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What is SPO?

SPO is an algorithm that addresses a significant flaw in PPO, one of today's most widely used reinforcement learning
methods.

The Problem it Solves: PPO often becomes unstable when training the large, deep neural networks required for
complex tasks.

SPO's Solution: It makes one small but powerful change to PPQO's objective function to guarantee more stable and
reliable training.

The "Best of Both Worlds™": It achieves the rock-solid stability of older, complex methods (like TRPO) while keeping
the speed and simplicity of PPO.
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The Goal of Policy Gradient RL

Goal:
* In Reinforcement Learning, we want an agent to learn a policy
7t that maximizes its cumulative reward.

* Policy Gradient methods do this by directly adjusting the e )

policy's parameters (8) in the direction that promises more . s, v

reward. : » Agent (uls)
Challenge: How big a step should we take? : a::lnon
* Too Small: Learning is extremely slow and sample-inefficient. i 8,1 '
+ Too Large: A single bad update can cause the policy to R et «——{ Environment

completely collapse, a catastrophic failure from which it may "

never recover.

The key is to find the "Goldilocks zone":
* Make the biggest possible step without destabilizing the policy.
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Two OG Algorithms

TRPO (Trust Region Policy Optimization)
« Strength: Guarantees stable, monotonic improvement by mathematically defining a "trust region" and keeping
updates within it. It's very reliable.

* Weakness: Uses complex and computationally expensive second-order optimization. It's difficult to implement and too
slow for many large-scale problems.

PPO (Proximal Policy Optimization)
« Strength: Drastically simplifies TRPO using only first-order optimization. It's fast, simple to implement, and has
become the default choice for many RL tasks.

* Weakness: Its core mechanism—ratio clipping—is a heuristic that often fails to keep the policy within the trust region,
leading to instability.
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TRPO

The main goal of TRPO is to answer the question: “How can | improve my current policy (m) to get a better one (')
without risking a total collapse in performance?”

Answer: The improvement in performance between our old policy and the new one is equal to the average advantage
of the actions the new policy takes.

1 1n(m): Total expected Reward for policy ©
N(7) = n(m) = ———Esmp.(),a~ic(15)[An (8, a)] m'’- The new policy
I—n 7t: Our current policy
A, (s, a): Advantage function

In Simple Words: If our new policy (7' ) The Problem: Notice the subscript s ~ p™1(-). This means the
consistently chooses actions that are better average is calculated over the states visited by the new policy. We
than the old policy’s average action in those don’t have data for that yet! We can’t use this equation directly to
same situations, our overall score will go up. make an update.
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TRPO Fix: Find a safe lower bound

This is the core trick of TRPO. Since we can't calculate the exact improvement, we find a guaranteed minimum

improvement instead, called a “performance lower bound.”

1

7i(als)

n(m) —n(m) > EESNM(.),GNM.M I:i - Ar(s, a)] — Penalty Term

m(als)

What it says: The performance improvement is, at
minimum, equal to the expected advantage, but we have
to subtract a penalty if the new policy becomes too
different from the old one.

In Simple Words: We can estimate the improvement
using data from our old policy (notice the subscript
changed to s ~ p,;), but we must be careful.

If we change the policy too much, this estimate becomes
unreliable. The penalty term formalizes this “be careful”
idea.

7(als) This is an importance sampling ratio. It

(als) reweights the advantage to account for using
data from the old policy.

Sampling Ratio = Probability newpolicy takesactiona

Probability old policy takes actiona

Penalty Term : is KL Divergence Dy,
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TRPO: Final Optimization

Putting everything together we get

mwo(ase)  «

mgXE(St,at)Nﬂaold |:77901d(at|3t) 'A(St:at)] s.t. IE[DKL(TreoldHﬂ-g)] <é

What it says: Our goal is to maximize the — 0: The parameters of our neural network that defines the policy.
estimated advantage (the “surrogate — mg,,,: The old policy (before the update).
objective”)...but with a very important

— mp: The new policy (that we are trying to find).

constraint. A: An estimate of the advantage function from our collected data.

— Dgr(ma,,,||me) < 6: This is the Trust Region Constraint, the mathematical rule for
“don’t change the policy too much.”

In Simple Words: “Make the policy as good
as you can, BUT do not let the new policy
deviate from the old one by more than a
small amount, d.”
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Proximal Policy Optimization (PPO) was designed to get the same benefits as TRPO—stable, reliable policy updates—
but without the complex and computationally expensive second-order optimization.
The core question PPO answers is: “Can we get trust region benefits using only first-order gradients, making the

algorithm simpler and faster?”
Jetip(0) = B(san)~ms, [min (n(ﬂ) - Ay, clip(ry(8),1 — ¢, 1+ ¢) - At)]

Probability newpolicy takes actiona

ri(0) = ﬁ%j—ﬁ% is the standard importance sampling ratio. Sampling Ratio = Probability old policy takes actiona

At is the estimated advantage for taking action a; in state s;.
e is a small hyperparameter (e.g., 0.2) that defines the size of the trust region.

clip(r¢(#),1—e¢,14¢€): This function constrains the ratio r+() to stay within the range [1—¢, 1+€].

The min function is the key to the algorithm. It takes a minimum of two terms: the normal policy objective and the clipped
version. This creates a pessimistic, lower-bound objective.
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PPO: How the Clipping works

The clipping has a different effect depending on whether the advantage is positive or negative.

Vor:(8) - Ay, Ay >0,7(0) <146
Vo Jaiip(6) = § Vori(0) Ay, A<, r(0) >1—¢
0, otherwise.

* When Advantage is Positive A’, > 0:  The agent wants to increase the probability of taking this action.
* When Advantage is Negative A’, < 0: The agent wants to decrease the probability of taking this “*bad" action.

But there is a problem:
While simple and often effective, the clipping mechanism is a heuristic, not a guarantee.

» Zero Gradient Problem: The biggest issue is that once the ratio r,(8) moves outside the [1 — €, 1 + €] clipping range,
the objective function becomes flat.

+ The Consequence: A flat objective means the gradient for that data point becomes zero. The algorithm loses its
“corrective signal™—it no longer receives a gradient to push the policy back inside the trust region. This can lead to
instability, especially when training complex models where large, uncontrolled updates are more likely.
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SPO

Simple Policy Optimization (SPO) was created to directly solve the “zero gradient” problem that makes PPO unstable.
SPO’s goal is to keep the simplicity and efficiency of PPO but enforce the trust region constraint in a more reliable and
mathematically sound way. The core question SPO answers is: “Can we design a new objective function that
provides a continuous corrective signal to keep the policy within the trust region?”

A
Jsp0(6) = Euyauyers {n(a) A= ) - 1]2}

r(0) - A’;: “Surrogate Objective”. This term drives the policy to take actions that have a higher estimated advantage. It's
the “performance-seeking” part of the function

A
- |2—t| - [r+(@) — 1]* : This is the novel SPO penalty, and it is the core contribution of the algorithm.
€
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SPO: Penalty Term

|Ay|
2€

- [re(0) — 1]

* [r(®) — 1]? is a quadratic penalty. Unlike PPO’s hard clip, this creates a smooth penalty that increases
progressively in size as the ratio r,(8) moves away from 1.

* Because it is a smooth function, its gradient is never zero (unless the ratio is perfectly on target).

* This means there is always a corrective force that gently pulls the policy ratio back towards the trust
region boundary, preventing it from drifting too far away.



WHAT STARTS HERE CHANGES THE WORLD

SPO: Why it works?

The “e-aligned” Objective: The paper provides a formal property to explain why the SPO obijective is so effective. it
is “e-aligned.”

r=1+sign(A) - €

The formula defines the optimal probability ratio (r*). It's the PPO SPO
"perfect" or "optimal" value for the probability ratio that will give the o 2
best policy improvement without leaving the trust region.

If the advantage is positive (A > 0), the objective is maximized when

the ratio is at the upper bound, 1 + €. The penalty gently pulls it back o’

if it tries to exceed this

If the advantage is negative (A < 0), the objective is maximized when @ vihgudent <> @) - 1/c(.q
the ratio is at the lower bound, 1 = €. The penalty again provides a without gradient > gradient direction

corrective pull if it tries to go lower.
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SPO: Algorithm

Algorithm 1 Simple Policy Optimization (SPO)

1: Initialize: Policy and value networks g, Vs, hyperparameter ¢, value loss and policy entropy coefficients c1, ¢z

2: Output: Optimal policy network 7y«

3: while not converged do

4:  # Data collection

5:  Collect data D = {(s¢, at, n)}?i 1 using the current policy network mg

6:  # The networks before updating
To T Moy Voua < Vo
8
9

# Estimate the advantage fi(st, at) based on V_
: Use GAE (Schulman et al., 2015b) technique to estimate the advantage A(s;, a;)
10: #ﬁ Estimate the return f{t
11: Ry« Vg (st) + A(se, ae)
12:  for each training epoch do
13: # Compute policy loss £, (This is the only difference between SPO and PPO)

~

A 2
14: Ly~ _% Eivd _roladls) Alsgyaq) — ST [ molaglse) 1] }

g q (@t]st) 2e Moo 1q (@t]5t)

15: # Compute policy entropy L. and value loss £, A

16 Lo % T Hmp(lse), Lo gh Ty [Valse) — Ri?

17: # Compute total loss £

18: L+ ﬁp +e1Ly —cale

19: # Update parameters ¢ and ¢ through backpropagation, Ay and A is the step sizes
20: 0 0—XNVoL, ¢ d—AgVyL

21:  end for

22: end while
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Experiment 1: Benchmarking on MuJdoCo

Goal: To compare SPQ’s performance against PPO
and a suite of other modern policy gradient algorithms
on standard continuous control benchmarks.

Setup: The algorithms were tested on six MuJoCo-v4
environments. Performance was aggregated and
compared using several statistical metrics like Median,
Interquartile Mean (IQM), and Optimality Gap.
Results:

 The paper shows in Figure 4 that SPO
achieved the best performance across almost
all metrics.

* It had a higher median, IQM, and mean
score, and a lower optimality gap compared
to PPO-Clip, PPO-Penalty, TR-PPO, and
others.

* This demonstrates that even with a simple
implementation, SPO is a highly competitive
and robust algorithm for standard tasks.

RPO
TR-PPO-RB
PPO-RB
TR-PPO
SPU

SPO
PPO-Penalty
PPO-Clip

RPO
TR-PPO-RB
PPO-RB
TR-PPO
SPU

SPO
PPO-Penalty
PPO-Clip
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Experiment 2: Scaling Policy Networks

Goal: To test the central hypothesis that SPO’s

" . . : Table 2. Detailed h ¢ d in SPO.
stability allows it to successfully train a deep policy able 2. Detailed hyperparameters used in SPO

netWOFkS, a known fal'u re pOI nt for PPO . Hyperparameters | Atari 2600 (Bellemare et al., 2013) MuJoCo (Todorov et al., 2012)
S t . Number of workers 8 8
etup: Horizon 128 256
Learning rate 0.00025 0.0003
Learning rate decay Linear Linear
* The researchers conducted two key sets of Optimizer Adam Adam
H . Total steps 10M 10M
eXperl ments: Batch size 1024 2048
Update epochs 4 10
* In MuJoCo, they i d the poli twork s s 1
, y Increased the policy networ Mini-batch size 256 512
depth from a standard 3 layers to a much GAE parameter A 0.95 0.95
Discount factor 0.99 0.99
deeper network, 7 layers, for both PPO and Value loss coefficient ¢1 0.5 0.5
S PO Entropy loss coefficient ca 0.01 0.0
: Probability ratio hyperparameter € 0.2 02

* In Atari 2600, they replaced the default CNN
encoder with a much larger ResNet-18 network.
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Experiment 2: Scaling Policy Networks

* PPO performance collapsed when the network depth was increased to 7 layers; PPO’s performance catastrophically
dropped in most MudJoCo environments. Table 1 quantifies the reason: PPQO’s “ratio deviation” (how far the policy strays
from the trust region) exploded to uncontrollable values (e.g., ‘3689.957‘ in Humanoid-v4).

« SPO’s performance was stable and often improved with the deeper 7-layer network. Table 1 confirms that SPO
successfully kept the ratio deviation within a small, controlled bound (e.g., ‘0.191° in Humanoid-v4).

. 3 layers 7 layers
Environment Index PPO SPO PPO SPO
Antvd Averagereturn (1) | 53232 4911.3 1002.8 4672.5
v Ratio deviation () 0.229 0.101 548.060 0.190
Average return (1) 4550.2 3602.4 22423 5307.3
HalfCheetah-v4 Ratio deviation (}) | 0225 0086 | 1675340  0.188
Hopper-vd Average return (1) 11194 1480.3 975.9 1507.6
pper Ratio deviation () 0.164 0.067 113.178 0.194
Humanoid-va Average return (1) 795.1 2870.0 614.1 4769.9
v v Ratio deviation () 3689.957 0.179 2411.845 0.191
. g Average return (1) 143908.8 152378.7 92849.7 176928.9
HumanoidStandup-v4  pio Geviation (1) | 2547.499 0.182 4018.718 0.187
Average return (1) 33523 2870.2 1110.9 3008.1
Walker2d-v4 Ratio deviation (J) |  0.170 0.070 998.101 0.157
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Experiment 2: Scaling Policy Networks

Assault Asterix BeamRider Spacelnvaders
30000
£ E E 4000 £
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Timesteps 1e7 Timesteps 1e7 Timesteps 1e7 Timesteps 1e7
o Assault 0 Asterix o BeamRider o Spacelnvaders
5 10 . _CC_) 10 _5 10 _5 10
© B k:: B
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] 2 2 2
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< 10 T T T T T < 10 T T T T T < 10 T T T T T < 10 T T T T T
000 025 050 0.75 1.00 000 025 050 0.75 1.00 000 025 050 0.75 1.00 0.00 025 050 0.75 1.00
Timesteps 1e7 Timesteps 1e7 Timesteps 1e7 Timesteps 1e7
—— PPO-0.2 (ResNet-18) —— PPO-0.1 (ResNet-18) ~—— SPO-0.2 (ResNet-18)  ——- PPO-0.2(CNN)  —-- SP0-0.2 (CNN)

A similar outcome occurred in Atari. Figure 6 shows that when using the large ResNet-18 encoder, SPO’s performance

was “significantly improved,” while PPO struggled to maintain control over the probability ratio, failing to leverage the more
powerful network.
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Experiment 3: Objective Function Analysis

Goal: To verify that SPO’s specific objective function
design is superior to other possible “e-aligned”

objectives. 0201 i
Setup: The authors compared the optimization behavior % 0.15 g 0
of three objectives on the same batch of data: 2, g

« PPO's clipping function (f,,,), g 01 £ /

* SPO’s quadratic penalty (f,,,), ggw. $011 /

* and a simpler quadratic objective (fg;nee) that @ 2 :

is also e-aligned. 0.001 ; | . . . 004, . : : :

Results: Figure 7 provides a clear ablation. 0 50 E;gﬂch 150 200 0 50 E;gﬂch 150 200
* PPO achieved the highest “surrogate objective” value PO —— sPO Simple objective

but at the cost of an uncontrollable ratio deviation

that quickly violated the € = 0.2 bound.

* Both f,, and £ successfully constrained the ratio
deviation.

* However, f,,, achieved a much better surrogate

objective value than £, ..

imple
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Conclusion

» The paper’s experiments provide strong, multifaceted evidence supporting its claims.

* They demonstrate that SPO is a high-performing algorithm on standard benchmarks.

* More importantly, it overcomes a fundamental stability weakness in PPO, making it a more suitable and robust
choice for training the large-scale neural networks common in modern deep reinforcement learning.
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