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Why Standardization in RL Matters

Before Gym (pre-2016): custom simulators, 
inconsistent resets, non-comparable results.

Problem: no reproducibility; results from one 
lab could not be validated by others.

Solution: a benchmark suite (shared set of 
environments + unified API).

Atari breakout



Why Standardization in RL Matters

Before Gym (pre-2016): custom simulators, 
inconsistent resets, non-comparable results.

Problem: no reproducibility; results from one 
lab could not be validated by others.

Solution: a benchmark suite (shared set of 
environments + unified API).

Cannot compare athletes’ speed if everyone is 
running on different terrain

Atari breakout



OpenAI  Gym – Brockman, et al. 2016

Different environments in Gym



The Gym API: A Minimal Standard

Two key calls:

• reset() → initial observation.

• step(action) → returns (obs, reward, done, info).

Spaces: define legal actions & 
observations.

• Discrete(n)

• Box(low, high, shape)

• Dict, Tuple

Wrappers: transform 
environments without changing 
API

(e.g. stack frames, normalize rewards).

OpenAI - Gym 2016



Gym's Impact and Ecosystem

Unified playground: Classic Control (CartPole, MountainCar), Atari (Breakout, Pong), MuJoCo (HalfCheetah, Ant).

Enabled breakthrough algorithms:

• PPO (stable policy gradients),

• SAC (exploration via entropy),

• HER (goal relabeling in sparse rewards).

Integrates with RL libraries: Stable-Baselines3, RLlib, CleanRL, Dopamine.

MountainCar-v0, a simple environment 
emphasizing momentum and delayed reward.

HalfCheetah-v2 (MuJoCo), 
a continuous control agent 
learning to run efficiently.



MDP vs POMDP

Markov Decision Process (MDP) Partially Observable MDP (POMDP)

• Agent has full access to the true state

• Observation = state itself

• Environment is fully observable

• Decision made directly on current state

• Agent has limited or noisy access to the stat

• Observation = partial view of the state

• Environment is partially observable

• Decision made on a belief (probability over states)



MDP vs POMDP

Markov Decision Process (MDP)

Full state observable: M = (S, A, T, R, μ)

•  S is a set of states of the environment. 

• A is a set of actions available to the agent. 

• T : S × A → ∆S is the environment transition 

function, representing its dynamics. 

• R: S × A × S → R is the reward function which is used 

to define the agent’s task. 

•  µ ∈ ∆S is the initial state distribution

Partially Observable MDP (POMDP)

Partial observation: M = (S, A, T, R, Ω, O, μ)

• S is a set of states of the environment.

• A is a set of actions available to the agent. 

• T : S × A → ∆S is the environment transition function, 

representing its dynamics. 

• R: S × A × S → R is the reward function which is used to 

define the agent’s task. 

• Ω is a set of possible observations 

• O: S → ∆Ω is the observation function mapping states to 

observations. 

•  µ ∈ ∆S is the initial state distribution

•  



Reason for Decline 

Ambiguous termination: conflated task 
failure (true terminal) and timeouts (artificial 
cutoff).

Leads to wrong value estimation.

Not theory aligned: API didn't reflect 
POMDP structure. 

Vectorization was an afterthought: 
inefficient parallel execution.

Stalled maintenance: API Maintainace 
stopped after 2021



Gymnasium – Towers et al.  2024
01

Created by the Farama Foundation (2024) as 
successor to Gym.

02

Backward compatible

03

Clearer semantics: aligns with POMDP 
definitions.

04

Practical improvements: explicit episode 
endings, reproducibility guarantees, scalable 
vectorization.



Gymnasium Core Abstractions

Env: single task, refined API. VectorEnv: formalizes parallel stepping 
(sync/async/custom).

Space: extended to model structured data (Dict, 
Graph, OneOf).

Registry: strict versioning, reproducible 
experiments.



Novel Idea -Functional API (FuncEnv): POMDP-Aligned

initial → start state distribution.

transition → next state given action.

observation → what agent sees.

reward → feedback function.

terminal → end condition. (doesn’t correspond to POMDP theory, but super important)

 
s = reset_fn(key)              # sample initial state
o = observation_fn(s)          # get initial observation

a = policy(o)              # agent chooses action
 s_next = transition_fn(s,a) # next state from dynamics T(s,a)
 r = reward_fn(s,a,s_next)   # compute reward R(s,a,s′)
 done = terminal_fn(s_next)   # true terminal condition
 trunc = truncation_fn(t)    # time or boundary cutoff
 o = observation_fn(s_next)   # next observation
 s = s_next                   # update state
 if done or trunc:           # stop if ended or truncated
      break

Matches formal POMDP tuple (S,A,T,R,O,μ).

Functional design = JAX/NumPy friendly; efficient batching, reproducible.



Episode Endings: Termination vs Truncation
• Terminated: true end of task. E.g., pole falls over.

• Truncated: cutoff imposed by time/budget. E.g., simulation stops after 200 steps even though pole is balanced.

This matters because of bootstrapping:

• At termination, future rewards = 0.

• At truncation, the next-state still has potential future value.



Algebraic Spaces: Richer Modeling

1
Beyond simple Box and Discrete.

2

Composite and structured types:

Dict: multimodal observations (e.g. images + proprioception).

Sequence: variable-length inputs (e.g. NLP).

Graph: relational structures (e.g. social networks, molecule environments).

OneOf: actions that could be discrete or continuous.

3
Mirrors algebraic data types → more natural modeling.



Algebraic Spaces: Richer Modeling



Built-in Vectorization

• Vectorization enables performance gains 

without major changes to algorithm 

implementation

• SyncVectorEnv: runs N envs sequentially and 

batches results, fast for lightweight tasks

• AsyncVectorEnv: runs envs in subprocesses, 

better for heavier tasks.

• Practical impact: RL training loops much 

faster when many envs can run in parallel.

• Is the choice arbitrary? 
https://medium.com/data-science/vectorize-and-parallelize-rl-environments-with-jax-q-learning-at-the-
speed-of-light-49d07373adf5



Vectorization

• Simple & lightweight Cartpole 
Game

• Custom mode utilizes numpy 
based vectorization.

• Sync mode outperforms Async

• Custom mode outperforms 
both

• Async is overkill



Vectorization

• Conversely, in a more complex env like lunar lander:



Environments and Ecosystem

•Core suites: Toy Text, Classic Control, Box2D, MuJoCo (continuity with Gym).


