
Human-Level Control
through Deep

Reinforcement Learning
V. Mnih, K. Kavukcuoglu, D. Silver, et al.

Nature (2015)

Background &
Motivation
• Reinforcement Learning (RL): learn by trial-and-error to

maximize reward
• Low-dimensional inputs are handled with static Q-tables
• Challenge: high-dimensional inputs (e.g. raw images) +

unstable training with deep nets
• Prior approaches: handcrafted features + linear models
• DQN: learn directly from pixels on nonlinear models

DQN Architecture on Atari games
(Input → Features → Q-values)

Q-Learning

• Q(s,a): expected discounted return from state s taking action a

• Bellman optimality: 𝑄∗ 𝑠, 𝑎 = 𝐸"#
• Iterative update:

• For this case you have to go through all possible state action values, inefficient -> function

approximator for Q

• DQN learns with a deep network

• Policy during control 𝑎$ = 𝑎𝑟𝑔𝑚𝑎𝑥%𝑄(𝑠$, 𝑎; 𝜃)(with ε-greedy exploration)

1-ε ε

Theoretical components
DQN is
• Model-free: learns V/Q/π

directly from samples

• Off-policy based: it learns
a value function for a target
(greedy) policy while data
come from a different
behavior policy (e.g.,
ε-greedy with replay).

Stabilization
• Experience Replay: store

(s,a,r,s’) and sample
random minibatches
during updating
parameters:

• Breaks temporal
correlation

• Improves sample
efficiency via reuse

Stabilization
• Target Network θ⁻: compute targets with a frozen copy of θ

• 𝑦 = 𝑟 + 𝛾	𝑚𝑎𝑥!!𝑄 𝑠", 𝑎"; 	𝜃#

• L = 𝑦	 − 𝑄 𝑠, 𝑎; 𝜃$, sync θ⁻ ← θ every C

Updates:

Preprocessing

Input
210×160×RGB
with 128-color
palette
Take per pixel
max for Frame I
and i-1 to
remove sprite
flicker

Convert RGB to
luminance (Y).
This drops colour

but keeps
intensity/edges.
210x160x1images

Down sample

the grayscale
image to 84×84

Take last 4
frames

Input of DQN model

DQN Architecture on Atari games
(Input → Features → Q-values)

Q(s,↑)

Q(s,↓)

32 filters
8x8, stride 4

64 filters
4x4, stride 2

64 filters
3x3, stride 1

Input
3136

Output
512

Input
512

Output
#Actions

Input
84x84x4

Output
20×20×32

Output
9×9×64

Output
7×7×64

DQN Architecture on Atari games
(Input → Features → Q-values)

Q(s,↑)

Q(s,↓)

32 filters
8x8, stride 4

64 filters
4x4, stride 2

64 filters
3x3, stride 1

Input
3136

Output
512

Input
512

Output
#Actions

Algorithm

Reward & TD-error clipping

• Reward clipping: map rewards to {−1,0,1}→ normalized
scale across games.
One LR works everywhere.

• TD error:

Clip error δ to [−1,1]: acts like Huber loss (L2 near 0, L1
for ∣δ∣>1) → caps per-sample gradient.

Training Protocol (Atari)

Visualizing DQN Representations with t-SNE
• Two-dimensional t-SNE embedding of the representations in the last

hidden layer assigned by DQN to game states

Results — DQN Performance
• Linear/value-function baselines previously favored for stability but

can’t handle complex nonlinear relationships (e.g. SARSA)

Stability features importance

Impact on AI

1
2

3

Advanced deep RL:
Double DQN, Prioritized
Replay, Critic-Actor
Networks

Influenced large-scale
systems (e.g., AlphaGo’s
use of deep nets + RL)

Paved the way for
general game-playing
and real-world control
applications

Conclusions

• DQN = Q-learning + deep CNN (pixels → Q-values)

• Stabilizers (replay, target net, clipped TD loss) made deep RL
practical

• Results: human-level control in many Atari games with a single
agent architecture

• Impact: breakthrough in DRL with many successors and
applications

• Takeaway: smart training design overcame instability.

