FlashAttention & FlashAttention-3: 10-Aware Exact Attention
from Algorithm to Hardware

Ziyang Tan

@ TEXAS WHAT STARTS HERE CHANGES THE WORLD
The University of Texas at Austin

Outline

> Background: why standard attention is slow
FA-1. idea » math - algorithm - |O complexity
FA-3. Hopper-optimized pipeline & FP8
Takeaways

Q&A

Vv V VYV

@ TEX_AS WHAT STARTS HERE CHANGES THE WORLD
The University of Texas at Austin

Background

@ TEX.A.S WHAT STARTS HERE CHANGES THE WORLD

‘The University of Texas at Austin

Compute-Bound vs Memory-Bound

Attention on GPT-2
e Arithmetic Intensity: FLOPs per byte. 154]MathI
e Machine Balance: Peak FLOPs / Peak BW. Dropout
e Memory-bound: intensity < balance - I
Matmul (GEMM): high = high intensity. £107 1
o atmul (): high reuse igh intensity e o
e Compute-bound: intensity > balance § -
o Elementwise/Reductions (mask, softmax...): - 5 Fused
, , Mask Kernel
o lowreuse = low intensity = memory-bound. | [
] Matmul

PyTorch FlashAttention

Dropout, softmax, masking — all elementwise ops, all memory bound. We can see they dominate the runtime.

@ TEXAS WHAT STARTS HERE CHANGES THE WORLD
at Austin

The University of Texas

Memory Hierarchy: Why 10-Aware Attention Wins

e Attention mixes memory-bound ops (mask, softmax).

LA SRAM: 19TB/s (20 MB)
SRAM

e Wall-clock time: LB HBM: 1.5 TB/s (40 GB)

o Compute time + 10O time (bottleneck) bl

o dominated by HBM2SRAM traffic. ETRITTNGTa DRAM: 12.8 GB/s

(CPU DRAM) (>17T8B)

e Goal: minimize HBM round-trips, keep work on chip. Memory Hierarchy with

Bandwidth & Memory Size

& TEXAS WHAT STARTS HERE CHANGES THE WORLD

‘The University of Texas at Austin

Standard Attention: Not 10-Aware (HBM treated as “free”)

Algorithm 0 Standard Attention Implementation

Require: Matrices Q, K,V € RV*4 in HBM.
1: Load Q, K by blocks from HBM, compute S = QKT, write S to HBM.
2: Read S from HBM, compute P = softmax(S), write P to HBM.

3: Load P and V by blocks from HBM, compute O = PV, write O to HBM.
4: Return O.

Step 1 — compute S = QK '

. Reads: Q Nd+ K Nd - 2Nd

- Writes: S N?

Step 2 — compute £’ = softmax(5)

- Reads: S N?

. Writes: Nd + 2N?
- Writes: P N?

. Grand HBM traffic: 4N? + 4Nd elements > O(N?) dominated by materializing S and P

@ TEX_A WHAT STARTS HERE CHANGES THE WORLD
The University of Texas at Austin

FlashAttention-1

@ TEX.AS WHAT STARTS HERE CHANGES THE WORLD

‘The University of Texas at Austin

Operator Fusion & Materialization: Becoming |10-Aware

e Kernel:one GPU op, HBM load » on-chip compute » HBM store
e Kernel Fusion: combine multiple ops into one kernel

e Materialization: writing large intermediate tensors to HBM, then reading back later

Mewmory) . C;mpvib Memor) . Compite
nnon nnonn a
—1Ji ¥
AA A AR D
ey :
o_m:{? \L
R) LTl

Operator Fusion Simplified

https://horace.io/brrr_intro.html

@ TEX.AS WHAT STARTS HERE CHANGES THE WORLD

‘The University of Texas at Austin

FlashAttention: Tile.

e Softmax: compute the i-th output of a softmax

esi

Zgl'{zl e’

e Tiling: compute attention by blocks

O'(Z)i =

For numerical stability, the softmax of vector x € R? is corhputed as:

F®

m(x) = mlax x;, f(x) = [exl—m(x) . eXB—m(x)] g f(x)] Zf(x)i, softma.x(x) = f(x) i

For vectors x(), x(?) € R, we can decompose the softmax of the concatenated x = [x(l) x(z)] € R2B as:
m(x) = m([x(l) x(2)]) = max(m(x(l)),m(x(2))), f(x) = [em(x(l))—m(x)f(x(l)) em(x(2))—m(x)f(x(2))] :

£(x) = 6([xD x@]) = =) m@ p(x D) 4 @GP -mX) (x| softmax(x) = %
%

TEXA.S WHAT STARTS HERE CHANGES THE WORLD

The University of Texas at Austin

(K(l))T (K(Z))T
b Y
’ Nl !
l Y '
1) I
: l '
Q —! s =g &) | 5@ =qk®) I
1
| | |
I) [}
|\ /A\ ,I
i S i Output
/’ —_—\\,’ ___________ N /‘”m—'————_wﬂmx
I - | A(l)
: \|[: 746} : 3 o = o) . y@®
© Stored in HBM : : i 5 e {
i 1 AD =exp(s®) | A® =exp(§@) ! - €Y |
i | Computed in SRAM : { i 0 = 1@ ow f Rescaling to
L — — — = (not materialized in HBM) 1 | ! (2) [
[I [|4 A® . correct
% i] + @ Ve denominator

R Z exp(s®), 1@ =1® 4 Z exp(§®),
i

TEXAS

‘The University of Texas at Austin

FlashAttention: Algorithm.

Algorithm 1 FLASHATTENTION

Require: Matrices Q, K,V € RVN*4 in HBM, on-chip SRAM of size M.

1:
2:
3:

10:

3§ G
12:
13:
14:
15:
16:

Set block sizes B, = [2], B, = min ([%£], d).
Initialize O = (0)nxa € RNxd ¢=(0)y €RY,m = (-)n € RN in HBM.
Divide Q into T, = [Bl,] blocks Q;,...,Qr, of size B, X d each, and divide K,V in to T, = [B%] blocks
Ki,...,Kr, and Vy,...,Vr,, of size B, X d each.
Divide O into 7, blocks O;,..., 07, of size B, X d each, divide ¢ into 7, blocks ¢;,..., ¢y, of size B, each,
divide m into 7, blocks my,...,mz, of size B, each.
for 1<j<T.do
Load K;,V; from HBM to on-chip SRAM.
for1<i<T, do
Load Q;, 0;, £, m; from HBM to on-chlp SRAM.
On chip, compute S Q,KT € RBrxBe
On chip, compute m,J = rowma.x(S,J) € RBr, P;; = exp(S;; — m;j) € RE-*Be (pointwise), £;; =
rowsum(P; ;j) € REr,
On chip, compute m?*" = max(m;, fii;;) € RBr | £0eW = mi=mi™™ ¢; 4 ¢™ii—m;
Write O; « diag(€*°V)~! (diag(£;)e™ ™" 0; + e'"U"”MWP, ;jV;) to HBM.
Write €; « €°%, m; « m}*" to HBM.
end for
end for
Return O.

new

¢ € RBr.

WHAT STARTS HERE CHANGES THE WORLD

@ TEXAS WHAT STARTS HERE CHANGES THE WORLD

‘The University of Texas at Austin

FlashAttention: recomputation

e Activation/gradient checkpointing: don't store all activations in fwd; recompute
them in bwd > memory ¢, time +. Can choose the granularity (store every n layers) to

trade memory for recompute.

e FlashAttention’s Twist: recomputation adds FLOPs, but slashes HBM traffic

. Goal: avoid storing O(V*) intermediates S, P € R"*¥,

. Store only:
. Output O € RV*¢
. Per-row softmax stats (7,€) € RY (row max & sum of exps)

+ (Training) RNG state for dropout

[RNxd

- Recompute in backward: From tiled @, K,V € kept on-chip, rebuild local S and Pper tile using (%), then compute dV;dQ, dK,

. Memory complexity: O(V) instead of O(NV?),

@ TEXAS WHAT STARTS HERE CHANGES THE WORLD
The University of Texas at Austin

FlashAttention: Complexity analysis

e Setup / Notation:

« Sequence length N, head dim d, usable on-chip SRAM M (elements).
» Tile sizes chosen to fit SRAM:

B, = % (column tile for K, V'), B, = min (flu_d’ d) (row tile for Q).

ANd N
° iles: T,. = = I = —.
Number of tiles B. i B.

» We count HBM elements moved (multiply by bytes/elt for traffic).
Standard attention IO (for reference): ©(Nd + N?).

WHAT STARTS HERE CHANGES THE WORLD

TEXAS

‘The University of Texas at Austin

FlashAttention: Complexity analysis
One sweep = fix a K, Vcolumn tile j in SRAM and iterate over all Q row tiles i.

Per sweep HBM traffic:
1. Load K, V; once: size = (B.d + B.d) = 2B.d = % - across all sweeps sums to ©(Nd)
(lower order).
2. Iterate all @ rows (total Nd elements):
» Read Q: Nd

» Read & write O partials: 2Nd
» Read & write softmax stats (m, £): 2N (negligible vs Nd)

So, per sweep ~ G(N d) elements (constants ignored).

N 4Nd
Number of sweeps = T, = B_c B T

2
|HBM IO from Q/O path| = ©(Nd) x 411:’4‘1 - e(NMdz)

Add the K /V reads over all sweeps: ©(INd) (lower order).

Final FA HBM 10:

e(N;dz) + O(Nd)| ~ e(N;ldz)

@ TEX_A WHAT STARTS HERE CHANGES THE WORLD
The University of Texas at Austin

FlashAttention-3

@ TEXA.S WHAT STARTS HERE CHANGES THE WORLD
st

‘The University of Texas at Austin

From FA-1/2 to FA-3 — Why change?
e Utilization Gap: FA2 achieves only 35-40% GPU utilization on H100, compared to

80-90% on AlOO0 - clear room for improvement.

e Asynchronous Scheduling: Hopper allows overlap of Tensor Core GEMM and
SFU/Softmax:

e Low-Precision Support: FP8 (Hopper), Higher FLOPS, Lower memory & bandwidth

usage, Requires careful error control.

e FA3is more like a “manual” for exploiting Hopper hardware.

WHAT STARTS HERE CHANGES THE WORLD

©TEXAS

The University of Texas at

Hopper New Instructions
WGMMA (Warpgroup MMA)

e Async Tensor Core ops at warpgroup (128 threads) granularity
e Overlaps GEMM with CUDA Core/SFU work
e FA3:RS-GEMM (A in GMEM), SS-GEMM (A,B in SMEM)

A100 H100
TMA (Tensor Memory Accelerator) Using LDGSTS instr Using TMA Unit
Addr gen by threads SM
e Async GMEM o SMEM transfers (1ID-5D tensors Tensor
y () e

e Handles address, layout, swizzle; frees threads

psven | e

Data + TransCnt
Global Memory

e Supports multicast to multiple SMs

Global Memory

> Key enablers of FAZ's async compute & efficient data movement

TEXAS

‘The University of Texas at Austin

Asynchrony Evolution to FA3
Pre-Al100: Warp Specialization

e Producer warps load data, consumer warps compute.

e Warp scheduler hides latency via fast context switch.

A100: Multistage (cp.async)

e Same warp overlaps load (N+1) with compute (N).

e Pipeline with double buffer » FA2 implementation.

H100: Warp Specialization + Intra-Warpgroup Overlap

e TMA handles async data movement (no warp overhead).

e WGMMA enables async Tensor Core ops across warpgroups.

e Register reallocation & lightweight producer > maximize compute.

Overlap GEMM + Softmax inside warpgroups.

FA3 achieves deeper overlap of compute & comm & compute & compute

WHAT STARTS HERE CHANGES THE WORLD

TEXAS

‘The University of Texas at Austin

Producer-Consumer Async

SM cp.async_bulk
Consumer MMA Warps Producer DMA Warps
wgmma.mma_async|e I © Acquire/Commit| © o

"0 Wait/Release @

slalueq
JUAsy

Tensor Core .
Write

Data Multicast to other Threadblocks

@ TEXA.S WHAT STARTS HERE CHANGES THE WORLD

‘The University of Texas at Austin

Ping-Pong Scheduling
e Occurs between two consumer warpgroups
e With WGMMA async execution, GEMM and Softmax can run concurrently
e \Warpgroups alternate GEMM execution while overlapping with Softmax
e bar.sync at boundaries ensures correct data dependency

e Effect: higher Tensor Core utilization via inter-warpgroup pipelining

Warpgroup 1 GEMMO Softmax GEMM1 GEMMO Softmax GEMM1 GEMMO Softmax

Warpgroup 2 GEMMO Softmax GEMM1 GEMMO Softmax GEMM1 GEMMO Softmax

time

@ TEXAS WHAT STARTS HERE CHANGES THE WORLD

‘The University of Texas at Austin

Intra-Warpgroup Overlap

e Problem: In attention inner loop, softmax depends on GEMMO output, and GEMMI
depends on softmax result » serialized execution.

e Idea: Break dependencies by pipelining across iterations with extra register buffers.

e Technique: Overlap part of softmax instructions with subsequent GEMMs (see
figure).

e Effect: Increases parallelism even within a single warpgroup, reducing stalls and

boosting utilization

WGMMAD 0 1 2 N -1
Softmax 0 1 2 E N-1
WGMMAT i 0 i 1 E i N-2 N-1
]] |]
| | | |

L J

time

@ TEX.A.S WHAT STARTS HERE CHANGES THE WORLD

‘The University of Texas at Austin

FP8 in FlashAttention-3

Efficiency: Layout Challenges
e FP8 WGMMA requires k-major layout for V » need transpose.
e Solution: in-kernel transpose using LDSM/STSM (efficient, register-friendly, avoids
extra memory ops).
e F[P32 accumulator layout # FP8 operand layout » use byte permute + matching
transpose to align.
Accuracy: Numerical Stability
e FP8 (e4m3): limited precision » higher quantization error.
e Block quantization: per-block scaling (naturally aligned with FA3 block ops).
e Incoherent processing: apply random orthogonal transform (Hadamard + *1 diag) to
spread outliers.

e Both techniques cut numerical error by up to 2.6x.

TEXA.S WHAT STARTS HERE CHANGES THE WORLD

The University of Texas at Austin

akeaways

TEXAS WHAT STARTS HERE CHANGES THE WORLD

‘The University of Texas at Austin

Takeaways

e Coreidea: Treat attention as an IO problem -» minimize HBMoSRAM trips (not FLOPS).
e FA-1 (algorithmic):
o Don't materialize S,P; tile Q/K/V and do incremental softmax with (m,£).
o Fuse mask+softmax+(dropout)+matmul-V in one kernel; recompute in backward.
o HBM IO O(NA2*dA2/M); extra memory O(N) » faster + longer contexts.
e FA-3 (hardware-co-designed, Hopper):
o Warp specialization (producer TMA vs consumer WGMMA) + ring SMEM buffer.
o Overlap GEMM and softmax (ping-pong, 2-stage).
o FP8 path: layout fixes + block quantization + incoherent processing.
o Delivers ~1.5-2x throughput over FA-2 on H100 (FP16/BF16), higher with FP8.

e One-liner: Reduce memory traffic, not FLOPs.

[E3]
TEXAS WHAT STARTS HERE CHANGES THE WORLD

The University of Texas at Austin

&A

Thank You!

