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Compute-Bound vs Memory-Bound

Attention on GPT-2
e Arithmetic Intensity: FLOPs per byte. 154 ]MathI
e Machine Balance: Peak FLOPs / Peak BW. Dropout
e Memory-bound: intensity < balance - I
Matmul (GEMM): high = high intensity. £107 1
o atmul ( ): high reuse igh intensity e o
e Compute-bound: intensity > balance § -
o Elementwise/Reductions (mask, softmax...): - 5 Fused
, , Mask  Kernel
o lowreuse = low intensity = memory-bound. | [
] Matmul

PyTorch FlashAttention

Dropout, softmax, masking — all elementwise ops, all memory bound. We can see they dominate the runtime.
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Memory Hierarchy: Why 10-Aware Attention Wins

e Attention mixes memory-bound ops (mask, softmax).

LA SRAM: 19TB/s (20 MB)
SRAM

e Wall-clock time: LB HBM: 1.5 TB/s (40 GB)

o Compute time + 10O time (bottleneck) bl

o dominated by HBM2SRAM traffic. ETRITTNGTa DRAM: 12.8 GB/s

(CPU DRAM) (>17T8B)

e Goal: minimize HBM round-trips, keep work on chip. Memory Hierarchy with

Bandwidth & Memory Size
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Standard Attention: Not 10-Aware (HBM treated as “free”)

Algorithm 0 Standard Attention Implementation

Require: Matrices Q, K,V € RV*4 in HBM.
1: Load Q, K by blocks from HBM, compute S = QKT, write S to HBM.
2: Read S from HBM, compute P = softmax(S), write P to HBM.

3: Load P and V by blocks from HBM, compute O = PV, write O to HBM.
4: Return O.

Step 1 — compute S = QK '

. Reads: Q Nd+ K Nd - 2Nd

- Writes: S N?

Step 2 — compute £’ = softmax(5)

- Reads: S N?

. Writes: Nd + 2N?
- Writes: P N?

. Grand HBM traffic: 4N? + 4Nd elements > O(N?) dominated by materializing S and P
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Operator Fusion & Materialization: Becoming |10-Aware

e Kernel:one GPU op, HBM load » on-chip compute » HBM store
e Kernel Fusion: combine multiple ops into one kernel

e Materialization: writing large intermediate tensors to HBM, then reading back later

Mewmory) . C;mpvib Memor) . Compite
nnon nnonn a
—1Ji ¥
AA A AR D
ey :
o_m:{? \L
R ) LTl

Operator Fusion Simplified

https://horace.io/brrr_intro.html
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FlashAttention: Tile.

e Softmax: compute the i-th output of a softmax

esi

Zgl'{zl e’

e Tiling: compute attention by blocks

O'(Z)i =

For numerical stability, the softmax of vector x € R? is corhputed as:

F®

m(x) = mlax x;, f(x) = [exl—m(x) . eXB—m(x)] g f(x) ] Zf(x)i, softma.x(x) = f(x) i

For vectors x(), x(?) € R, we can decompose the softmax of the concatenated x = [x(l) x(z)] € R2B as:
m(x) = m( [x(l) x(2)]) = max(m(x(l)),m(x(2))), f(x) = [em(x(l))—m(x)f(x(l)) em(x(2))—m(x)f(x(2))] :

£(x) = 6([xD x@]) = =) m@ p(x D) 4 @GP -mX) (x| softmax(x) = %
%
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FlashAttention: Algorithm.

Algorithm 1 FLASHATTENTION

Require: Matrices Q, K,V € RVN*4 in HBM, on-chip SRAM of size M.

1:
2:
3:

10:

3§ G
12:
13:
14:
15:
16:

Set block sizes B, = [ 2], B, = min ([%£], d).
Initialize O = (0)nxa € RNxd ¢=(0)y €RY,m = (-)n € RN in HBM.
Divide Q into T, = [Bl,] blocks Q;,...,Qr, of size B, X d each, and divide K,V in to T, = [B%] blocks
Ki,...,Kr, and Vy,...,Vr,, of size B, X d each.
Divide O into 7, blocks O;,..., 07, of size B, X d each, divide ¢ into 7, blocks ¢;,..., ¢y, of size B, each,
divide m into 7, blocks my,...,mz, of size B, each.
for 1<j<T.do
Load K;,V; from HBM to on-chip SRAM.
for1<i<T, do
Load Q;, 0;, £, m; from HBM to on-chlp SRAM.
On chip, compute S Q,KT € RBrxBe
On chip, compute m,J = rowma.x(S,J) € RBr, P;; = exp(S;; — m;j) € RE-*Be (pointwise), £;; =
rowsum(P; ;j) € REr,
On chip, compute m?*" = max(m;, fii;;) € RBr | £0eW = mi=mi™™ ¢; 4 ¢™ii—m;
Write O; « diag(€*°V)~! (diag(£;)e™ ™" 0; + e'"U"”MWP, ;jV;) to HBM.
Write €; « €°%, m; « m}*" to HBM.
end for
end for
Return O.

new

¢ € RBr.

WHAT STARTS HERE CHANGES THE WORLD




@ TEXAS WHAT STARTS HERE CHANGES THE WORLD

‘The University of Texas at Austin

FlashAttention: recomputation

e Activation/gradient checkpointing: don't store all activations in fwd; recompute
them in bwd > memory ¢, time +. Can choose the granularity (store every n layers) to

trade memory for recompute.

e FlashAttention’s Twist: recomputation adds FLOPs, but slashes HBM traffic

. Goal: avoid storing O(V*) intermediates S, P € R"*¥,

. Store only:
. Output O € RV*¢
. Per-row softmax stats (7,€) € RY (row max & sum of exps)

+ (Training) RNG state for dropout

[RNxd

- Recompute in backward: From tiled @, K,V € kept on-chip, rebuild local S and Pper tile using (%), then compute dV;dQ, dK,

. Memory complexity: O(V) instead of O(NV?),
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FlashAttention: Complexity analysis

e Setup / Notation:

« Sequence length N, head dim d, usable on-chip SRAM M (elements).
» Tile sizes chosen to fit SRAM:

B, = % (column tile for K, V'), B, = min (flu_d’ d) (row tile for Q).

ANd N
° iles: T,. = = I = —.
Number of tiles B. i B.

» We count HBM elements moved (multiply by bytes/elt for traffic).
Standard attention IO (for reference): ©(Nd + N?).
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FlashAttention: Complexity analysis
One sweep = fix a K, Vcolumn tile j in SRAM and iterate over all Q row tiles i.

Per sweep HBM traffic:
1. Load K, V; once: size = (B.d + B.d) = 2B.d = % - across all sweeps sums to ©(Nd)
(lower order).
2. Iterate all @ rows (total Nd elements):
» Read Q: Nd

» Read & write O partials: 2Nd
» Read & write softmax stats (m, £): 2N (negligible vs Nd)

So, per sweep ~ G(N d) elements (constants ignored).

N 4Nd
Number of sweeps = T, = B_c B T

2
|HBM IO from Q/O path| = ©(Nd) x 411:’4‘1 - e(NMdz)

Add the K /V reads over all sweeps: ©(INd) (lower order).

Final FA HBM 10:

e(N;dz) + O(Nd)| ~ e(N;ldz)
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From FA-1/2 to FA-3 — Why change?
e Utilization Gap: FA2 achieves only 35-40% GPU utilization on H100, compared to

80-90% on AlOO0 - clear room for improvement.

e Asynchronous Scheduling: Hopper allows overlap of Tensor Core GEMM and
SFU/Softmax:

e Low-Precision Support: FP8 (Hopper), Higher FLOPS, Lower memory & bandwidth

usage, Requires careful error control.

e FA3is more like a “manual” for exploiting Hopper hardware.
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Hopper New Instructions
WGMMA (Warpgroup MMA)

e Async Tensor Core ops at warpgroup (128 threads) granularity
e Overlaps GEMM with CUDA Core/SFU work
e FA3:RS-GEMM (A in GMEM), SS-GEMM (A,B in SMEM)

A100 H100
TMA (Tensor Memory Accelerator) Using LDGSTS instr Using TMA Unit
Addr gen by threads SM
e Async GMEM o SMEM transfers (1ID-5D tensors Tensor
y ( ) e

e Handles address, layout, swizzle; frees threads

psven | e

Data + TransCnt
Global Memory

e Supports multicast to multiple SMs

Global Memory

> Key enablers of FAZ's async compute & efficient data movement
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Asynchrony Evolution to FA3
Pre-Al100: Warp Specialization

e Producer warps load data, consumer warps compute.

e Warp scheduler hides latency via fast context switch.

A100: Multistage (cp.async)

e Same warp overlaps load (N+1) with compute (N).

e Pipeline with double buffer » FA2 implementation.

H100: Warp Specialization + Intra-Warpgroup Overlap

e TMA handles async data movement (no warp overhead).

e WGMMA enables async Tensor Core ops across warpgroups.

e Register reallocation & lightweight producer > maximize compute.

Overlap GEMM + Softmax inside warpgroups.

FA3 achieves deeper overlap of compute & comm & compute & compute

WHAT STARTS HERE CHANGES THE WORLD
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Producer-Consumer Async

SM cp.async_bulk
Consumer MMA Warps Producer DMA Warps
wgmma.mma_async|e I © Acquire/Commit| © o

"0 Wait/Release @

slalueq
JUAsy

Tensor Core .
Write

Data Multicast to other Threadblocks
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Ping-Pong Scheduling
e Occurs between two consumer warpgroups
e With WGMMA async execution, GEMM and Softmax can run concurrently
e \Warpgroups alternate GEMM execution while overlapping with Softmax
e bar.sync at boundaries ensures correct data dependency

e Effect: higher Tensor Core utilization via inter-warpgroup pipelining

Warpgroup 1 GEMMO Softmax GEMM1 GEMMO Softmax GEMM1 GEMMO Softmax

Warpgroup 2 GEMMO Softmax GEMM1 GEMMO Softmax GEMM1 GEMMO Softmax

time
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Intra-Warpgroup Overlap

e Problem: In attention inner loop, softmax depends on GEMMO output, and GEMMI
depends on softmax result » serialized execution.

e Idea: Break dependencies by pipelining across iterations with extra register buffers.

e Technique: Overlap part of softmax instructions with subsequent GEMMs (see
figure).

e Effect: Increases parallelism even within a single warpgroup, reducing stalls and

boosting utilization

WGMMAD 0 1 2 N -1
Softmax 0 1 2 E N-1
WGMMAT i 0 i 1 E i N-2 N-1
] ] | ]
| | | |

L J

time
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FP8 in FlashAttention-3

Efficiency: Layout Challenges
e FP8 WGMMA requires k-major layout for V » need transpose.
e Solution: in-kernel transpose using LDSM/STSM (efficient, register-friendly, avoids
extra memory ops).
e F[P32 accumulator layout # FP8 operand layout » use byte permute + matching
transpose to align.
Accuracy: Numerical Stability
e FP8 (e4m3): limited precision » higher quantization error.
e Block quantization: per-block scaling (naturally aligned with FA3 block ops).
e Incoherent processing: apply random orthogonal transform (Hadamard + *1 diag) to
spread outliers.

e Both techniques cut numerical error by up to 2.6x.
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Takeaways

e Coreidea: Treat attention as an IO problem -» minimize HBMoSRAM trips (not FLOPS).
e FA-1 (algorithmic):
o Don't materialize S,P; tile Q/K/V and do incremental softmax with (m,£).
o Fuse mask+softmax+(dropout)+matmul-V in one kernel; recompute in backward.
o  HBM IO O(NA2*dA2/M); extra memory O(N) » faster + longer contexts.
e FA-3 (hardware-co-designed, Hopper):
o  Warp specialization (producer TMA vs consumer WGMMA) + ring SMEM buffer.
o Overlap GEMM and softmax (ping-pong, 2-stage).
o FP8 path: layout fixes + block quantization + incoherent processing.
o Delivers ~1.5-2x throughput over FA-2 on H100 (FP16/BF16), higher with FP8.

e One-liner: Reduce memory traffic, not FLOPs.
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