CS 395T:
Topics in Multicore Programming

University of Texas, Austin
Fall 2013

Administration

e Instructors:
— Keshav Pingali (CS,ICES)
* 4.126A ACES
« Email: pingali@cs.utexas.edu
* TA:
— Xin Sui
* Email: xin@cs.utexas.edu

Prerequisites

 Course in computer architecture

— (e.g.) book by Hennessy and Patterson
» Course in compilers

— (e.g.) book by Allen and Kennedy
« Self-motivation

— willingness to learn on your own to fill in gaps
in your knowledge

Course material

Topic: parallel programming on multicores
— focus this semester:

« machine learning applications

 approximate computing

» All course material online at this URL:

 Lots of material on the web

— you are encouraged to find and study relevant material
on your own

— if you find a really useful paper or webpage for some
topic, let me know

Why study parallel programming?

100000000

Fundamental ongoing change in computer industry

Until recently: Moore’s law(s) 10000

1. Number of transistors on chip double every 1.5 . oo
years (this is what Moore actually wrote)

« Transistors used to build complex, superscalar F o0

processors, deep pipelines, etc. to exploit instruction-
level parallelism (ILP)

2. Processor frequency doubles every 1.5 years
* Speed goes up by factor of 10 roughly every 5 years

10000

1970 1975 1980 1985 1990 1995 2000 2005

=>» Many programs ran faster if you just waited a while.

Fundamental change

— Micro-architectural innovations for exploiting ILP
are reaching limits

— Clock speeds are not increasing any more because
of power problems

=> Programs will not run any faster if you wait.

Let us understand why.

Clock Rate (Mtz)

(1) Micro-architectural approaches
to improving processor performance

* Add functional units 100,000,000
— Superscalar is known territory .
— Diminishing returns for adding 10,000,000

more functional blocks

— Alternatives like VLIW have
been considered and rejected
by the market

* Wider data paths

— Increasing bandwidth between 10,000
functional units in a
core makes a difference Lo

* Such as comprehensive 64-bit 1970 1975 1980 1985 1990 1995 2000 2005
design, but then where to? Year

1,000,000

100,000

(from Paul Teisch, AMD)

(1) Micro-architectural approaches

(contd.)

e Deeper pipeline
— Deeper pipeline buys frequency at expense of increased
branch mis-prediction penalty and cache miss penalty
— Deeper pipelines => higher clock frequency => more power
— Industry converging on middle ground...9 to 11 stages
» Successful RISC CPUs are in the same range
e More cache
— More cache buys performance until working set of program
fits in cache
— Exploiting caches requires help from programmer/compiler
as we will see

(2) Processor clock speeds

Increase in clock rate

1000

 Old picture:
— Processor clock
frequency doubled every 0 :
1.5 years

» New picture:
— Power problems limit .
further increases in clock 01

frequency (see next
couple of slides)

Clock Rate (MHz)

-
c
() T T
=
=]
(@] Very High Leakage
© and Power
=
o Embedded
n
Parts
0
10 Frequency 15

Static current rises non-linearly as processors approach max frequency

&
=5
L
>
=
3
@
(a]
]
B3
o
a

Nuclear
Reactor

—_—

Hot Plate =%

1990
Year

2000

2010

Source: Patrick
Gelsinger, Intel®

Recap

e Old picture:
— Moore’s law(s):
1. Number of transistors doubled every 1.5 years
— Use these to implement micro-architectural innovations for ILP
2. Processor clock frequency doubled every 1.5 years
=>» Many programs ran faster if you just waited a while.
e New picture:
— Moore’s law
1. Number of transistors still double every 1.5 years
— But micro-architectural innovations for ILP are flat-lining
— Processor clock frequencies are not increasing very much
=>» Programs will not run faster if you wait a while.
* Questions:
— Hardware: What do we do with all those extra transistors?
— Software: How do we keep speeding up program execution?

One hardware solution:

go multicore

Use semi-conductor tech

improvements to build

multiple cores without

increasing clock frequency

— does not require micro-
architectural
breakthroughs

— non-linear scaling of
power density with
frequency will not be a
problem

Predictions:

- from now on. number of
cores will double every
1.5 years

512
256)
128
64)
#of 2
cores 19

‘

[

oT0 1075 1980

[

990

T80

2000

2008 2077

(from Saman Amarasinghe, MIT)

Design choices

e Homogenous multicore processors
— large number of identical cores

* Heterogenous multicore processors
— cores have different functionalities

e Itis likely that future processors will be
heterogenous multicores

— migrate important functionality into special-purpose

hardware (eg. codecs)

— much more power efficient than executing program in

general-purpose core
— trade-off: programmability

New application:

big data and data analysis

= /

& Complex, Unstructured /

f; T~ »-;" Analysis

= i gap
Policaton Our abilty

Relational Business
Transaction
Data

1970 1980 1990

" to analyze

Structured
data vs.
unstructured

2010

data growth

sewree: An IDC White Paper - sponsored by EMC. As the Economy Contracts, the Digital Universe Expands. May 2009,

Unstructured data

¢ Structured data:

— ADT: relations (set of tuples)

— Well-supported by SQL/DBMS

¢ Unstructured data:

— ADT: graphs (for example)

— Examples: Facebook users, webpage
hyperlinks

¢ Machine learning:

— So much data that we need machine learning
techniques to analyze it and find useful
patterns

— Algorithms are closer to traditional sparse
matrix algorithms than relational operations

— Parallelism is needed to handle the large
volumes of data

Problem:
multicore/parallel software

Most apps are not
multithreaded/parallel
Writing multithreaded code
increases software costs
dramatically

— factor of 3 for Unreal game
engine (Tim Sweeney, EPIC
games)

Multicore software quest:

— can we write programs so that
performance doubles when the
number of cores doubles?

Very hard problem for many
reasons (see later)

— Amdahl’s law

— Locality

— Overheads of parallel execution

— Load balancing

“We are the cusp of a transition to
multicore, multithreaded
architectures, and we still have not
demonstrated the ease of
programming the move will
require... | have talked with a few
people at Microsoft Research who
say this is also at or near the top of
their list [of critical CS research
;IJrol?Iems]." Justin Rattner, CTO
ntel

Parallel Programming

Community has worked on parallel
programming for more than 30 years
— programming models
— machine models
— programming languages
However, parallel programming is still a
research problem
— matrix computations, stencil computations,
FFTs etc. are well-understoo
— few insights for other applications
+ each new application is a “new phenomenon”
We need a science of parallel programming
— analysis: framework for thinking about
parallelism in application
— synthesis: produce an efficient parallel
implementation of application

“The Alchemist” Cornelius Bega (1663)

Analogy: science of electro-magnetism

Specialized models
that exploit structure

Seemingly
unrelated phenomena

Unifying abstractions

Course objective

e Create a science of parallel programming

— Structure:
« understand the patterns of parallelism and locality in
applications
— Analysis:
« abstractions for reasoning about parallelism and locality in
applications
« programming models based on these abstractions
« tools for quantitative estimates of parallelism and locality
— Synthesis:
« exploiting structure to produce efficient implementations

Small number of expert
programmers must support a
large number of application
programmers

- cf. SQL

Galois project:

— Program = Algorithm + Data
structure (Wirth)

- Library of concurrent data
structures and runtime system
written by expert programmers

— Application programmers code in
sequential C++

« All concurrency control is in data
structure library and runtime
system

Parallel program = Operator + Schedule + Parallel data structure

Galois: Graph analytics (SOSP 2013)

Ligra PowerGraph
Galos Galois.

g
1
[

Runtime Ratios
1

L L S S i S B S |
bls cc dia prosssp bis cc da pr sssp

) Runtimes of Ligra and PowerGraph applications relative 1o Ga.
lois runtimes.

Ligra PowerGraph
Ugra-g PowerGraph-g
20 . ' "
%1.5- i
S0 * + e . e
£ . g
S .4]
£ . &
24 l

LR LR
bfs cc dia prosssp bfs cc dia pr sssp

(1) Runtimes of Ligra and PowerGraph applications relative
2 and PowerGraph-g muntimes, Larger ratios shown as
rather than points.

Scaling

Galois: Performance on SGI Ultraviolet

512

180 b barnes-hut

delaunay mesh refinement

448 P delaunay triangulatiol

App | Implementatio
416 B betweenness centralit: T e

T e

384 b triangle: dar | Cuols
352 f |
320 F Gal
288 p o |«
256 p
224 F i Galeis
iy s e G
1 J / Galois 512
128 F e memtations roninded 16 e meercot socamd. Tnctuiod
96 salofs algorithms at 512 threads.
s b implementation of bh timed out after
100 minutes.
32 p
0 " " M M M M M
4] 64 128 192 256 320 384 448 512

Threads 2

Elixir: DSL for graph apps

Graph < .

1
4 source : Node

Graph [nodes(node : Node, dist © int)
edges(sre : Node, dst : Node, wt : int) |

ode a, dist d) | —
4 == source) 0 else o]

o wlaxEdge = | nodesinode a, dist ad)
w0 nodestiode b, dist bd)

initDist = | node:
[d=

Operators

n edges(sre a, dst b, wiw)
1n a+w<bd] -
13 Ibd=ad+w]

15 init = foreach initDist

rate relaxEdge > sched
n= it sssp

Aot Sehedule speethcation
Dikstra sched = metric ad > groupb
Label-comecting__sched = group b > approx metric ad = unroll 2
Schedules P DELTA : unsigned int
ASPPINEI e = metric (ad + w) / DELTA

NUM.NODES : unsigned int
H ovemide ss:
Bellman-Ford sssp = for i=1..(NUM.NODES —1)

step
step = foreach relaxEdge

Course content

Structure of parallelism and locality in important
algorithms
- computational science algorithms
— graph algorithms
— machine learning algorithms
Algorithm abstractions
— dependence graphs
— operator formulation of algorithms
Multicore architectures

- interconnection networks, caches and cache coherence, memory
consistency models, locks and lock-free synchronization

Parallel data structures

— lock-free data structures

— array and graph partitioning
Scheduling and load-balancing

Course content (contd.)

Locality
— spatial and temporal locality
— cache blocking
— cache-oblivious algorithms
Static program analysis techniques
— array dependence analysis
— points-to and shape analysis
Performance models
— PRAM, BPRAM, logP
Approximate computing
— how to trade off precision for power or computation time
Special topics
- self-optimizing software and machine learning techniques for
optimization
— GPUs and GPU programming

— parallel programming languages/libraries: Cilk, OpenMP, TBBs, Map-
reduce, MPI

Course work

Small number of programming assignments
Paper presentations

Substantial final project

Participation in class discussions

