Machine Learning: Think Big and Parallel Day 2

Inderjit S. Dhillon
Dept of Computer Science
UT Austin

CS395T: Topics in Multicore Programming Oct 3, 2013

Outline

- Scikit-learn: Machine Learning in Python
- Supervised Learning day1
 - Regression: Least Squares, Lasso
 - Classification: kNN, SVM
- Unsupervised Learning day2
 - Clustering: k-means, Spectral Clustering
 - Dimensionality Reduction: PCA, Matrix Factorization for Recommender Systems

Clustering: k-means Clustering

Goal is to group "similar" instances together

- ullet Given data points $oldsymbol{x}_i \in \mathbb{R}^d$, $i=1,2,\ldots,N$
- But no labels unsupervised learning
- Useful for exploratory data analysis

Goal is to group "similar" instances together

- Given data points $\mathbf{x}_i \in \mathbb{R}^d$, $i=1,2,\ldots,N$
- But no labels unsupervised learning
- Useful for exploratory data analysis

Need a measure of similarity (or distance) between two points x and y

Popular distance metrics:

- Squared Euclidean distance $d(\mathbf{x},\mathbf{y}) = \|\mathbf{x} \mathbf{y}\|_2^2$
- Cosine similarity $d(\mathbf{x}, \mathbf{y}) = (\mathbf{x}^T \mathbf{y}) / \|\mathbf{x}\| \|\mathbf{y}\|$
- Manhattan distance $d(x, y) = ||x y||_1$

Clustering results are crucially dependent on the distance metric

k-means Clustering

Find *k* clusters that minimizes the objective:

$$J = \sum_{i=1}^k \sum_{\mathbf{x} \in \mathcal{C}_i} \|\mathbf{x} - \mathbf{m}_i\|_2^2$$

- C_i : the set of points in cluster i
- m_i: the mean(center) of cluster i
- Objective is non-convex and problem is NP-hard in general

Note: for
$$k = 1$$
, $J = \sum \|\mathbf{x} - \mathbf{m}\|_{2}^{2}$

$$\Rightarrow$$
 solution is $\mathbf{m}^* = \frac{1}{N} \sum \mathbf{x}$

k-means Algorithm (Batch)

Input: data points $\mathbf{x} \in \mathbb{R}^d$, number of clusters k

Output: cluster assignment C_i of data points, i = 1, 2, ..., k

- 1: Randomly partition the data into k clusters
- 2: while not converged do
- 3: Compute mean of each cluster i

$$\mathbf{m}_i = \frac{1}{n_i} \sum_{\mathbf{x} \in \mathcal{C}_i} \mathbf{x}$$

4: For each **x**, find its new cluster index:

$$\pi(\mathbf{x}) = \arg\min_{1 \le i \le k} \|\mathbf{x} - \mathbf{m}_i\|_2^2$$

5: Update clusters:

$$C_i = \{ \boldsymbol{x} | \pi(\boldsymbol{x}) = i \}$$

6: end while

k-means Clustering

1. Initial cluster assignment 2. Update cluster means

3. Assign to nearest cluster 4. Update cluster means

Convergence of k-means

Let the objective at t-th iteration be $J^{(t)} = \sum_{i=1}^k \sum_{m{x} \in \mathcal{C}_i^{(t)}} \| m{x} - \mathbf{m}_i^{(t)} \|^2$

$$J^{(t)} = \sum_{i=1}^{k} \sum_{\mathbf{x} \in \mathcal{C}_{i}^{(t)}} \|\mathbf{x} - \mathbf{m}_{i}^{(t)}\|^{2}$$

$$\geq \sum_{i=1}^{k} \sum_{\mathbf{x} \in \mathcal{C}_{i}^{(t)}} \|\mathbf{x} - \mathbf{m}_{\pi(\mathbf{x})}^{(t)}\|^{2} = \sum_{i=1}^{k} \sum_{\mathbf{x} \in \mathcal{C}_{i}^{(t+1)}} \|\mathbf{x} - \mathbf{m}_{i}^{(t)}\|^{2}$$

$$\geq \sum_{i=1}^{k} \sum_{\mathbf{x} \in \mathcal{C}_{i}^{(t+1)}} \|\mathbf{x} - \mathbf{m}_{i}^{(t+1)}\|^{2} = J^{(t+1)}$$

- Each step decreases the objective guaranteed to converge
- But not necessarily to the global minimum

k-means Algorithm (Online)

Input: data points $\mathbf{x} \in \mathbb{R}^d$, number of clusters k

- **Output:** cluster assignment C_i of data points, i = 1, 2, ..., k1: Initialize means \mathbf{m}_i and $n_i = 0, i = 1, 2, ..., k$
 - 2: while not converged do
 - 3: Pick a data point \mathbf{x} and determine cluster $\pi(\mathbf{x})$

$$\pi(\mathbf{x}) = \arg\min_{1 \le i \le k} \|\mathbf{x} - \mathbf{m}_i\|_2^2$$

4: Update mean $\mathbf{m}_{\pi(\mathbf{x})}$

$$n_{\pi(\mathbf{x})} = n_{\pi(\mathbf{x})} + 1$$
 and $\mathbf{m}_{\pi(\mathbf{x})} = \mathbf{m}_{\pi(\mathbf{x})} + \frac{1}{n_{\pi(\mathbf{x})}} (\mathbf{x} - \mathbf{m}_{\pi(\mathbf{x})})$

5: end while

k-means with Bregman Divergences

Bregman divergences:

$$d_{\Phi}(\textbf{\textit{x}},\textbf{\textit{y}}) = \Phi(\textbf{\textit{x}}) - \Phi(\textbf{\textit{y}}) - \langle \textbf{\textit{x}} - \textbf{\textit{y}}, \nabla \Phi(\textbf{\textit{y}}) \rangle,$$

where Φ is strictly convex & differentiable

Examples of $d_{\Phi}(x, y)$:

- Squared Euclidean distance: $\|\mathbf{x} \mathbf{y}\|_2^2$
- KL-divergence: $\sum_{i} x_i \log(\frac{x_i}{y_i})$
- ullet Itakura-Saito distance: $\sum_i \left(rac{x_i}{y_i} \log(rac{x_i}{y_i}) 1
 ight)$

For Bregman divergences, the arithmetic mean is the best predictor:

$$\frac{1}{N}\sum_{i=1}^{N} \mathbf{x}_i = \arg\min_{\mathbf{c}} \sum_{i=1}^{N} d_{\Phi}(\mathbf{x}_i, \mathbf{c})$$

Clustering: Spectral Clustering

Spectral Clustering

Given:

- Number of clusters k
- Graph $G = (\mathcal{V}, \mathcal{E})$
 - Set of nodes: $\mathcal{V} = \{1, \cdots, n\}$
 - Set of edges: $\mathcal{E} = \{e_{ij} | i, j \in \mathcal{V}\}$ similarity between nodes
 - Weighted adjacency matrix $W \in \mathbb{R}^{n \times n}$

$$W_{ij} = \left\{ egin{array}{ll} e_{ij}, & ext{if there is an edge between nodes } i ext{ and } j \\ 0, & ext{otherwise} \end{array}
ight.$$

W is symmetric if G is an undirected graph

• Degree matrix: a diagonal matrix D where $D_{ii} = \sum_{j=1}^{n} W_{ij}$

Spectral Clustering

Goal:

• Partition \mathcal{V} into k disjoint clusters: $\mathcal{V}_1, \dots, \mathcal{V}_k$

Within-cluster: large weights

• Between-cluster: small weights

An ideal but trivial case: G has exactly k connected components

Graph Cut

Small cut between clusters

$$\mathsf{cut}(A,B) = \frac{1}{2} \sum_{i \in A, j \in B} W_{ij}$$

- Balance of cluster sizes $|\mathcal{V}_i|$
- Objective:

$$\mathsf{RatioCut}(\mathcal{V}_1,\ldots,\mathcal{V}_k) = \sum_{i=1}^k \frac{\mathsf{cut}(\mathcal{V}_i,\mathcal{V}\setminus\mathcal{V}_i)}{|\mathcal{V}_i|}$$

• Goal: minimize RatioCut (V_1, \ldots, V_k)

Graph Laplacian

Laplacian: L = D - W

- L: symmetric and positive semi-definite
- Eigenvalues: $0 \le \lambda_1 \le \lambda_2 \le \cdots \le \lambda_n$
- # of connected components in G = # of 0 eigenvalues of L
- For all $\mathbf{f} \in \mathbb{R}^n$,

$$\mathbf{f}^T L \mathbf{f} = \frac{1}{2} \sum_{i,j=1}^n W_{ij} (f_i - f_j)^2$$

Most importantly,

$$RatioCut(A_1,...,A_k) = trace(F^T L F)$$

for a special
$$F = [\mathbf{f}_1, \dots, \mathbf{f}_k]$$
, where $F_{ij} = \begin{cases} 1/\sqrt{|\mathcal{V}_j|}, & \text{if } i \in \mathcal{V}_j \\ 0, & \text{otherwise} \end{cases}$

Relaxation of Cut Minimization

In general, minimizing RatioCut is NP-hard! However, based on

RatioCut
$$(V_1, \ldots, V_k)$$
 = trace $(F^T L F)$,

we have the following relaxation:

Solve

$$F^* = \arg\min_{F \in \mathbb{R}^{n \times k}} \operatorname{trace}(F^T L F)$$

which are exactly the first k eigenvectors of L

• Recover $\mathcal{V}_1,\dots,\mathcal{V}_k$ from F^* by distance-based clustering algorithms (e.g. k-means)

Spectral Clustering vs. k-means

Clustering data points $\mathbf{x}_i \in \mathbb{R}^d$, i = 1, ..., N

• First construct kernel matrix e.g. Gaussian kernel:

$$W_{ij} = K(\mathbf{x}_i, \mathbf{x}_j) = e^{-\|\mathbf{x}_i - \mathbf{x}_j\|^2/2\sigma}$$

- k-means algorithm can only find linear decision boundaries
- Spectral clustering allows us to find non-convex boundaries

Variants of Graph Laplacian

Normalized Laplacian:

- $L = I_n D^{-1/2}WD^{-1/2}$
- NormalizedCut $(\mathcal{V}_1,\ldots,\mathcal{V}_k) = \sum_{i=1}^k \frac{\operatorname{cut}(\mathcal{V}_i,\mathcal{V}\setminus\mathcal{V}_i)}{\operatorname{vol}(\mathcal{V}_i)}$, where $\operatorname{vol}(\mathcal{V}_i) = \sum_{j\in\mathcal{V}_i} D_{jj}$

Signed Laplacian:

- $L = \bar{D} W$, where $\bar{D}_{ii} = \sum_{j=1}^{n} |W_{ij}|$
- Handle "signed" similarity graphs with both positive and negative edge weights

Dimensionality Reduction

Dimensionality Reduction

Dimensionality Reduction: Principal Component Analysis

Principal Component Analysis

N observations: $\{x_i \in \mathcal{R}^D : i = 1 \dots, N\}$ Goal:

- ullet Project data onto a space with dimensional M < D
- Maximize the variance of the projected data

Example:

PCA: Projection to one dimensional space (M = 1)

Empirical mean and variance of $\{x_n\}$:

$$ar{\mathbf{x}} = rac{1}{N} \sum_{n=1}^{N} \mathbf{x}_n$$
 $S = rac{1}{N} \sum_{n=1}^{N} (\mathbf{x}_n - ar{\mathbf{x}}) (\mathbf{x}_n - ar{\mathbf{x}})^T$

 \mathbf{w} : the direction of the space

- $ullet \|oldsymbol{w}\|_2=1$ as the length is not important.
- $Proj_{\mathbf{w}}(\mathbf{x}_n) = \mathbf{w}^T \mathbf{x}_n, \quad \forall n = 1, \dots, N$
- $Proj_{\boldsymbol{w}}(\bar{\boldsymbol{x}}) = \boldsymbol{w}^T \bar{\boldsymbol{x}}$
- The variance of $\{Proj_{\mathbf{w}}\mathbf{x}_n\}$:

$$\frac{1}{N}\sum_{n=1}^{N}\left(\boldsymbol{w}^{T}\boldsymbol{x}_{n}-\boldsymbol{w}^{T}\bar{\boldsymbol{x}}\right)^{2}\equiv\boldsymbol{w}^{T}\boldsymbol{S}\boldsymbol{w}.$$

PCA: Projection to one dimensional space (M = 1)

Goal: maximize the variance of the projected data $\{Proj_{\mathbf{w}}(\mathbf{x}_n)\}$:

$$\arg\max_{\boldsymbol{w}_1:\|\boldsymbol{w}_1\|=1}\quad \boldsymbol{w}_1^{\mathsf{T}}S\boldsymbol{w}_1$$

- Lagrangian $L(\mathbf{w}_1, \lambda_1) = \mathbf{w}_1^T S \mathbf{w}_1 + \lambda_1 (1 \mathbf{w}_1^T \mathbf{w}_1)$
- $\nabla L(\mathbf{w}_1, \lambda_1) = 0$ implies that $S \mathbf{w}_1^* = \lambda_1 \mathbf{w}_1^*$.
- \mathbf{w}_1^* is the eigenvector of S corresponding the largest eigenvalue λ_1^* , also called the 1-st principal component.
- In general, the k-th principal component \mathbf{w}_k^* is the eigenvector of S corresponding to the k-th largest eigenvalue λ_k^* .

Dimension reduction:

- $W = [\mathbf{w}_1^*, \dots, \mathbf{w}_M^*]$: formed by M principal components.
- $Proj_W(x) = W^T x$: the projected vector in M dimensional space.

PCA: An Example

A set of digit images

The mean vector \bar{x} and the first 4 principal components:

Mean

$$\lambda_1 = 3.4 \cdot 10^5$$

$$\lambda_2 = 2.8 \cdot 10^5$$

$$\lambda_3 = 2.4 \cdot 10^5$$

$$\lambda_4 = 1.6 \cdot 10^5$$

PCA: An Example

Various M:

Eigenvalue Spectrum:

Dimensionality Reduction: Matrix Factorization

Matrix Factorization

Matrix Factorization

- A motivating example: recommender systems
- Problem Formulation
- Latent Feature Space
- Existing Methods

Recommender Systems

Matrix Factorization Approach $A \approx WH^T$

 H^T

-0.07	-0.11	-0.53	-0.46	-0.06	-0.05	-0.53	-0.07	-0.35	-0.19	-0.14
0.13	-0.42	0.45	0.17	-0.25	-0.17	-0.18	0.27	-0.59	0.05	0.14
-0.21	-0.43	-0.23	0.16	0.08	0.17	0.57	-0.39	-0.37	-0.08	-0.15

W

-8.72	0.03	-1.03
-7.56	-0.79	0.62
-4.07	-3.95	2.55
-3.52	3.73	-3.32
-7.78	2.34	2.33
-2.44	-5.29	-3.92
-1.78	1.90	-1.68

_											
	1			5			3		5		2
		2		3			5		2	5	
					3		5		3		
	2		5			3		4		2	
				5			5				1
		5			1				5		
	1			1			4 D	2	> 4 :		4

Matrix Factorization Approach $A \approx WH^T$

 H^{T}

-0.07	-0.11	-0.53	-0.46	-0.06	-0.05	-0.53	-0.07	-0.35	-0.19	-0.14
0.13	-0.42	0.45	0.17	-0.25	-0.17	-0.18	0.27	-0.59	0.05	0.14
-0.21	-0.43	-0.23	0.16	0.08	0.17	0.57	-0.39	-0.37	-0.08	-0.15

W

-8.72	0.03	-1.03
-7.56	-0.79	0.62
-4.07	-3.95	2.55
-3.52	3.73	-3.32
-7.78	2.34	2.33
-2.44	-5.29	-3.92
-1.78	1.90	-1.68

1			5			3		5		2
	2		3			5		2	5	
				3	?	5		3		
2		5			3		4		2	
			5			5				1
	5			1				5		
1			1			4 □	2	> 4 3	₽ ► ∢	4

Matrix Factorization Approach

$$\min_{\substack{W \in \mathbb{R}^{m \times k} \\ H \in \mathbb{R}^{n \times k}}} \sum_{(i,j) \in \Omega} (A_{ij} - \mathbf{w}_i^T \mathbf{h}_j)^2 + \lambda \left(\|W\|_F^2 + \|H\|_F^2 \right),$$

- $\Omega = \{(i,j) \mid A_{ij} \text{ is observed}\}$
- Regularized terms to avoid over-fitting

Matrix factorization maps users/items to latent feature space \mathbb{R}^k

- the i^{th} user $\Rightarrow i^{\text{th}}$ row of W, \boldsymbol{w}_i^T ,
- the j^{th} item $\Rightarrow j^{\text{th}}$ row of H, \mathbf{h}_{j}^{T} .
- $\mathbf{w}_i^T \mathbf{h}_j$: measures the interaction between i^{th} user and j^{th} item.

Latent Feature Space

Latent Feature Space

Other Factorizations

Nonnegative Matrix Factorization

$$\min_{W,H} \|A - WH^T\|_F^2 + \lambda \|W\|_F^2 + \lambda \|H\|_F^2$$

- Each entry is positive
- A is either fully or partially observed
- Goal: find the nonnegative latent factors

Existing Methods

ALS: Alternating Least Squares

Fix either H or W and optimize the other:

LS sub-problem:
$$\min_{\boldsymbol{w}_i \in \mathcal{R}^k} \sum_{j \in \Omega_i} (A_{ij} - \boldsymbol{w}_i^T \boldsymbol{h}_j)^2 + \lambda \|\boldsymbol{w}_i\|^2$$

 H^T

- it has closed form solution.
- An iteration: update W/H once
- $O(|\Omega|k^2 + (m+n)k^3)$

$$\begin{pmatrix} \mathbf{w}_{1}^{T} \\ \mathbf{w}_{2}^{T} \\ \mathbf{w}_{3}^{T} \end{pmatrix} \begin{pmatrix} A_{11} & A_{12} & A_{13} \\ A_{21} & A_{22} & A_{23} \\ A_{31} & A_{32} & A_{33} \end{pmatrix}$$

SGM: Stochastic Gradient Method

SGM update: pick $(i,j) \in \Omega$

$$\bullet \ R_{ij} \leftarrow A_{ij} - \boldsymbol{w}_i^T \boldsymbol{h}_j$$

•
$$\mathbf{w}_i \leftarrow \mathbf{w}_i - \eta(\lambda \mathbf{w}_i - R_{ij} \mathbf{h}_j),$$

•
$$\mathbf{h}_j \leftarrow \mathbf{h}_j - \eta(\lambda \mathbf{h}_j - R_{ij} \mathbf{w}_i)$$
.

$$\left(\begin{array}{c|c} \textbf{\textit{h}}_1 & \textbf{\textit{h}}_2 & \textbf{\textit{h}}_3 \end{array}\right)$$

$$\begin{pmatrix} \mathbf{w}_{1}^{T} \\ \mathbf{w}_{2}^{T} \\ \mathbf{w}_{3}^{T} \end{pmatrix} \begin{pmatrix} A_{11} & A_{12} & A_{13} \\ A_{21} & A_{22} & A_{23} \\ A_{31} & A_{32} & A_{33} \end{pmatrix}$$

An iteration : $|\Omega|$ updates

- Time per iteration: $O(|\Omega|k)$, better than $O(|\Omega|k^2)$ for ALS
- ullet Convergence is sensitive to the learning rate η .

Coordinate Descent

Update a variable at a time:

$$w_{it} \leftarrow \frac{\sum_{j \in \Omega_i} (A_{ij} - \boldsymbol{w}_i^T \boldsymbol{h}_j + w_{it} h_{jt}) h_{jt}}{\lambda + \sum_{j \in \Omega_i} h_{jt}^2}.$$

- Subproblem is just a single-variate quadratic problem
- $\bullet \ \Omega_i = \{j : (i,j) \in \Omega\}$
- Can be done in $O(|\Omega_i|)$

Update Sequence:

- Item/user-wise update:
 - pick a user i or an item j
 - update the i-th row of W or the j-th column of H
- Feature-wise update:
 - pick a feature index $t \in \{1, \dots, k\}$
 - update t-column of W and H alternatively

Thoughts on Parallelization

List of Methods in Scikit-learn

- Regression:
 - Linear, Ridge, Lasso, Elastic Net, Bayesian Regression, Support Vector Regression, ...
- Classification:
 - kNN, SVM, Perceptron, Logistic Regression, Naive Bayes, Decision Trees, Random Forest, AdaBoost, ...
- Clustering:
 - k-means, Spectral Clustering, Affinity Propagation, Mean-Shift, DBSCAN, Hierarchical Clustering, ...
- Dimensionality Reduction:
 - (kernel/sparse) PCA, MF, NMF, Truncated SVD (LSA), Dictionary Learning, Factor Analysis, Independent Component Analysis, ...

Potential Projects

Goal: A fully parallelized version of Scikit-learn

- Regression:
 - parallel solvers for Lasso/Ridge
- Classification:
 - parallel solvers for SVM, Logistic Regression
- Clustering:
 - parallel k-means
- Dimensionality Reduction:
 - parallel MF/NMF for recommender system

Example: Parallel Matrix Factorization for Recommender Systems

DSGD: Distributed SGM

DSGD: Distributed SGM

DSGD: Distributed SGM

Parallel Coordinate Descent

Feature-wise Update: CCD++ Rank-one decomposition:

$$WH^T = [\cdots \bar{\boldsymbol{w}}_t \cdots][\cdots \bar{\boldsymbol{h}}_t \cdots]^T = \sum_{t=1}^{\kappa} \bar{\boldsymbol{w}}_t \bar{\boldsymbol{h}}_t^T$$

CCD++: picks a latent feature t and updates $(\bar{\pmb{w}}_t, \bar{\pmb{h}}_t)$

$$\min_{\boldsymbol{u}\in\mathbb{R}^m,\boldsymbol{v}\in\mathbb{R}^n} \sum_{(i,j)\in\Omega} \left(\hat{R}_{ij} - u_i v_j\right)^2 + \lambda(\|\boldsymbol{u}\|^2 + \|\boldsymbol{v}\|^2).$$

- $\bullet R_{ij} = A_{ij} \boldsymbol{w}_i^T \boldsymbol{h}_j$
- $\hat{R}_{ij} = R_{ij} + \bar{w}_{ti}\bar{h}_{tj}, \ \forall (i,j) \in \Omega$
 - $(\boldsymbol{u}^*, \boldsymbol{v}^*)$ is a rank-one approximation of \hat{R}
- ullet Apply the CCD iteration T times to obtain $(oldsymbol{u}^*,oldsymbol{v}^*)$
- CCD: item/user-wise update

- Cycle through *k* feature dimensions
- $O(\frac{2T}{T+1})$ faster than CCD

Problems of Different Scales

W, H, and R fit in the memory of a single computer

- Multi-core systems are an appropriate framework.
- All cores share the same memory space.
- Latest variables are always available to access.

W, H or R exceeds memory capacity of one computer

- Can still run on one computer, but leads to disk swap.
- **Distributed systems** are appropriate.
- Matrices are stored in memory of the distributed system ⇒ only local data can be accessed fast.
- Require communication to access latest variables.

Parallelization of CCD++

- Key: to parallelize CCD to obtain (u^*, v^*) .
- Fact: each u_i can be updated independently.

Partition \boldsymbol{u} and \boldsymbol{v} into p sub-vectors.

$$\bullet \ \mathbf{u} \Rightarrow \{\mathbf{u}^1, \dots, \mathbf{u}^r, \dots, \mathbf{u}^p\}$$

•
$$\mathbf{v} \Rightarrow \{\mathbf{v}^1, \dots, \mathbf{v}^r, \dots, \mathbf{v}^p\}$$

Run in parallel: the r^{th} core C_r :

$$ullet$$
 computes $(oldsymbol{u}^*)^r$ and $(oldsymbol{v}^*)^r$

ullet updates $ar{m{w}}_t^r$ and $ar{m{h}}_t^r$

See the paper Yu et al, 2013 for more details

CCD++ on Distributed Systems

W, H, R are distributed over the memory of different computers.

$$R \Rightarrow C_{1} \qquad C_{2} \qquad C_{3}$$

$$\begin{pmatrix} R_{11} & R_{12} & R_{13} \\ R_{21} & & \\ R_{31} & & \end{pmatrix} \begin{pmatrix} R_{12} & & \\ R_{21} & R_{22} & R_{23} \\ & R_{32} & \end{pmatrix} \begin{pmatrix} & R_{13} \\ & R_{23} \\ & R_{31} & R_{32} & R_{33} \end{pmatrix}$$

$$W \Rightarrow \begin{pmatrix} W^{1} & W^{2} & W^{3} \end{pmatrix}^{T} \quad H \Rightarrow \begin{pmatrix} H^{1} & H^{2} & H^{3} \end{pmatrix}^{T}$$

CCD++ on Distributed Systems

Distributed update: computer C_r :

- obtains $(\boldsymbol{u}^r, \boldsymbol{v}^r)$ using CCD: computes u^r and broadcasts it

References

- [1] R. Gemulla, P. J. Haas, E. Nijkamp, and Y. Sismanis *Large-Scale Matrix Factorization with Distributed Stochastic Gradient Descent*. KDD, 2011.
- [2] F. Niu, B. Recht, C. Re, and S. J. Wright *Hogwild: A Lock-Free Approach to Parallelizing Stochastic Gradient Descent*. NIPS, 2011.
- [3] Y. Zhuang, W.-S. Chin, Y.-C. Juan, and C.-J. Lin A Fast Parallel SGD for Matrix Factorization in Shared Memory Systems. RecSys, 2013.
- [4] H.-F. Yu, C.-J. Hsieh, S. Si, and I. Dhillon *Parallel Matrix Factorization for Recommender Systems*. KAIS, 2013.