algorithms:!

•  Repartition time from 3.0 to 15.2 secs!
•  Migration time : 17.8 to 37.8 secs!
•  Solve time: 2.54 to 3.11 secs!
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Summary 
• Partitioning with nodal coordinates:!

•  Inertial method!
•  Projection onto a sphere!
•  Algorithms are efficient!
•  Rely on graphs having nodes connected (mostly) to “nearest 

neighbors” in space!
• Partitioning without nodal coordinates:!

•  Breadth-First Search – simple, but not great partition!
•  Kernighan-Lin – good corrector given reasonable partition!
•  Spectral Method – good partitions, but slow!

• Today:!
•  Spectral methods revisited!
•  Multilevel methods!
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Another Example 
• Definition: The Laplacian matrix L(G) of a graph G(N,E) 

is an |N| by |N| symmetric matrix, with one row and 
column for each node. It is defined by!

•  L(G) (i,i) = degree of node I (number of incident edges)!
•  L(G) (i,j) = -1 if i != j and there is an edge (i,j)!
•  L(G) (i,j) = 0 otherwise!

2  -1  -1   0   0  
-1  2  -1   0   0 
-1  -1  4  -1  -1 
0   0   -1  2  -1 
0   0   -1  -1  2 

1 

2 3 

4 

5 

G = L(G) = 

Hidden slide 


