
Efficient Memory Management for
Large Language Model Serving

with PagedAttention
Authors: Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu,

Joseph E. Gonzalez, Hao Zhang, Ion Stoica
Venue: SOSP, October 2023

Presenter: Darius Grassi

Slides adapted from: Venkataraman CS 744 ‘24, Maddison CSC 2541 ‘25

https://pages.cs.wisc.edu/~shivaram/cs744-sp24/
https://pages.cs.wisc.edu/~shivaram/cs744-sp24/
https://www.cs.toronto.edu/~cmaddis/courses/csc2541_w25/

Serving LLMs is Expensive

● Many GPUs required for
production-scale LLM services

● Each GPU can only serve a handful of
requests per second

○ For LLaMA-13B and moderate-size inputs, 1
A100 can process < 1 requests per second

2

Goal: maximize serving
throughput and GPU utilization

Background: Self-Attention

Example Sentence : Four score and

Attention Weights
Four
score
and

Four
score
and

Four
score
and

3

Background: Self Attention

Four score and
4

Background: Auto Regressive Decoding

Example Sentence : Four score and two

Attention Weights
two

two

two

5

Background: Auto Regressive Decoding

Four score and two
6

Background: K,V cache

- Store Key and Value vectors associated within the context length

- Minimize re-generation of key and value vectors associated with prior
tokens.

7

Self-Attention with KV Cache

Time

Space

Time

Sequence length

Model embedding size

8

Motivation

- To store K,V cache usually memory is allocated for the full context length.

- Example - Context length for LLaMa models is 2048.
- Solutions prior to PagedAttention pre-allocated memory for the K,V for full 2048
- Request needs only 40 tokens wastage of memory

9

Motivation

● Efficient management of KV cache is crucial for high-throughput LLM serving
● Batched requests à shared KV cache
● Workload throughput becomes memory-bound

10

Memory waste in shared KV Cache

● Internal fragmentation: memory reserved for a request but left unused because the
final output length is shorter than expected

● Reservation: memory currently unused but reserved for future use by the same request
● External fragmentation: small unused memory gaps between allocations caused by

varying sequence lengths across different requests

11

PagedAttention

- Use a mechanism similar to a page table used by operating systems

Handling multiple requests (continuous batching)

13

Memory Efficiency of PagedAttention

● Minimal internal fragmentation
○ # of wasted tokens per sequence < block size

● No external fragmentation

● With PagedAttention, wasted KV cache space
is < 4% (3-5x improved memory utilization)

Internal
fragmentation

14

PagedAttention

- Use a block manager to keep block tables associated with each GPU.

- Enable efficient sharing of memory in case of parallel sampling, shared
prefixes, beam search.

15

Memory Sharing: Parallel Sampling

16

Parallel Sampling Copy-on-Write

.

Memory Sharing: Beam Search

● Efficiently supported by dynamic block mapping and copy-on-write mechanism

18

PagedAttention vLLM - Design

19

Evaluation

- Setup - A100 GPUs single node
- Normalized latency
- x-axis 20

Beam Search with PagedAttention

Parallel sampling
savings à

21

Main Takeaways

● Reduces memory fragmentation with paging
● Reduces memory usage with KV block sharing
● Enables batching of more requests
● Increases the throughput of LLM inference

22

Limitations

● Choice of block size can have a substantial impact on the performance
● Increased kernel complexity and overhead
● Limited effectiveness in short-sequenced workloads
● Doesn’t natively support various models/GPU architectures

23

Thank You + Q&A

24

Peer Review

Summary:

This paper addresses a critical bottleneck in large language model (LLM) serving:
inefficient memory management of the KV cache. The authors identify that existing
systems suffer from significant memory waste due to internal fragmentation, external
fragmentation, and an inability to share memory effectively across requests. This
waste limits the batch size, thereby constraining the overall throughput of the serving
system.
The core contribution is PagedAttention, a novel attention algorithm inspired by classic
operating systems concepts of virtual memory and paging. PagedAttention allows for
the KV cache to be stored in non-contiguous memory blocks. Building on this, the
authors present vLLM, an LLM serving engine that leverages PagedAttention to
achieve near-zero memory waste. The authors demonstrate through extensive
experiments that vLLM improves throughput by 2-4x over state-of-the-art systems like
FasterTransformer and Orca across a variety of models, sequence lengths, and
complex decoding algorithms.

25

Peer Review
Strengths And Weaknesses:

Strengths:
- Novel and Elegant Analogy: The core idea of applying the well-understood concepts
of virtual memory and paging from operating systems to the problem of KV cache
management is both novel and highly effective. This analogy provides a strong
conceptual framework that elegantly solves the issues of fragmentation and memory
sharing.
- Significant Performance Gains: The empirical results are impressive. A 2-4x
improvement in throughput over highly optimized, state-of-the-art serving systems is a
substantial contribution that has immediate practical implications for reducing the cost
and improving the scalability of LLM services.
- Practical Impact and Open Source: The authors have made vLLM publicly available
and it has already been widely adopted by the community.

26

Peer Review
Weaknesses:

- Performance Overhead of PagedAttention: The paper acknowledges a 20-26%
increase in latency for the attention kernel itself due to the overhead of managing non-
contiguous memory blocks (e.g., block table lookups). While the end-to-end throughput
benefits clearly outweigh this kernel-level overhead, a more in-depth analysis of this
trade-off would be beneficial. For instance, are there scenarios (e.g., very short
sequences, compute-bound configurations) where this overhead could negate the
benefits of better memory management?
- Limited Exploration of Scheduling Policies: The paper states that vLLM uses a simple
First-Come-First-Serve (FCFS) scheduling policy. While FCFS is fair, it is often
suboptimal for throughput and latency in serving systems. Given the dynamic nature of
LLM requests (variable prompt lengths, unknown output lengths), it would be valuable
to discuss how PagedAttention could enable more sophisticated scheduling policies.
For example, could the system prioritize shorter requests or those that can share KV
cache blocks with already running requests?

27

Peer Review

Questions:
- What is the biggest difference between PagedAttention and paged memory
in operating systems?
- How does PagedAttention interact with other memory-saving techniques
like quantization or sparsity? Can these methods be combined, and what
would be the expected interplay between them? For example, would smaller
quantized KV cache entries favor smaller block sizes?
- The copy-on-write mechanism is triggered at the block level. Have you
analyzed the performance implications of the block size on the frequency and
cost of these copy operations, especially in highly dynamic scenarios like
beam search? Is there an adaptive block size strategy that could optimize
this?

28

Peer Review
Limitations:
Yes, the paper appropriately discuss limitations and social impact.

Others:
Ethics Flag: No
Ethics Review Area: I don’t know
Soundness: 3 good
Presentation: 3 good
Contribution: 4 excellent
Rating: 8: Strong Accept: Technically strong paper, with novel ideas, excellent impact
on at least one area, or high-to-excellent impact on multiple areas, with excellent
evaluation, resources, and reproducibility, and no unaddressed ethical considerations.
Confidence: 4: You are confident in your assessment, but not absolutely certain. It is
unlikely, but not impossible, that you did not understand some parts of the submission
or that you are unfamiliar with some pieces of related work.

29

