Inderjit S. Dhillon
Dept of Computer Science
UT Austin

CS395T: Topics in Multicore Programming
Oct 3, 2013

@ Scikit-learn: Machine Learning in Python

@ Supervised Learning — dayl

o Regression: Least Squares, Lasso

e Classification: kNN, SVM

@ Unsupervised Learning — day2

o Clustering: k-means, Spectral Clustering

o Dimensionality Reduction: PCA, Matrix Factorization for Recommender
Systems

Clustering

\/vES
NOT do you have -
BURKING labeled
.

number of
categories
known

YES

clustering T

NO

|
)

Clustering:

k-means Clustering

Goal is to group “similar” instances together

e Given data points x; e R?, i =1,2,..., N

@ But no labels — unsupervised learning
@ Useful for exploratory data analysis

Goal is to group “similar” instances together

e Given data points x; e R?, i =1,2,..., N
@ But no labels — unsupervised learning

@ Useful for exploratory data analysis

Need a measure of similarity (or distance) between two points x and y

Popular distance metrics:
o Squared Euclidean distance d(x,y) = ||x — y||3
o Cosine similarity d(x,y) = (x"y)/|x||[ly|
e Manhattan distance d(x,y) = [|x — y||1

Clustering results are crucially dependent on the distance metric

Find k clusters that minimizes the objective:

k
J=303 x - mil

i=1 xeC;

@ C;: the set of points in cluster /
@ m;: the mean(center) of cluster i

@ Objective is non-convex and
problem is NP-hard in general

Note: for k =1, J =[x — m|3

1
»

1
T
= solution is m* = N E X Cluster Centers

Input: data points x € RY, number of clusters k

Output: cluster assignment C; of data points, i =1,2,...,k
1: Randomly partition the data into k clusters
2: while not converged do
3: Compute mean of each cluster i

4: For each x, find its new cluster index:

m(x) = arg min |x —m;[3

5: Update clusters:
Ci = {x|n(x) = i}

6: end while

[m]

*
o e o 0
o o * ok @
() o ® () 0@
o © o ©
®e L)
*
oo o o0 o
° °
1. Initial cluster assignment 2. Update cluster means
o0 °o o
ekt @ e* @
° 0@ ° o ®
e © o ®
LIy oo
3k
o © ° [] ° ; ° []
°)
3. Assign to nearest cluster 4. Update cluster means

=

Let the objective at t-th iteration be J(t) = 37K > rec lIx = mgt)H2

k
JO = 373 k- m?)?

’lzlxecgt)
k
> 2 Solx-mE = 3 > x-m{P?
=1 xec® =1 xectt)
k
N
i= lxec(t+1)

@ Each step decreases the objective — guaranteed to converge

@ But not necessarily to the global minimum

Input: data points x € RY, number of clusters k

Output: cluster assignment C; of data points, i =1,2,...,k
1: Initialize means m; and n; =0, i=1,2,... k
2: while not converged do
3: Pick a data point x and determine cluster 7(x)

n(x) = arg min_ |x —m;3

4: Update mean m_y)

Nrx) = Nr(x) T1 and m oy =m)+ (x —my(y)

N7 (x)

5. end while

Bregman divergences:

(
do(x,y) = ®(x) — B(y) — (x —y, VO(y)), *
. . . . o(x)
where @ is strictly convex & differentiable
i dyxy)

Examples of do(x,y): . 40) r‘fy) $0)

@ Squared Euclidean distance: ||x — y||3

@ Kl-divergence: 3, x; log(3})

i y X z

@ ltakura-Saito distance: Y, <% —log(3}) — 1)

For Bregman divergences, the arithmetic mean is the best predictor:

N N
1
N E X; = arg min g do(xi,)
(o}
i=1 i=1

Clustering:
Spectral Clustering

Given:

@ Number of clusters k

e Graph G = (V,¢)
o Set of nodes: V ={1,---,n}
o Set of edges: £ = {e;j|i,j € V} — similarity between nodes
e Weighted adjacency matrix W € R"*"

W — ejj, if there is an edge between nodes / and j
Y 0, otherwise

W is symmetric if G is an undirected graph
o Degree matrix: a diagonal matrix D where D;; = Z}’Zl W

Goal:

e Partition V into k disjoint clusters: Vi,
@ Within-cluster: large weights

ooy Vi
@ Between-cluster: small weights

An ideal but trivial case: G has exactly k connected components

@ Small cut between clusters

1
cut(A, B) = - > oWy
i€cAjeB

@ Balance of cluster sizes |V|
o Objective:

RatioCut(V1, ..., Vk) =

=
@ Goal: minimize RatioCut(Vy,

.)Vk)

cut(Vi, V\ Vi)
Vil

[y

Laplacian: L=D — W
@ L: symmetric and positive semi-definite
@ Eigenvalues: 0 < A\ < A <o < A,
@ # of connected components in G = # of 0 eigenvalues of L
o For all f € R”,

1 n
frif=2 > wlhi—f)?
ij=1

Most importantly,

RatioCut(A1, . .., Ac) = trace(F T LF)

1/ /il ifi .
for a special F = [f1,...,fi], where Fj; = { /0 Vil, It;e VJ
) otherwise

In general, minimizing RatioCut is NP-hard!
However, based on

RatioCut(Vy, ..., Vi) = trace(F T LF),
we have the following relaxation:
@ Solve

F* =arg min trace(FTLF)
FcRnxk
which are exactly the first k eigenvectors of L
@ Recover Vy,
(e.g. k-means)

., Vi from F* by distance-based clustering algorithms
All possible cuts

All possible F’s

Clustering data points x; € R4, i=1,..., N
KMeans SpectralClustering

@ First construct kernel matrix P o
. 337w, It
e.g. Gaussian kernel: s

Wy = K(x;, x;) = e Ixxl%/20 % .a-q.;' 3
NP R Y

@ k-means algorithm can only find linear

decision boundaries f—ﬂ' ‘f.ﬁa_
. . . @ .
@ Spectral clustering allows us to find f ¢ Xi i ; ¢ ‘3 Fy
. < % < %
non-convex boundaries LI ¥k 4 ¥

Normalized Laplacian:
o L=1,—D7Y2WD"1/2
o NormalizedCut(Vy,...,Vx) = Zf-;l % where
vol(V;) = Zjev,- Dj;
Signed Laplacian:
o L=D— W, where D;; = > Wil
@ Handle “signed” similarity graphs with both positive and negative edge

weights

Dimensionality Reduction

NOT

WORKING
oT
WORKING
YES

dimensionality
reduction

£ DA

Dimensionality Reduction:

Principal Component Analysis

N observations: {x; ¢ RP:i=1...

Goal:

7N}

@ Project data onto a space with dimensional M < D
@ Maximize the variance of the projected data

Example:

T2

Xn

/'ul

x

Empirical mean and variance of {x,}:
N
_ 1
-2
-N Z = X)(xn)

w: the direction of the space
o ||wl|2 =1 as the length is not important.
o Proju(x,) =w'x,, ¥Yn=1,...,N
o Proj,(x)=w'x

@ The variance of {Projyx,}:

1Y 2
N Z <wa,, — WT)_() =w'Sw.
n=1

Goal: maximize the variance of the projected data {Proju(x,)}:

arg max wlTSwl
W]_:||W1||:1

Lagrangian L(wy, A1) = wy' Swy + A1 (1 — wy wy)

VL(wi, A1) = 0 implies that Swy" = \jwy.

wy is the eigenvector of S corresponding the largest eigenvalue AJ, also
called the 1-st principal component.

@ In general, the k-th principal component w; is the eigenvector of S
corresponding to the k-th largest eigenvalue \;.

Dimension reduction:
o W =[wy,...,wj]: formed by M principal components.

o Projyy(x) = WTx: the projected vector in M dimensional space.

A set of digit images

The mean vector X and the first 4 principal components:

Mean A =34-10° Ao =2.8-10° A3 =2.4-10° Ay =1.6-10°

E ,—l-]

n | | = P | | =2
2 D DD

-

Various M:

Original M=1 M =10 M =50 M =250

Eigenvalue Spectrum:

x 10

0 200 400 600 i

Dimensionality Reduction:

Matrix Factorization

Matrix Factorization
@ A motivating example: recommender systems
@ Problem Formulation
o Latent Feature Space
o Existing Methods

u]

o)
I

i
it

Rating ltems
Matrix
1 5 3 5 2
2 3 5 2 5
wn
o} 3P| s 3
3 "
>}
2 5 3 4 2
5 5 1
5 1 5
1 1 2 4

-0.07 | -0.11 | -0.53 | -0.46 | -0.06 | -0.05 | -0.53 | -0.07 | -0.35 | -0.19 | -0.14

H T 013 | -0.42 | 045 | 017 | -0.25 | -0.17 | -0.18 | 0.27 | -0.59 | 0.05 | 0.14
-0.21 | -0.43 | -0.23 | 0.16 | 0.08 | 017 | 057 | -0.39 | -0.37 | -0.08 | -0.15
w

872 | 003 | -1.03 1 5 3 5 2

756 | -0.79 | 0.62 2 3 5 2 5

407 | -3.95 | 2.55 3 5 3

352 | 373 | 332 2 5 3 4 2

778 | 234 | 233 5 5 1

244 | 529 | 3.92 5 1 5

178 | 1.90 | -1.68 1 1 2 4

-0.07 | -0.11 | -0.53 | -0.46 | -0.06 -0.53 | -0.07 | -0.35 | -0.19 | -0.14
H T 013 | -0.42 | 045 | 017 | -0.25 0.18 | 0.27 | -0.59 | 0.05 | 0.14
0.21 | -0.43 | -0.23 | 0.16 | 0.08 057 | -0.39 | -0.37 | -0.08 | -0.15
w
872 | 003 | -1.03 1 5 3 5 2
756 | -0.79 | 0.62 2 3 5 2 5
3 5 3
352 | 373 | 3.32 2 5 4 2
778 | 234 | 233 5 5 1
244 | 529 | 3.92 5 1 5
178 | 1.90 | -1.68 1 1 2 4

min . g (Aj — W,'Thj)2 + A (|| W||%—' + ||H||%—'))
WeRMxk &
HeRnXk (’L/)EQ

e Q= {(i,j)| Ajj is observed}

@ Regularized terms to avoid over-fitting

Matrix factorization maps users/items to latent feature space Rk
o the ith user = ™" row of W, w;T,
o the j™ item = j* row of H, h.

th

° w,-Thj: measures the interaction between it user and j item.

_
Roman:ce > Action
The ar it
_

A V_
Horror

Kai-Yang

.

Donghyuk
Romance —Actlon
sisi

Cho-Jui
—'
‘ 'd
Horror
- =

Nonnegative Matrix Factorization

min [|A— WHT [z + A[WI[E + A H][7

@ Each entry is positive
@ A is either fully or partially observed

@ Goal: find the nonnegative latent factors

Existing Methods

Fix either H or W and optimize the other:

LS sub-problem: min Ai — w; b))% + \|w;l|?
ub-p WielejeZQ_(ij i _/) (| wil

()

wy A1 A Az

@ it has closed form solution.
@ An iteration: update W /H once
o O(|QIK? + (m+ n)k3) w) Ao Axn Ax

wy Asz1 Az Asz

SGM update: pick (i,j) € Q < o e >
] R,:,' — A,:,' — WI-Thj

-
wy A1 Az Az

o w; « w; —n(Aw; — Rjjh;), T | Ao A A
w.

° hj- — hj — n()\hj _ RijWi)- 2 21 A22 A3
wy Asz1 Aszx Asz

An iteration : |Q] updates
e Time per iteration: O(|Q2|k),
better than O(|Q|k?) for ALS

@ Convergence is sensitive to the learning rate 7.

Update a variable at a time:

> jea,(Aij — w; by + wichje)h;
A Yica; %
@ Subproblem is just a single-variate quadratic problem
o Qi ={j:(i,j) e Q}
e Can be done in O(|€])
Update Sequence:

Wit <—

@ Item/user-wise update:

e pick a user i or an item j

e update the i-th row of W or the j-th column of H
o Feature-wise update:

o pick a feature index t € {1,...,k}
e update t-column of W and H alternatively

Thoughts on Parallelization

@ Regression:

e Linear, Ridge, Lasso, Elastic Net, Bayesian Regression, Support Vector
Regression, ...

o Classification:
o kNN, SVM, Perceptron, Logistic Regression, Naive Bayes, Decision
Trees, Random Forest, AdaBoost, ...
o Clustering:
o k-means, Spectral Clustering, Affinity Propagation, Mean-Shift,
DBSCAN, Hierarchical Clustering, ...
@ Dimensionality Reduction:
o (kernel/sparse) PCA, MF, NMF, Truncated SVD (LSA), Dictionary
Learning, Factor Analysis, Independent Component Analysis, ...

Goal: A fully parallelized version of Scikit-learn
@ Regression:
o parallel solvers for Lasso/Ridge
o Classification:
o parallel solvers for SVM, Logistic Regression
o Clustering:
e parallel k-means
@ Dimensionality Reduction:
o parallel MF/NMF for recommender system

Example: Parallel Matrix Factorization
for Recommender Systems

[T
— A
< <
N N
— [s2]
< <
£ & & g
B
3

o 8

< <

N &

< <

£ & & 2

Feature-wise Update: CCD++
Rank-one decomposition:

k
WHT:[...Wt...][...i,t...]T:Zwt[_-,tT

CCD++: picks a latent feature t and updates (w;, h;)

2

: - 2 2

ueRM veRr > (Ru U:VJ> + A(l[ull® + [v]%)-
(i))eQ

Ry = Aj — w] by
Ry = Ry + Wihy, V(i.j) € Q

(u*, v*) is a rank-one approximation of R

Apply the CCD iteration T times to obtain (u*, v*)

CCD: item/user-wise update

When T:2

When T:2

When T:2

When T:2

When T:2

When T:2

When T:2

When T:2

When T:2

When T:2

When T:2

When T:2

When T =2

o Cycle through k feature
dimensions

e O T+1) faster than CCD

1.00

netﬂlx with k = 40

0.99
0.98

&

B0.97

=

/2 0.96

2095
0.94

0.93

0.92
0

mrrAATEAE
ome

_ CCD++T1
==+ CCD++T5
CCD++F
+ CCD

50 100 150 200 250
Time (s)

300 350 400

W, H, and R fit in the memory of a single computer
@ Multi-core systems are an appropriate framework.
@ All cores share the same memory space.

@ Latest variables are always available to access.

W, H or R exceeds memory capacity of one computer
@ Can still run on one computer, but leads to disk swap.
o Distributed systems are appropriate.

@ Matrices are stored in memory of the distributed system = only local
data can be accessed fast.

@ Require communication to access latest variables.

e Key: to parallelize CCD to obtain (u*, v¥*).

@ Fact: each u; can be updated independently.

Partition v and v into p sub-vectors. e.a@

ou={u,....u",.. . uP}
ov={vi . .. v, ... vP} (Vl v v3>
Run in parallel: the rth core C,:
@ computes (u*)r and (V*)r | Ri1 Ri2 Rz
o updates w/ and h! g Ro Ro2 Ros
| Rs1 R Ra3

See the paper Yu et al, 2013 for more detai

W, H, R are distributed over the memory of different computers.

R= © © ©

Ri1 R Ris Ri2 Ri3
Ro1 Ro1 Roo Rz Ra3
Rs1 R32 R31 R32 Rss

Distributed update: computer C,:
@ obtains (u", v") using CCD:

computes u” and broadcasts it

computes v" and broadcasts it

o updates (w/, h) « (u",v")

Ri1 Ri2 Ri3
Ro1 Raz Ro3
R31 Rsz Rs3

[1] R. Gemulla, P. J. Haas, E. Nijkamp, and Y. Sismanis Large-Scale Matrix Factorization
with Distributed Stochastic Gradient Descent. KDD, 2011.

[2] F. Niu, B. Recht, C. Re, and S. J. Wright Hogwild: A Lock-Free Approach to
Parallelizing Stochastic Gradient Descent. NIPS, 2011.

[3] Y. Zhuang, W.-S. Chin, Y.-C. Juan, and C.-J. Lin A Fast Parallel SGD for Matrix
Factorization in Shared Memory Systems. RecSys, 2013.

[4] H.-F. Yu, C.-J. Hsieh, S. Si, and I. Dhillon Parallel Matrix Factorization for
Recommender Systems. KAIS, 2013.

