
FlashAttention & FlashAttention-3: IO-Aware Exact Attention 
from Algorithm to Hardware

Ziyang Tan



Outline
➢ Background: why standard attention is slow

➢ FA-1: idea → math → algorithm → IO complexity

➢ FA-3: Hopper-optimized pipeline & FP8

➢ Takeaways

➢ Q&A



Background



Compute-Bound vs Memory-Bound

● Arithmetic Intensity: FLOPs per byte.

● Machine Balance: Peak FLOPs / Peak BW.

● Memory-bound: intensity < balance

○ Matmul (GEMM): high reuse ⇒ high intensity.

● Compute-bound: intensity > balance

○ Elementwise/Reductions (mask, softmax…): 

○ low reuse ⇒ low intensity ⇒ memory-bound.



Memory Hierarchy: Why IO-Aware Attention Wins

● Attention mixes memory-bound ops (mask, softmax).

● Wall-clock time:

○ Compute time + IO time (bottleneck)

○ dominated by HBM⇄SRAM traffic.

● Goal: minimize HBM round-trips, keep work on chip.



Standard Attention: Not IO-Aware (HBM treated as “free”)



FlashAttention-1



Operator Fusion & Materialization: Becoming IO-Aware
● Kernel: one GPU op, HBM load → on-chip compute → HBM store

● Kernel Fusion: combine multiple ops into one kernel

● Materialization: writing large intermediate tensors to HBM, then reading back later



FlashAttention: Tile.

● Softmax: compute the i-th output of a softmax

● Tiling: compute attention by blocks



FlashAttention: Tile.



FlashAttention: Algorithm.



FlashAttention: recomputation
● Activation/gradient checkpointing: don’t store all activations in fwd; recompute 

them in bwd → memory ↓, time ↑. Can choose the granularity (store every n layers) to 

trade memory for recompute.

● FlashAttention’s Twist: recomputation adds FLOPs, but slashes HBM traffic



FlashAttention: Complexity analysis
● Setup / Notation: 



FlashAttention: Complexity analysis
One sweep = fix a 𝐾, 𝑉 column tile 𝑗 in SRAM and iterate over all 𝑄 row tiles 𝑖.
Per sweep HBM traffic:



FlashAttention-3



From FA-1/2 to FA-3 — Why change?
● Utilization Gap: FA2 achieves only 35–40% GPU utilization on H100, compared to 

80–90% on A100 → clear room for improvement.

● Asynchronous Scheduling: Hopper allows overlap of Tensor Core GEMM and 

SFU/Softmax:

● Low-Precision Support: FP8 (Hopper), Higher FLOPS, Lower memory & bandwidth 

usage, Requires careful error control.

● FA3 is more like a “manual” for exploiting Hopper hardware.



Hopper New Instructions
WGMMA (Warpgroup MMA)
● Async Tensor Core ops at warpgroup (128 threads) granularity

● Overlaps GEMM with CUDA Core/SFU work

● FA3: RS-GEMM (A in GMEM), SS-GEMM (A,B in SMEM)

TMA (Tensor Memory Accelerator)
● Async GMEM ↔ SMEM transfers (1D–5D tensors)

● Handles address, layout, swizzle; frees threads

● Supports multicast to multiple SMs

→ Key enablers of FA3’s async compute & efficient data movement



Asynchrony Evolution to FA3
Pre-A100: Warp Specialization
● Producer warps load data, consumer warps compute.

● Warp scheduler hides latency via fast context switch.

A100: Multistage (cp.async)
● Same warp overlaps load (N+1) with compute (N).

● Pipeline with double buffer → FA2 implementation.

H100: Warp Specialization + Intra-Warpgroup Overlap
● TMA handles async data movement (no warp overhead).

● WGMMA enables async Tensor Core ops across warpgroups.

● Register reallocation & lightweight producer → maximize compute.

● Overlap GEMM + Softmax inside warpgroups.

FA3 achieves deeper overlap of compute ↔ comm & compute ↔ compute.



Producer-Consumer Async



Ping-Pong Scheduling
● Occurs between two consumer warpgroups

● With WGMMA async execution, GEMM and Softmax can run concurrently

● Warpgroups alternate GEMM execution while overlapping with Softmax

● bar.sync at boundaries ensures correct data dependency

● Effect: higher Tensor Core utilization via inter-warpgroup pipelining



Intra-Warpgroup Overlap
● Problem: In attention inner loop, softmax depends on GEMM0 output, and GEMM1 

depends on softmax result → serialized execution.

● Idea: Break dependencies by pipelining across iterations with extra register buffers.

● Technique: Overlap part of softmax instructions with subsequent GEMMs (see 

figure).

● Effect: Increases parallelism even within a single warpgroup, reducing stalls and 

boosting utilization



FP8 in FlashAttention-3
Efficiency: Layout Challenges
● FP8 WGMMA requires k-major layout for V → need transpose.

● Solution: in-kernel transpose using LDSM/STSM (efficient, register-friendly, avoids 

extra memory ops).

● FP32 accumulator layout ≠ FP8 operand layout → use byte permute + matching 

transpose to align.

Accuracy: Numerical Stability
● FP8 (e4m3): limited precision → higher quantization error.

● Block quantization: per-block scaling (naturally aligned with FA3 block ops).

● Incoherent processing: apply random orthogonal transform (Hadamard + ±1 diag) to 

spread outliers.

● Both techniques cut numerical error by up to 2.6×.



Takeaways



Takeaways
● Core idea: Treat attention as an IO problem → minimize HBM↔SRAM trips (not FLOPs).

● FA-1 (algorithmic):

○ Don’t materialize S,P; tile Q/K/V and do incremental softmax with (m,ℓ).

○ Fuse mask+softmax+(dropout)+matmul-V in one kernel; recompute in backward.

○ HBM IO O(N^2*d^2/M); extra memory O(N) → faster + longer contexts.

● FA-3 (hardware-co-designed, Hopper):

○ Warp specialization (producer TMA vs consumer WGMMA) + ring SMEM buffer.

○ Overlap GEMM and softmax (ping-pong, 2-stage).

○ FP8 path: layout fixes + block quantization + incoherent processing.

○ Delivers ~1.5–2× throughput over FA-2 on H100 (FP16/BF16), higher with FP8.

● One-liner: Reduce memory traffic, not FLOPs.



Q&A



Thank You!


