
1

CS 395T:
Topics in Multicore Programming

University of Texas, Austin
Fall 2013

Administration

• Instructors:
– Keshav Pingali (CS,ICES)

• 4.126A ACES

• Email: pingali@cs.utexas.edu

• TA:
– Xin Sui

• Email: xin@cs.utexas.edu

Prerequisites

• Course in computer architecture
– (e.g.) book by Hennessy and Patterson

• Course in compilers
– (e.g.) book by Allen and Kennedy

• Self-motivation
– willingness to learn on your own to fill in gaps

in your knowledge

Course material

• Topic: parallel programming on multicores
– focus this semester:

• machine learning applications
• approximate computing

• All course material online at this URL:
http://www.cs.utexas.edu/~pingali/CS395T/2013fa/

• Lots of material on the web
– you are encouraged to find and study relevant material

on your own
– if you find a really useful paper or webpage for some

topic, let me know

2

Why study parallel programming?

• Fundamental ongoing change in computer industry
• Until recently: Moore’s law(s)

1. Number of transistors on chip double every 1.5
years (this is what Moore actually wrote)

• Transistors used to build complex, superscalar
processors, deep pipelines, etc. to exploit instruction-
level parallelism (ILP)

2. Processor frequency doubles every 1.5 years
• Speed goes up by factor of 10 roughly every 5 years

Many programs ran faster if you just waited a while.

• Fundamental change
– Micro-architectural innovations for exploiting ILP

are reaching limits
– Clock speeds are not increasing any more because

of power problems
 Programs will not run any faster if you wait.

• Let us understand why.

i4004

i80286

i80386

i8080

i8086

R3000
R2000

R10000

Pentium

1,000

10,000

100,000

1,000,000

10,000,000

100,000,000

1970 1975 1980 1985 1990 1995 2000 2005

Year

T
ra

n
si

st
o

rs

0.1

1

10

100

1000

1970 1980 1990 2000

Year

C
lo

ck
 R

at
e

(M
H

z)

(1) Micro-architectural approaches
to improving processor performance

• Add functional units
– Superscalar is known territory
– Diminishing returns for adding

more functional blocks
– Alternatives like VLIW have

been considered and rejected
by the market

• Wider data paths
– Increasing bandwidth between

functional units in a
core makes a difference
• Such as comprehensive 64-bit

design, but then where to?

i4004

i80286

i80386

i8080

i8086

R3000
R2000

R10000

Pentium

1,000

10,000

100,000

1,000,000

10,000,000

100,000,000

1970 1975 1980 1985 1990 1995 2000 2005

Year

T
ra

n
si

st
o

rs

(from Paul Teisch, AMD)

(1) Micro-architectural approaches
(contd.)

• Deeper pipeline
– Deeper pipeline buys frequency at expense of increased

branch mis-prediction penalty and cache miss penalty

– Deeper pipelines => higher clock frequency => more power

– Industry converging on middle ground…9 to 11 stages
• Successful RISC CPUs are in the same range

• More cache
– More cache buys performance until working set of program

fits in cache

– Exploiting caches requires help from programmer/compiler
as we will see

(2) Processor clock speeds

• Old picture:
– Processor clock

frequency doubled every
1.5 years

• New picture:
– Power problems limit

further increases in clock
frequency (see next
couple of slides)

0.1

1

10

100

1000

1970 1980 1990 2000

Year

C
lo

ck
 R

at
e

(M
H

z)

Increase in clock rate

3

Frequency

S
ta

ti
c

C
u

rr
en

t

Embedded
Parts

Very High Leakage
and Power Fast, High

Power

Fast, Low
Power

1.0 1.5

15

0

Static current rises non-linearly as processors approach max frequency

4004
8008

8080
8085

8086

286
386

486
Pentium®

P6

1

10

100

1000

10000

1970 1980 1990 2000 2010

Year

P
o

w
e

r
D

e
n

s
it

y
(W

/c
m

2
)

Hot Plate

Nuclear
Reactor

Rocket
Nozzle

Sun’s
Surface

Source: Patrick
Gelsinger, Intel

Recap

• Old picture:
– Moore’s law(s):

1. Number of transistors doubled every 1.5 years
– Use these to implement micro-architectural innovations for ILP

2. Processor clock frequency doubled every 1.5 years
Many programs ran faster if you just waited a while.

• New picture:
– Moore’s law

1. Number of transistors still double every 1.5 years
– But micro-architectural innovations for ILP are flat-lining

– Processor clock frequencies are not increasing very much
 Programs will not run faster if you wait a while.

• Questions:
– Hardware: What do we do with all those extra transistors?
– Software: How do we keep speeding up program execution?

One hardware solution: go multicore

• Use semi-conductor tech
improvements to build
multiple cores without
increasing clock frequency

– does not require micro-
architectural
breakthroughs

– non-linear scaling of
power density with
frequency will not be a
problem

• Predictions:

– from now on. number of
cores will double every
1.5 years (from Saman Amarasinghe, MIT)

4

Design choices

• Homogenous multicore processors
– large number of identical cores

• Heterogenous multicore processors
– cores have different functionalities

• It is likely that future processors will be
heterogenous multicores
– migrate important functionality into special-purpose

hardware (eg. codecs)
– much more power efficient than executing program in

general-purpose core
– trade-off: programmability

New application:
big data and data analysis

Unstructured data

• Structured data:
– ADT: relations (set of tuples)
– Well-supported by SQL/DBMS

• Unstructured data:
– ADT: graphs (for example)
– Examples: Facebook users, webpage

hyperlinks

• Machine learning:
– So much data that we need machine learning

techniques to analyze it and find useful
patterns

– Algorithms are closer to traditional sparse
matrix algorithms than relational operations

– Parallelism is needed to handle the large
volumes of data

Problem:
multicore/parallel software

• Most apps are not
multithreaded/parallel

• Writing multithreaded code
increases software costs
dramatically
– factor of 3 for Unreal game

engine (Tim Sweeney, EPIC
games)

• Multicore software quest:
– can we write programs so that

performance doubles when the
number of cores doubles?

• Very hard problem for many
reasons (see later)

– Amdahl’s law
– Locality
– Overheads of parallel execution
– Load balancing
– ………

“We are the cusp of a transition to
multicore, multithreaded
architectures, and we still have not
demonstrated the ease of
programming the move will
require… I have talked with a few
people at Microsoft Research who
say this is also at or near the top of
their list [of critical CS research
problems].” Justin Rattner, CTO
Intel

5

Parallel Programming

• Community has worked on parallel
programming for more than 30 years

– programming models
– machine models
– programming languages
– ….

• However, parallel programming is still a
research problem

– matrix computations, stencil computations,
FFTs etc. are well-understood

– few insights for other applications
• each new application is a “new phenomenon”

• We need a science of parallel programming
– analysis: framework for thinking about

parallelism in application
– synthesis: produce an efficient parallel

implementation of application

“The Alchemist” Cornelius Bega (1663)

Analogy: science of electro-magnetism

Seemingly
unrelated phenomena Unifying abstractions

Specialized models
that exploit structure

Course objective

• Create a science of parallel programming
– Structure:

• understand the patterns of parallelism and locality in
applications

– Analysis:
• abstractions for reasoning about parallelism and locality in

applications
• programming models based on these abstractions
• tools for quantitative estimates of parallelism and locality

– Synthesis:
• exploiting structure to produce efficient implementations

Approach

• Small number of expert
programmers must support a
large number of application
programmers
– cf. SQL

• Galois project:
– Program = Algorithm + Data

structure (Wirth)
– Library of concurrent data

structures and runtime system
written by expert programmers

– Application programmers code in
sequential C++

• All concurrency control is in data
structure library and runtime
system

Algorithms

Data structures

Parallel program = Operator + Schedule + Parallel data structure

6

Galois: Graph analytics (SOSP 2013) Galois: Performance on SGI Ultraviolet

22

Elixir: DSL for graph apps

Graph

Operators

Schedules

Course content

• Structure of parallelism and locality in important
algorithms
– computational science algorithms
– graph algorithms
– machine learning algorithms

• Algorithm abstractions
– dependence graphs
– operator formulation of algorithms

• Multicore architectures
– interconnection networks, caches and cache coherence, memory

consistency models, locks and lock-free synchronization

• Parallel data structures
– lock-free data structures
– array and graph partitioning

• Scheduling and load-balancing

7

Course content (contd.)
• Locality

– spatial and temporal locality
– cache blocking
– cache-oblivious algorithms

• Static program analysis techniques
– array dependence analysis
– points-to and shape analysis

• Performance models
– PRAM, BPRAM, logP

• Approximate computing
– how to trade off precision for power or computation time

• Special topics
– self-optimizing software and machine learning techniques for

optimization
– GPUs and GPU programming
– parallel programming languages/libraries: Cilk, OpenMP, TBBs, Map-

reduce, MPI

Course work

• Small number of programming assignments

• Paper presentations

• Substantial final project

• Participation in class discussions

