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Background & 
Motivation
• Reinforcement Learning (RL): learn by trial-and-error to 

maximize reward
• Low-dimensional inputs are handled with static Q-tables
• Challenge: high-dimensional inputs (e.g. raw images) + 

unstable training with deep nets
• Prior approaches: handcrafted features + linear models
• DQN: learn directly from pixels on nonlinear models



DQN Architecture on Atari games 
(Input → Features → Q-values)



Q-Learning

• Q(s,a): expected discounted return from state s taking action a

• Bellman optimality:  𝑄∗ 𝑠, 𝑎 = 𝐸"#
• Iterative update: 

• For this case you have to go through all possible state action values, inefficient -> function 

approximator for Q

• DQN learns                                 with a deep network

• Policy during control 𝑎$ = 𝑎𝑟𝑔𝑚𝑎𝑥%𝑄(𝑠$, 𝑎; 𝜃)(with ε-greedy exploration)

1-ε ε



Theoretical components
DQN is 
• Model-free: learns V/Q/π 

directly from samples

• Off-policy based: it learns 
a value function for a target 
(greedy) policy while data 
come from a different 
behavior policy (e.g., 
ε-greedy with replay).



Stabilization
• Experience Replay: store 

(s,a,r,s’) and sample 
random minibatches 
during updating 
parameters:

• Breaks temporal 
correlation

• Improves sample 
efficiency via reuse



Stabilization
• Target Network θ⁻: compute targets with a frozen copy of θ

• 𝑦 = 𝑟 + 𝛾	𝑚𝑎𝑥!!𝑄 𝑠", 𝑎"; 	𝜃#

• L = 𝑦	 − 𝑄 𝑠, 𝑎; 𝜃$ 	, sync θ⁻ ← θ every C

Updates:



Preprocessing

Input
210×160×RGB 
with 128-color 
palette
Take per pixel 
max for Frame I 
and i-1 to 
remove sprite 
flicker

Convert RGB to 
luminance (Y). 
This drops colour 

but keeps 
intensity/edges.
210x160x1images

Down sample

the grayscale 
image to 84×84

Take last 4 
frames

Input of DQN model
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Q(s,↑)

Q(s,↓)

32 filters
8x8, stride 4

64 filters
4x4, stride 2

64 filters
3x3, stride 1

Input
3136

Output 
512

Input 
512

Output 
#Actions

Input
84x84x4

Output 
20×20×32

Output 
9×9×64

Output 
7×7×64
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Algorithm



Reward & TD-error clipping

• Reward clipping: map rewards to {−1,0,1}→ normalized 
scale across games. 
One LR works everywhere.

• TD error: 

Clip error δ to [−1,1]: acts like Huber loss (L2 near 0, L1 
for ∣δ∣>1) → caps per-sample gradient.



Training Protocol (Atari)



Visualizing DQN Representations with t-SNE
• Two-dimensional t-SNE embedding of the representations in the last 

hidden layer assigned by DQN to game states



Results — DQN Performance
• Linear/value-function baselines previously favored for stability but 

can’t handle complex nonlinear relationships (e.g. SARSA)



Stability features importance



Impact on AI

1
2

3

Advanced deep RL: 
Double DQN, Prioritized 
Replay, Critic-Actor 
Networks

Influenced large-scale 
systems (e.g., AlphaGo’s 
use of deep nets + RL)

Paved the way for 
general game-playing 
and real-world control 
applications



Conclusions

• DQN = Q-learning + deep CNN (pixels → Q-values)

• Stabilizers (replay, target net, clipped TD loss) made deep RL 
practical

• Results: human-level control in many Atari games with a single 
agent architecture

• Impact: breakthrough in DRL with many successors and 
applications

• Takeaway: smart training design overcame instability.


