
Asynchronous Methods for Deep Reinforcement Learning
Volodymyr Mnih, Adrià Puigdomènech Badia, Mehdi Mirza, Alex Graves,…

Presentation: Mobina Tavangarifard



Introduction

Motivation

ØDQN revolutionized RL but had limitations:

• Required huge replay memory
• Needed GPUs and long training
• Prone to instability

Why a New RL Method Was Needed?

Goal: stable, faster learning using only CPUs



• Multiple agents run in parallel

• Each explores its own environment copy

• Updates global shared network asynchronously

• Naturally decorrelates experience, no replay buffer

Key Idea

Core Idea of A3C



Reinforcement Learning Basics

• Goal: Maximize expected discounted reward

 

• Policy gradient updates

State → Action → Reward → Next State

𝒃 is a baseline (a learned function of the state) 
subtracted to reduce variance; in practice it’s 
usually the value function



Ø DQN: Replay buffer, GPU-heavy

Ø Gorila DQN: Distributed, 100 machines

Ø DistBelief: Async SGD for supervised nets

Related Work

• Prior Approaches

A3C combines distributed learning with RL

Method Replay Buffer Hardware Stability
DQN Yes GPU Medium

Gorila Yes Cluster High cost
A3C No CPU High



• Sequential data → correlated samples

• Replay memory = huge storage

• Off-policy → outdated data

• Unstable updates without careful tuning

Limitations of DQN

Why DQN Needed Help?



Multiple actor-learners

•Local copies of network parameters

•Gradients pushed to global model asynchronously

•Lock-free “Hogwild” updates

The Asynchronous Framework



Four Algorithms in the Framework

1. One-step Q-learning
2. One-step SARSA
3. n-step Q-learning
4. A3C (Actor–Critic) – the best performer

Overview of Algorithms



A3C Training Loop 

1. Actor runs for tₘₐₓ steps
2. Collects (s, a, r) trajectory
3. Computes multi-step return R
4. Updates shared parameters asynchronously
5. Syncs local copy

Algorithm Flow



Example: Asynchronous RL Framework



Policy + Value Networks

Shared convolutional layers

Ø Two output heads:
• Actor: π(a∣s)
• Critic: V(s)

Ø Advantage:

Actor–Critic Architecture



Combined Objective Function

• Policy term: encourages good actions
• Value term: improves critic accuracy
• Entropy term: keeps exploration alive

Loss Function

0.01



Shared RMSProp and Hogwild! 

• RMSProp decay = 0.99, ε = 1e–8
• Shared statistics across threads
• Gradient clipping = 40
• tₘₐₓ = 5 steps per rollout
• 16 CPU threads

Optimization Setup



Tested Environments

• Atari 2600 games

• MuJoCo physics simulator

• TORCS car racing

• Labyrinth 3D navigation

Environments



Atari 2600 Performance

• 10× faster than DQN on CPU
• LSTM variant doubled performance
• Mean score 623 (vs DQN 121)
• Stable across hyperparameters

Atari Results



• Gaussian policy output
• Normalized returns per thread
• Smooth torque control in HalfCheetah, Walker2d
• Comparable to DDPG, but CPU-only

MuJoCo Results

MuJoCo Performance



Labyrinth 3D Tasks

• Partial observability
• LSTM version solves mazes
• Sparse rewards handled by entropy regularization

3D Navigation



Driving from Vision

• RGB camera input
• Steering, throttle, brake actions
• 75–90% of human performance
• Input noise → better generalization

TORCS Racing



What Really Matters?

• Shared RMSProp → smoother learning
• β = 0.005–0.02 best for exploration
• tₘₐₓ = 5 optimal
• 16 threads ≈ best speed/stability tradeoff

Ablation Studies



Linear Speedup from Threads

• Speed scales almost linearly up to 16 threads
• Gradient noise across threads cancels out
• Implicit variance reduction

Scalability



• C++/Lua + OpenMP threads
• No GPU used
• Shared memory for gradients
• Linear LR decay after 10M steps
• LSTM hidden = 256

Practical Setup 



Weaknesses of A3C

• No replay → less sample efficient
• Slightly non-reproducible (async noise)
• Still needs tuning (β, LR)
• Diminishing returns after 32 threads

Limitations



Algorithms Inspired by A3C

• A2C: synchronous version
• PPO: clipped objective for stability
• IMPALA: scalable distributed RL
• AlphaStar / AlphaZero: inherited async policy–value design

Evolution



What We Learned?

1. Asynchronous parallelism = stability + speed
2. Replay memory can be replaced by decorrelated agents
3. A3C handles all RL regimes
4. Foundation for modern RL (PPO, IMPALA, etc.)

Key Takeaways



Why A3C Mattered?

• First scalable CPU-based deep RL system
• Unified continuous and discrete control
• Inspired all subsequent distributed RL frameworks

Broader Impact



Final Thoughts

• Simple yet revolutionary idea
• Merged learning stability with hardware scalability
• Remains a cornerstone of reinforcement learning research

Conclusion



Thank you


