Assignment 1: Scalable Transformer Training & Profiling

CS395T: Foundations of Machine Learning for Systems Researchers

Assignment 1: Scalable Transformer Training & Profiling

Due on Canvas: September 18th, 11.59pm

Objective

The goal of this assignment is to give you hands-on experience with training a modern Transformer-based model, profiling its computational performance, and applying systems-level optimizations to improve efficiency. You will investigate trade-offs between model size, sequence length, and throughput while maintaining accuracy.

Assignment Description

1. Model and Dataset

- Train a small Transformer or Vision Transformer on one of the following:
 - Language Modeling: WikiText-103.
 - Image Classification: ImageNet-100 or TinyImageNet.

2. Profiling

- Measure GPU memory usage and throughput scaling by comparing:
 - context length or image resolution vs. GPU memory usage
 - batch size vs. GPU memory usage
 - batch size vs. throughput
 - mixed precision on/off vs. GPU memory usage
 - mixed precision on/off vs. throughput

3. Optimizations

- Implement and evaluate at least two of the following:
 - Gradient checkpointing
 - Fused operations (e.g., FlashAttention, xformers kernels)
 - Distributed Data Parallel (DDP) training
 - Parameter-efficient training (LoRA, QLoRA)

4. Analysis

- Identify trade-offs between:
 - model size vs. task performance (accuracy)
 - context length or image resolution vs. task performance (accuracy)
- Discuss how your chosen optimizations affected performance and accuracy.
 - ex) DDP on/off vs. throughput
 - ex) xformers on/off vs. memory usage

Deliverables

- 1. Code: Well-structured and documented code implementing your training, profiling, and optimizations.
- 2. Report (3-4 pages):
 - Experimental setup: dataset, model architecture, hardware used.

- Profiling results with tables and plots.
- Backgrounds on the chosen optimization details.
- Analysis of trade-offs and key observations.

3. **Plots:**

- GPU memory usage vs.. sequence length / image resolution.
- Throughput vs.. batch size (with and without mixed precision).
- Before/after optimization comparisons.

Extra Credit

Implement an additional advanced optimization technique, such as:

- Pipeline parallelism or tensor parallelism.
- Quantization-aware training (QAT).
- Asynchronous data loading with GPU-based preprocessing (e.g., NVIDIA DALI).

Include an additional section in your report analyzing the effects of this method.

Grading Breakdown

- Model training and baseline profiling: 20%.
- Implementation of optimizations: 40%.
- Report (plots, quality of analysis, discussion of trade-offs): 40%.
- Extra credit: up to +10%.