Gymnasium: Standard APls for Reinforcement Learning

Aditya Patel

Why Standardization in RL Matters

Before Gym (pre-2016): custom simulators,
Inconsistent resets, non-comparable results.

Problem: no reproducibility; results from one
lab could not be validated by others.

Solution: a benchmark suite (shared set of
environments + unified API).

Atari breakout

Why Standardization in RL Matters

Before Gym (pre-2016): custom simulators,
Inconsistent resets, non-comparable results.

Problem: no reproducibility; results from one
lab could not be validated by others.

Solution: a benchmark suite (shared set of
environments + unified API).

Cannot compare athletes’ speed if everyone is
running on different terrain

Atari breakout

OpenAl Gym - Brockman, et al. 2016

To play: black
Move: 14 Komi: 0.9 Handicap: @ Captures B: O W: @
ABCDEFGHI

Episode 6859

9
8
7
6
3
4
3
2
1

Observation Tape
Qutput Tape
Targets

Current reward - 1.000

Cumulative reward - 2.010

Action : Tuple(move over input
write to the ou
prediction: A)

Different environments in Gym

The Gym API: A Minimal Standard

Two key calls: Spaces: define legal actions & Wrappers: transform
reset() > initial observation. observations. environments without changing
step(action) = returns (obs, reward, done, info). - Discrete(n) AP
Box(low, high, shape) (e.g. stack frames, normalize rewards).
Dict, Tuple
ob0 = env.reset () # sample environment state, return first observation
a0 = agent.act (ob0) # agent chooses first action
obl, rew(O, done0O, info0 = env.step(al) # environment returns observation,

reward, and boolean flag indicating if the episode is complete.
al = agent.act (obl)
ob2, rewl, donel, infol = env.step(al)

a99 = agent.act (099)

obl00, rew99, done99, info2 = env.step(a9%99)
done99 == True => terminal

OpenAl - Gym 2016

Gym's Impact and Ecosystem

Classic Control (CartPole, MountainCar), Atari (Breakout, Pong), MuJoCo (HalfCheetah, Ant).

Enabled breakthrough algorithms:

PPO (stable policy gradients),
SAC (exploration via entropy),

HER (goal relabeling in sparse rewards).

Integrates with RL libraries: Stable-Baselines3, RLIib, CleanRL, Dopamine.

= N | /(fCheetah-v2 (MuloCo),
MountainCar-v0, a simple environment . ; B, a continuous control agent

emphasizing momentum and delayed reward. ., learningto run efficiently.

MDP vs POMDP

Markov Decision Process (MDP)

Agent has full access to the true state
Observation = state itself
Environment is fully observable

Decision made directly on current state

Partially Observable MDP (POMDP)

* Agent has limited or noisy access to the stat
* Observation = partial view of the state
* Environmentis partially observable

* Decision made on a belief (probability over states)

MDP vs POMDP

Markov Decision Process (MDP)

Full state observable: M =(S, A, T,R, n)

Sis a set of states of the environment.

A is a set of actions available to the agent.

T:SxA > ASisthe environment transition
function, representing its dynamics.

R:Sx A xS - Risthereward function which is used
to define the agent’s task.

1 € AS is the initial state distribution

Partially Observable MDP (POMDP)

Partial observation:M=(S,A, T,R, Q, O, p)

« Sisasetof states of the environment.

 Alisasetofactionsavailable to the agent.

« T:SxA > ASisthe environment transition function,
representing its dynamics.

« R:SxAxS->Risthereward function whichisused to
define the agent’s task.

* Qisasetof possible observations

 O:S-> AQisthe observation function mapping states to

observations.

u € AS is the initial state distribution

Reason for Decline

Ambiguous termination: conflated task Not theory aligned: APl didn't reflect
failure (true terminal) and timeouts (artificial POMDP structure.
cutoff).

Leads to wrong value estimation.

Vectorization was an afterthought: Stalled maintenance: APl Maintainace
inefficient parallel execution. stopped after 2021

Gymnasium - Towers et al. 2024

01 02

Created by the Farama Foundation (2024) as Backward compatible
successor to Gym.

03 04
Clearer semantics: aligns with POMDP Practical improvements: explicit episode
definitions. endings, reproducibility guarantees, scalable

vectorization.

Gymnasium Core Abstractions

Env: single task, refined API. VectorEnv: formalizes parallel stepping
(sync/async/custom).

Space: extended to model structured data (Dict, Registry: strict versioning, reproducible
Graph, OneOf). experiments.

Novel Idea -Functional API (FuncEnv): POMDP-Aligned

Initial > start state distribution.
observation - what agent sees.
transition > next state given action.
reward - feedback function.

terminal 2 end condition. (doesn't correspond to POMDP theory, but super important)

s = reset_fn(key) # sample initial state

o = observation_fn(s) # get initial observation

a = policy(o) # agent chooses action

s_next = transition_fn(s,a) # next state from dynamics T(s,a)

r =reward_fn(s,a,s_next) # compute reward R(s,a,s’)

done = terminal_fn(s_next) # true terminal condition

trunc = truncation_fn(t) # time or boundary cutoff

0 = observation_fn(s_next) # next observation

s =s_next # update state

if done or trunc: # stop if ended or truncated
break

Matches formal POMDP tuple (S,A,T,R,O,u).

Functional design = JAX/NumPYy friendly; efficient batching, reproducible.

Episode Endings: Termination vs Truncation

Terminated: true end of task. E.g., pole falls over.
Truncated: cutoff imposed by time/budget. E.g., simulation stops after 200 steps even though pole is balanced.

This matters because of bootstrapping:

At termination, future rewards = O.

At truncation, the next-state still has potential future value.

Algebraic Spaces: Richer Modeling

Beyond simple Box and Discrete.

Composite and structured types:

Dict: multimodal observations (e.g. images + proprioception).
2 Sequence: variable-length inputs (e.g. NLP).
Graph: relational structures (e.g. social networks, molecule environments).

OneOf: actions that could be discrete or continuous.

Mirrors algebraic data types - more natural modeling.

Algebraic Spaces: Richer Modeling

Original env: torque control (in Newton-meters)
env = gym.make()

original_space = env.action_space # e.g., Box(-10, 10, shape=(3,))

Transform: normalize torques to [-1, 1] for the policy
normalized_space = original_space.map/(
x: Box(low=-1.0, high=1.0, shape=x.shape)

Agent acts 1in normalized space

action_norm = normalized_space.sample() # e.qg., [0.5, -0.2, 0.1]

action_real = np.interp(action_norm, [-1, 1], # Map back before applying

[original_space.low, original_space.high])

obs, reward, done, _, _ = env.step(action_real)

Built-in Vectorization

without major changes to algorithm

Implementation

SyncVectorEnv: runs N envs sequentially and

batches results, fast for lightweight tasks

AsyncVectorEnv: runs envs in subprocesses,
better for heavier tasks.

Practical impact: RL training loops much

faster when many envs can run in parallel.

|s the choice arbitrary?

Vectorization enables performance gains

env.step()

Single environment,
single agent step

@jax.vmap
env.step()

Dimension

;fBatch
-

Multiple environments,
Multiple agents steps

https://medium.com/data-science/vectorize-and-parallelize-rl-environments-with-jax-g-learning-at-the-
speed-of-light-49d07373adf5

Vectorization

le7

a 101 o S
. . . ync Mode
Simple & lightweight Cartpole Qs TSN Modj £ Async Mode
75 1 Async Mode Jrtad o e
Game - Custom Mode L 8 Custom Mode
1.50 n 8]
g - D
Custom mode utilizes numpy S 1251 e N
. . o e 6
based vectorization. Q o 2
N 1.00 - o
o g >
Q751 0 4
Sync mode outperforms Async 0 / o
) 2 0}
ﬁ 0.50 - 7 =
Custom mode outperforms S 29
both 0231 // =4
e
0.00 1 s ‘ ‘ L R 0 it e ot x
Async is overkill 0 200 400 600 800 1000 < 0 200 400 600 800 1000
Number of Environments Number of Environments

(a) Individual environment steps per second. Higheris (b) Average time to perform a single batched step.
better. Lower is better.

Vectorization

* Conversely, in a more complex env like lunar lander:

90000 —— Sync Mode
Async Mode 12000 1
- —o
80000
10000 -
o O
< 70000 =
o o
O O
% 60000 g 8000
. . —e— Sync Mode
L 50000 - .If"\a\‘\‘ g Async Mode
w w
4 l £ 6000
@ 40000 - Q
4+ 4+
" "
30000 - 4000 -
20000 -
2000 -
0 250 500 750 1000 1250 1500 1750 2000 0 20 40 60 80 100
Number of Environments Number of Environments

(a) Individual environment steps per second, executed (b) Individual environment steps per second, executed
on a MacBook Pro. Higher is better. on Google Colab. Higher is better.

Environments and Ecosystem

-Core suites: Toy Text, Classic Control, Box2D, MuJoCo (continuity with Gym).

