
Machine Learning: Think Big and Parallel
Day 1

Inderjit S. Dhillon
Dept of Computer Science

UT Austin

CS395T: Topics in Multicore Programming
Oct 1, 2013

Inderjit S. Dhillon Dept of Computer Science UT Austin Machine Learning: Think Big and Parallel

Outline

Scikit-learn: Machine Learning in Python

Supervised Learning — day1

Regression: Least Squares, Lasso

Classification: kNN, SVM

Unsupervised Learning — day2

Clustering: k-means, Spectral Clustering

Dimensionality Reduction: PCA, Matrix Factorization for Recommender
Systems

Inderjit S. Dhillon Dept of Computer Science UT Austin Machine Learning: Think Big and Parallel

What is Machine Learning?

Inderjit S. Dhillon Dept of Computer Science UT Austin Machine Learning: Think Big and Parallel

Machine Learning Applications

Link prediction

LinkedIn.

gene-gene network

fMRI

Image classification

Spam classification

Inderjit S. Dhillon Dept of Computer Science UT Austin Machine Learning: Think Big and Parallel

Scikit-learn: Machine Learning in Python

Open Source with BSD Licence

http://scikit-learn.org/

https://github.com/scikit-learn/scikit-learn

Built on efficient libraries

Python numerical library (numpy)
Python scientific library (scipy)

Active development

A new release every 3 month
183 contributors on the current release

Inderjit S. Dhillon Dept of Computer Science UT Austin Machine Learning: Think Big and Parallel

http://scikit-learn.org/
https://github.com/scikit-learn/scikit-learn

Scikit-learn: What it includes

Supervised Learning

Regression: Ridge Regression, Lasso, SVR, etc
Classification: kNN, SVM, Naive Bayes, Random Forest, etc

Unsupervised Learning

Clustering: k-means, Spectral Clustering, Mean-Shift, etc
Dimension Reduction: (kernel/sparse) PCA, ICA, NMF, etc

Model Selection

Cross-validation
Grid Search for parameters
Various metrics

Preprocessing Tool

Feature extraction, such as TF-IDF
Feature standardization, such as mean removal and variance scaling
Feature binarization
Categorical feature encoding

Inderjit S. Dhillon Dept of Computer Science UT Austin Machine Learning: Think Big and Parallel

Scikit-learn Cheat Sheet

Inderjit S. Dhillon Dept of Computer Science UT Austin Machine Learning: Think Big and Parallel

Regression

Inderjit S. Dhillon Dept of Computer Science UT Austin Machine Learning: Think Big and Parallel

Regression

Inderjit S. Dhillon Dept of Computer Science UT Austin Machine Learning: Think Big and Parallel

Regression

Types of data (X):

Continuous: Rd

Discrete: {0, 1, . . . , k}
Structured (tree, string, ...)

...

Types of target (y):

Continuous: R

Inderjit S. Dhillon Dept of Computer Science UT Austin Machine Learning: Think Big and Parallel

Regression

Examples:

Income, number of children ⇒ Consumer spending

Processes, memory ⇒ Power consumption

Financial reports ⇒ Risk

Atmospheric conditions ⇒ Precipitation

Inderjit S. Dhillon Dept of Computer Science UT Austin Machine Learning: Think Big and Parallel

Regression

Given examples (xi , yi)i=1,...,N

Predict yt given a new test point xt

Inderjit S. Dhillon Dept of Computer Science UT Austin Machine Learning: Think Big and Parallel

Regression

Goal is to estimate ŷt by a linear function of given data xt :

ŷt = w0 + w1xt,1 + w2xt,2 + · · ·+ wdxt,d

= wTxt

where w is the parameter to be estimated

Inderjit S. Dhillon Dept of Computer Science UT Austin Machine Learning: Think Big and Parallel

Choosing the Regressor

Of the many regression fits that approximate the data
which one should we choose?

Inderjit S. Dhillon Dept of Computer Science UT Austin Machine Learning: Think Big and Parallel

Least Squares

To clarify what we mean by a good choice of w
we define a cost function for how well we are doing on the training data

Jw =
1

2

N∑
i=1

(wTxi − yi)
2

Inderjit S. Dhillon Dept of Computer Science UT Austin Machine Learning: Think Big and Parallel

Normal Equations

Minimize the sum squared error Jw

Jw =
1

2

N∑
i=1

(wTxi − yi)
2

=
1

2
(Xw − y)T (Xw − y)

=
1

2
(wTXTXw − 2yTXw + yTy)

Derivative:
∂

∂w
Jw = XTXw − XTy

Setting the derivative equal to zero gives the normal equations

XTXw = XTy

w = (XTX)−1XTy

Inderjit S. Dhillon Dept of Computer Science UT Austin Machine Learning: Think Big and Parallel

Geometric Interpretation

Inderjit S. Dhillon Dept of Computer Science UT Austin Machine Learning: Think Big and Parallel

Computing w

Computing w = (XTX)−1XTy

If XTX is invertible

(XTX)−1XT coincides with the pseudoinverse X † of X

Solution is unique

If XTX is not invertible

There is no unique solution w

w = X †y chooses the solution with smallest Euclidean norm

Alternative way to deal with non-invertible XTX is to add a small
multiple of the identity matrix (= Ridge regression)

Inderjit S. Dhillon Dept of Computer Science UT Austin Machine Learning: Think Big and Parallel

Closed Form Solution for Linear Regression

w = (XTX)−1XTy

On a machine with 8 cores, where X is a 20000× 5000 matrix

>> % Matlab

>> tic; w=(X’*X)\(X’*y); toc

Elapsed time is 14.274773 seconds.

>> % Octave

>> tic; w=(X’*X)\(X’*y); toc

Elapsed time is 194.925 seconds.

Huge difference, why?

Inderjit S. Dhillon Dept of Computer Science UT Austin Machine Learning: Think Big and Parallel

Closed Form Solution for Linear Regression

Different libraries for matrix computation and linear algebra operations

Default BLAS and LAPACK, used by Octave

Intel Math Kernel Library (Intel MKL), used by Matlab

AMD Core Math Library (ACML)

Automatically Tuned Linear Algebra Software (ATLAS)

GoTo Blas, written by a former longhorn!

Inderjit S. Dhillon Dept of Computer Science UT Austin Machine Learning: Think Big and Parallel

Overfitting

Using too many features can lead to overfitting

Least squares estimates often have low bias and large variance

Inderjit S. Dhillon Dept of Computer Science UT Austin Machine Learning: Think Big and Parallel

Regularization

Ridge Regression:

Objective:

Jw =
1

2
‖Xw − y‖22︸ ︷︷ ︸

loss

+ λ‖w‖22︸ ︷︷ ︸
L2−regularization

Setting the derivative equal to zero gives

(XTX + λI)w = XTy

Lasso:

Objective:

Jw =
1

2
‖Xw − y‖22︸ ︷︷ ︸

loss

+ λ‖w‖1︸ ︷︷ ︸
L1−regularization

No closed form solution for w ⇒ Iterative algorithms needed

Inderjit S. Dhillon Dept of Computer Science UT Austin Machine Learning: Think Big and Parallel

Regularization

Inderjit S. Dhillon Dept of Computer Science UT Austin Machine Learning: Think Big and Parallel

Regularized Risk Minimization

A general frame work for supervised learning

min
w

Empirical loss + Regularization,

where

w: model parameter of the target function (e.g., coefficients of the
hyperplane in linear regression)

Empirical loss: performance of the current w estimated by the training
data (e.g.,

∑
i (yi −wTxi)

2 is the square loss for linear regression)

Regularization: a prior of the structure of the model. A common way
to avoid overfitting (e.g., ‖w‖22 and ‖w‖1)

Inderjit S. Dhillon Dept of Computer Science UT Austin Machine Learning: Think Big and Parallel

When it comes to large data

What we learned so far:

Closed form solution:

O(nd2 + d3) time and O(d2) space for linear regression
Not scalable for large d

Alternative methods:

Stochastic Gradient Method:

One instance at a time
Obtain a model with reasonable performance for a few iterations
Online-fashion makes it also suitable for large-scale problems

Coordinate Descent:

One variable at a time
Obtain a model with reasonable performance for a few iterations
Successfully applied in large-scale applications

Inderjit S. Dhillon Dept of Computer Science UT Austin Machine Learning: Think Big and Parallel

Stochastic Gradient

Input: X ∈ RN×d , y ∈ RN , learning rate η, initial w(0)

Output: Solution w
1: t = 0
2: while not converged do
3: Choose a random training example xi
4: Compute gradient for xi : ∇Jw(xi)
5: Update w: w(t+1) ← w(t) − η∇Jw(xi)
6: t ← t + 1
7: end while

Inderjit S. Dhillon Dept of Computer Science UT Austin Machine Learning: Think Big and Parallel

Coordinate Descent for Lasso

Input: X ∈ RN×d , y ∈ RN , λ
Output: Solution w
1: while not converged do
2: for j = 1 to d do
3: Compute partial residuals:

rij = yi −
∑
k 6=j

xikwk

4: Compute least squares coefficient of residuals on jth feature:

w∗j =
1∑N

i=1 x
2
ij

N∑
i=1

xij rij

5: Update wj by soft-thresholding:

wj ← sign(w∗j)(|w∗j | − λ)+

6: end for
7: end while

Inderjit S. Dhillon Dept of Computer Science UT Austin Machine Learning: Think Big and Parallel

Regression Solvers in Scikit-learn

Exact Solver for ordinary least square and Ridge Regression using
LAPACK and BLAS

Stochastic Gradient solvers for Ridge and Lasso

Coordinate Descent solvers for Lasso and SVR

Inderjit S. Dhillon Dept of Computer Science UT Austin Machine Learning: Think Big and Parallel

Classification

Inderjit S. Dhillon Dept of Computer Science UT Austin Machine Learning: Think Big and Parallel

Scikit-learn: Classification

Inderjit S. Dhillon Dept of Computer Science UT Austin Machine Learning: Think Big and Parallel

Classification

Types of data (X):

Continuous: Rd

Discrete: {0, 1, . . . , k}
Structured (tree, string, ...)

...

Types of target (y):

Binary: {0, 1}
Multi-class: {1, . . . , k}
Structured: tree, etc

Inderjit S. Dhillon Dept of Computer Science UT Austin Machine Learning: Think Big and Parallel

Classification

Examples:

Patients with and without disease ⇒ Cancer or no-cancer

Past movies you have watched ⇒ Like or don’t like

Black-and-white pixel values ⇒ Which digit is it?

Past queries ⇒ Whether the ad was clicked or not

Inderjit S. Dhillon Dept of Computer Science UT Austin Machine Learning: Think Big and Parallel

Classification:

k-Nearest Neighbor

Inderjit S. Dhillon Dept of Computer Science UT Austin Machine Learning: Think Big and Parallel

k-Nearest Neighbor

Majority vote within the k-nearest neighbors

Set of training examples: (xi , yi)i=1,...,N

Define distance metric between two
points u and v

e.g. d(u, v) = ‖u− v‖2

Classify new test point xt by looking at
labels of k closest examples, Nk(xt), in
the training set

yt =
1

k

∑
xi∈Nk (xt)

yi

Inderjit S. Dhillon Dept of Computer Science UT Austin Machine Learning: Think Big and Parallel

k-Nearest Neighbor

Choosing k :

If k is too small, sensitive to noise points

If k is too large, neighborhood may include points from other class

Use “validation data”: pick k with highest performance on validation set

Inderjit S. Dhillon Dept of Computer Science UT Austin Machine Learning: Think Big and Parallel

k-Nearest Neighbor

Pros:

Can express complex boundary — non-parametric

Very fast training: need efficient data structure to look for closest point
quickly (e.g. kd-trees, locality sensitive hashing)

Simple, but still very good in practice

Somewhat interpretable by looking at closest point

Cons:

Large memory requirement for prediction

Not the best accuracy amongst classifiers

Inderjit S. Dhillon Dept of Computer Science UT Austin Machine Learning: Think Big and Parallel

Classification:

Support Vector Machine

Inderjit S. Dhillon Dept of Computer Science UT Austin Machine Learning: Think Big and Parallel

Linearly Separable Data

Inderjit S. Dhillon Dept of Computer Science UT Austin Machine Learning: Think Big and Parallel

Nonlinearly Separable Data

Inderjit S. Dhillon Dept of Computer Science UT Austin Machine Learning: Think Big and Parallel

Which Separating Hyperplane to Use?

Inderjit S. Dhillon Dept of Computer Science UT Austin Machine Learning: Think Big and Parallel

Maximizing the Margin

Select the separating hyperplane that maximizes the margin

Inderjit S. Dhillon Dept of Computer Science UT Austin Machine Learning: Think Big and Parallel

Support Vectors

Inderjit S. Dhillon Dept of Computer Science UT Austin Machine Learning: Think Big and Parallel

Setting Up the Optimization Problem

The maximum margin can be characterized as a solution to an optimization
problem:

max
2

‖w‖
s.t. wTxi + b ≥ 1, ∀xi of class1

wTxi + b ≤ −1, ∀xi of class2

or equivalently

min
1

2
‖w‖2

s.t. yi (w
Txi + b) ≥ 1, ∀xi

Inderjit S. Dhillon Dept of Computer Science UT Austin Machine Learning: Think Big and Parallel

Linear, Hard-Margin SVM Formulation

Find w and b that solves

min
1

2
‖w‖2

s.t. yi (w
Txi + b) ≥ 1, ∀xi

Problem is convex, so there is a unique global minimum value (when
feasible)

There is also a unique minimizer, i.e. w and b that provides the
minimum

Quadratic Programming

Inderjit S. Dhillon Dept of Computer Science UT Austin Machine Learning: Think Big and Parallel

Nonlinearly Separable Data

Introduce slack variables ξi

Allow some instances to fall within
the margin, but penalize them

min
1

2
‖w‖2 + C

∑
i

ξi

s.t. yi (w
Txi + b) ≥ 1− ξi , ∀xi

ξi ≥ 0

C trades-off margin width and misclassifications

Inderjit S. Dhillon Dept of Computer Science UT Austin Machine Learning: Think Big and Parallel

Linear, Soft-Margin SVM Formulation

Find w and b that solves

min
1

2
‖w‖2 + C

∑
i

ξi

s.t. yi (w
Txi + b) ≥ 1− ξi , ∀xi

ξi ≥ 0

Algorithm tries to maintain ξi to zero while maximizing margin

Notice: algorithm does not minimize the number of misclassifications
(NP-complete problem) but the sum of distances from the margin
hyperplanes

As C → 0, we get the hard-margin solution

Inderjit S. Dhillon Dept of Computer Science UT Austin Machine Learning: Think Big and Parallel

Robustness of Soft vs. Hard Margin SVMs

Inderjit S. Dhillon Dept of Computer Science UT Austin Machine Learning: Think Big and Parallel

Regularized Risk Minimization

Soft margin SVM can be written as regularized risk minimization form:

min
w

Empirical loss + Regularization

Hinge loss:
∑

i max(0, 1− yiwTxi)

L2 regularization: ‖w‖22
Other loss functions for classification:

Ideal loss:
∑

i I [yiw
Txi < 0]

Squared hinge loss:
∑

i max(0, 1− yiwTxi)2

Logistic loss:
∑

i log
(
1 + exp

(
−yiwTxi

))

Inderjit S. Dhillon Dept of Computer Science UT Austin Machine Learning: Think Big and Parallel

Kernel Example

Φ(xi)
TΦ(xj) =

[
x2i1 x2i2

√
2xi1xi2

] [
x2j1 x2j2

√
2xj1xj2

]T
= x2i1x

2
j1 + x2i2x

2
j2 + 2xi1xi2xj1xj2

= (xi1xj1 + xi2xj2)2

= (xTi xj)
2

Inderjit S. Dhillon Dept of Computer Science UT Austin Machine Learning: Think Big and Parallel

The Primal of the SVM Formulation

Original (Primal) SVM formulation:

min
1

2
‖w‖2 + C

∑
i

ξi

s.t. yi (w
TΦ(xi) + b) ≥ 1− ξi , ∀xi

ξi ≥ 0

Inderjit S. Dhillon Dept of Computer Science UT Austin Machine Learning: Think Big and Parallel

The Dual of the SVM Formulation

Dual SVM formulation:

min
1

2

∑
i ,j

αiαjyiyjΦ(xi)
TΦ(xj)−

∑
i

αi

s.t. 0 ≤ αi ≤ C , ∀xi∑
i

αiyi = 0

NOTE: Data only appear as Φ(xi)
TΦ(xj)

Inderjit S. Dhillon Dept of Computer Science UT Austin Machine Learning: Think Big and Parallel

The Kernel Trick

Φ(xi)
TΦ(xj) means, map data into new space, then take the inner

product of the new vectors

We can find a function such that: K (xi , xj) = Φ(xi)
TΦ(xj), i.e., the

image of the inner product of the data is the inner product of the
images of the data

Then, we do not need to explicitly map the data into the
high-dimensional space to solve the optimization problem

Only inner products explicitly needed for training and evaluation

Inderjit S. Dhillon Dept of Computer Science UT Austin Machine Learning: Think Big and Parallel

Beyond Binary Classification

Many applications have more than two classes.

Character recognition (e.g., digits, letters)

Face recognition

Approaches:

Extend binary classifiers to handle multiple classes

One-versus-rest (OVR)
One-versus-One (OVO)

A new model considers multiple classes together (e.g., Crammer &
Singer 2001)

Multilabel Classification Problem

An instance might belong to more than one class

E.g., Automatic wikipage categorization/ Image tag generation

Inderjit S. Dhillon Dept of Computer Science UT Austin Machine Learning: Think Big and Parallel

Multi-class Classification: One-versus-Rest

Inderjit S. Dhillon Dept of Computer Science UT Austin Machine Learning: Think Big and Parallel

Multi-class Classification: One-versus-One

Inderjit S. Dhillon Dept of Computer Science UT Austin Machine Learning: Think Big and Parallel

Classification Solvers in Scikit-learn

Stochastic Gradient solvers for SVM/logistic regression with both
L1/L2 regularization

Coordinate Descent solvers for SVM/logistic regression with both
L1/L2 regularization (LIBLINEAR/LIBSVM are used for SVM)

Nearest Neighbors, Naive Bayes, Decision Trees, etc

All classifiers support multiple classes

Inderjit S. Dhillon Dept of Computer Science UT Austin Machine Learning: Think Big and Parallel

Think Parallel

Inderjit S. Dhillon Dept of Computer Science UT Austin Machine Learning: Think Big and Parallel

Parallelization for Machine Learning

Designing parallel algorithms for existing models

Not an easy task

Usually model or problem specific

Active research topic with many problems to explore

Some “easier” machine learning tasks which can be done in parallel:

Prediction

Multi-class classification (One-versus-rest, One-versus-one)

Model Selection

Inderjit S. Dhillon Dept of Computer Science UT Austin Machine Learning: Think Big and Parallel

Model Selection

Most machine learning models

One or more parameters

E.g., λ in Ridge Regression and SVM

E.g., k in k-Nearest Neighbor

Parameter selection is crucial to achieve good performance in practice

How to evaluate the performance of a given set of parameters?

Training error – risk to overfit

Holdout validation

Cross-validation

Inderjit S. Dhillon Dept of Computer Science UT Austin Machine Learning: Think Big and Parallel

Holdout validation

Inderjit S. Dhillon Dept of Computer Science UT Austin Machine Learning: Think Big and Parallel

5-fold Cross-validation

Inderjit S. Dhillon Dept of Computer Science UT Austin Machine Learning: Think Big and Parallel

