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Contributions (R deepseck

> Introduces DeepSeekMath-7B, a SOTA math reasoning model.
> A meticulous Iterative data mining pipeline for crawling the web.

> Introduces Group Relative Policy Optimization (GRPO).
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Figure 1 | Top1 accuracy of open-source models on the competition-level MATH benchmark
(Hendrycks et al., 2021) without the use of external toolkits and voting techniques.
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Pretraining Data & Corpus Construction
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Figure 2 | An iterative pipeline that collects mathematical web pages from Common Crawl.
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Pretraining Data & Corpus Construction

English Benchmarks Chinese Benchmarks
Math Corpus Size MMLU Gaokao Gaokao
GSMSK MATH OCW SAT STEM CMATH MathCloze MathOA
No Math Training N/A 2.9% 3.0% 2.9% 15.6% 195%  12.3% 0.8% 17.9%
MathPile 8.9B 2.7% 3.3% 2.2% 12.5% 15.7% 1.2% 0.0% 2.8%
OpEﬂWEhMﬂth 136]3 115%} Bgufu 3?%} 313"}5 29 ﬁ% 1689&1 DDua"fu 1"-]:2%_1-
Prooft-Pile-2 51.9B 14.3% 11.2% 3.7% 43.8% 292%  19.9% 51% 11.7%

DeepSeekMath Corpus 120.2B 23.8% 13.6% 4.8% 56.3% 33.1% 41.5% 5.9% 23.6%

Table 1 | Performance of DeepSeek-LLM 1.3B trained on different mathematical corpora, evalu-
ated using few-shot chain-of-thought prompting. Corpus sizes are calculated using our tokenizer
with a vocabulary size of 100K.
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Three stages of LLM training

Pre-training Alignment
Stage Stage
Instruction Human Preference |
Pre-training |—— | Alignment —> | Alignment ——>| Prompting
(e.g., SFT) (e.g., RLHF) :
Training & Fine-tuning Inference

The 3 steps of LLM training [1]
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RL in the context of LLMs
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Simplified RLHF Process [3]
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Proximal Policy Optimization (PPO)
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Group Relative Policy Optimization (GRPO)
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GRPO Variants
* Outcome Supervision RL:
A, — 7 — rizmean(r)
A =17 = std (r)
* Process Supervision RL:
R — {{ mdex(l) N ,I‘index(Kl)},- . I’gldex(l), o !réndex(KG)}}
~index(j) _ mdex(;} —mean(R)
gF o std(R)

f--f'ndex(j) .

Ai,r = Zindex(j)::r r;
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GRPO Variants

Algorithm 1 Iterative Group Relative Policy Optimization

Input initial policy model mg, ,; reward models r,; task prompts D; hyperparameters ¢, 8,
1: policy model mg « mg,,
2: foriteration=1,...,1do
3: reference model m,.f « mp 4

4 forstep=1,..., M do

5: Sample a batch Dy from D

6: Update the old policy model mg,, « mg

7: Sample G outputs {0;}?, ~ 7g,, (- | q) for each question q € D,

8: Compute rewards {r;}? , for each sampled output o; by running r,,

9: Compute A;, for the t-th token of o; through group relative advantage estimation.
10: for GRPO iteration=1, ..., p do
11: Update the policy model g by maximizing the GRPO objective (Equation 21)
12z Update ry through continuous training using a replay mechanism.
I|‘-jl.‘.l|!pl.l|! T
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Discussion: Code Training Benefits Mathematical Reasoning

Traini . Training Tokens w /o Tool Use w/ Tool Use
raining Setting
General Code Math GSM8S8K MATH CMATH GSM8K+Python MATH+Python

No Continual Training - - -~ 2.9% 3.0% 12.3% 2.7% 2.3%

Two-Stage Training
Stage 1: General Training 400B — — 2.9% 3.2% 14.8% 3.3% 2.3% 4
Stage 2: Math Training - - 150B 19.1% 14.4%  37.2% 14.3% 6.7% ]
Stage 1: Code Training — 400B - 5.9% 3.6% 19.9% 12.4% 10.0%
Stage 2: Math Training — - 150B 21.9% 15.3% 39.7% 17.4% 9.4%

One-Stage Training
Math Training — — 150B 20.5% 13.1% 37.6% 11.4% 6.5%
Code & Math Mixed Training - 400B 150B 17.6% 12.1%  36.3% 19.7% 13.5%

Table 6 | Investigation of how code affects mathematical reasoning under different training
settings. We experiment with DeepSeek-LLM 1.3B, and evaluate its mathematical reasoning
performance without and with tool use via few-shot chain-of-thought prompting and few-shot
program-of-thought prompting, respectively.

15



WHAT STARTS HERE CHANGES THE WORLD

The University of Texas at Austin

Discussion: Arxiv Papers seem Ineffective in improving Math Reasoning

English Benchmarks C'i1ine5$ Benchma;ks
Model Size ArXiv Corpus
g GSMSK MATH OCW SAT 1;1%1;:[; CMATH ME;?S';E h?:hkéng

No Math Training  29%  3.0% 29% 156% 195% 123%  08%  17.9%
DeepSeek-LLM 1.3B \fathPile 27%  33% 22% 125% 157%  1.2% 0.0% 2.8%

ArXiv-RedPajama 33%  34% 4.0% 94% 9.0%  7.4% 0.8% 2.3%

No Math Training  29.0% 12.5% 6.6% 40.6% 38.1% 459%  59%  21.1% ”
DeepSeek-Coder-Base-v1.5 7B 1., pjje 236% 11.5% 7.0% 469% 358% 37.9%  42%  25.6% ]

ArXiv-RedPajama 28.1% 11.1% 7.7% 50.0% 352%  42.6% 7.6% 24 8%

Table 8 | Effect of math training on different arXiv datasets. Model performance is evaluated
with few-shot chain-of-thought prompting.

ArXiv Corpus miniF2F-valid miniF2F-test

No Math Training 20.1% 21.7%
MathPile 16.8% 16.4%
ArXiv-RedPajama 14.8% 11.9%

Table 9 | Effect of math training on different arXiv corpora, the base model being DeepSeek-
Coder-Base-v1.5 7B. We evaluate informal-to-formal proving in Isabelle.
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Discussion: Why RL works?
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Figure 7 | The Maj@K and Pass@K of SFT and RL DeepSeekMath 7B on GSM8K and MATH
(temperature 0.7). It was noted that RL enhances Maj@K but not Pass@K.
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Conclusion

» Data Curation: DeepSeekMath surpasses all open-source models on the MATH benchmark
and nears closed-source model performance through large-scale training with rich
mathematical web data.

» Algorithm: They introduce Group Relative Policy Optimization (GRPO) which
effectively polishes 1ts response distribution with lower memory usage compared to PPO.

» Limitations & Future Work: The model struggles with geometry and theorem-proof tasks
and lacks strong few-shot learning ability. Their future work aims to refine data selection and
reinforcement learning approaches to address these gaps.
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