
OCTOBER 2025

SIMPLE POLICY
OPTIMIZATION
Ajay Yadav

Contents:
• Overview………………………………………………………………………..……….. (3)

• Background ………………..…………………………………………………..……….. (5)

• TRPO.…………………..……………..………………………………………..……….. (8)

• PPO………………………………………..…………………..………………..……….(12)

• SPO……………………………………..……………..………………………….……..(15)

• Experiments………………..……………………………...…………………..………..(20)

• Conclusion………………………………………………………….………….………..(26)

OVERVIEW

What is SPO?

SPO is an algorithm that addresses a significant flaw in PPO, one of today's most widely used reinforcement learning
methods.

The Problem it Solves: PPO often becomes unstable when training the large, deep neural networks required for
complex tasks.

SPO's Solution: It makes one small but powerful change to PPO's objective function to guarantee more stable and
reliable training.

The "Best of Both Worlds": It achieves the rock-solid stability of older, complex methods (like TRPO) while keeping
the speed and simplicity of PPO.

BACKGROUND

The Goal of Policy Gradient RL
Goal:
• In Reinforcement Learning, we want an agent to learn a policy
ᵴ� that maximizes its cumulative reward.

• Policy Gradient methods do this by directly adjusting the
policy's parameters (ᵳ�) in the direction that promises more
reward.

Challenge: How big a step should we take?
• Too Small: Learning is extremely slow and sample-inefficient.

• Too Large: A single bad update can cause the policy to
completely collapse, a catastrophic failure from which it may
never recover.

The key is to find the "Goldilocks zone":
• Make the biggest possible step without destabilizing the policy.

Two OG Algorithms
TRPO (Trust Region Policy Optimization)
• Strength: Guarantees stable, monotonic improvement by mathematically defining a "trust region" and keeping

updates within it. It's very reliable.

• Weakness: Uses complex and computationally expensive second-order optimization. It's difficult to implement and too
slow for many large-scale problems.

PPO (Proximal Policy Optimization)
• Strength: Drastically simplifies TRPO using only first-order optimization. It's fast, simple to implement, and has

become the default choice for many RL tasks.

• Weakness: Its core mechanism—ratio clipping—is a heuristic that often fails to keep the policy within the trust region,
leading to instability.

TRPO

TRPO
The main goal of TRPO is to answer the question: “How can I improve my current policy (ᵴ�) to get a better one (ᵴ�′)
without risking a total collapse in performance?”

In Simple Words: If our new policy (ᵰ�′)
consistently chooses actions that are better
than the old policy’s average action in those
same situations, our overall score will go up.

The Problem: Notice the subscript s ∼ ρ˜π(·). This means the
average is calculated over the states visited by the new policy. We
don’t have data for that yet! We can’t use this equation directly to
make an update.

ᵳ�(ᵴ�): Total expected Reward for policy ᵰ�
ᵴ�’: The new policy
ᵴ�: Our current policy
Aᵴ� (s, a): Advantage function

Answer: The improvement in performance between our old policy and the new one is equal to the average advantage
of the actions the new policy takes.

TRPO Fix: Find a safe lower bound
This is the core trick of TRPO. Since we can't calculate the exact improvement, we find a guaranteed minimum
improvement instead, called a “performance lower bound.”

What it says: The performance improvement is, at
minimum, equal to the expected advantage, but we have
to subtract a penalty if the new policy becomes too
different from the old one.

In Simple Words: We can estimate the improvement
using data from our old policy (notice the subscript
changed to s ∼ ρπ), but we must be careful.

If we change the policy too much, this estimate becomes
unreliable. The penalty term formalizes this “be careful”
idea.

This is an importance sampling ratio. It
reweights the advantage to account for using
data from the old policy.

Penalty Term : is KL Divergence DKL

Sampling Ratio = ᵄ�ᵅ�ᵅ�ᵄ�ᵄ�ᵄ�ᵅ�ᵅ�ᵅ�ᵆ�ᵆ� ᵅ�ᵅ�ᵆ� ᵅ�ᵅ�ᵅ�ᵅ�ᵅ�ᵆ� ᵆ�ᵄ�ᵅ�ᵅ�ᵆ� ᵄ�ᵅ�ᵆ�ᵅ�ᵅ�ᵅ� ᵄ�ᵄ�ᵅ�ᵅ�ᵄ�ᵄ�ᵄ�ᵅ�ᵅ�ᵅ�ᵆ�ᵆ� ᵅ�ᵅ�ᵅ� ᵅ�ᵅ�ᵅ�ᵅ�ᵅ�ᵆ� ᵆ�ᵄ�ᵅ�ᵅ�ᵆ� ᵄ�ᵅ�ᵆ�ᵅ�ᵅ�ᵅ� ᵄ�

TRPO: Final Optimization
Putting everything together we get

What it says: Our goal is to maximize the
estimated advantage (the “surrogate
objective”)...but with a very important
constraint.

In Simple Words: “Make the policy as good
as you can, BUT do not let the new policy
deviate from the old one by more than a
small amount, δ.”

PPO

PPO
Proximal Policy Optimization (PPO) was designed to get the same benefits as TRPO—stable, reliable policy updates—
but without the complex and computationally expensive second-order optimization.
The core question PPO answers is: “Can we get trust region benefits using only first-order gradients, making the
algorithm simpler and faster?”

Sampling Ratio = ᵄ�ᵅ�ᵅ�ᵄ�ᵄ�ᵄ�ᵅ�ᵅ�ᵅ�ᵆ�ᵆ� ᵅ�ᵅ�ᵆ� ᵅ�ᵅ�ᵅ�ᵅ�ᵅ�ᵆ� ᵆ�ᵄ�ᵅ�ᵅ�ᵆ� ᵄ�ᵅ�ᵆ�ᵅ�ᵅ�ᵅ� ᵄ�ᵄ�ᵅ�ᵅ�ᵄ�ᵄ�ᵄ�ᵅ�ᵅ�ᵅ�ᵆ�ᵆ� ᵅ�ᵅ�ᵅ� ᵅ�ᵅ�ᵅ�ᵅ�ᵅ�ᵆ� ᵆ�ᵄ�ᵅ�ᵅ�ᵆ� ᵄ�ᵅ�ᵆ�ᵅ�ᵅ�ᵅ� ᵄ�

The min function is the key to the algorithm. It takes a minimum of two terms: the normal policy objective and the clipped
version. This creates a pessimistic, lower-bound objective.

PPO: How the Clipping works
The clipping has a different effect depending on whether the advantage is positive or negative.

• When Advantage is Positive A’t > 0: The agent wants to increase the probability of taking this action.
• When Advantage is Negative A’t < 0: The agent wants to decrease the probability of taking this ``bad'' action.

But there is a problem:
While simple and often effective, the clipping mechanism is a heuristic, not a guarantee.

• Zero Gradient Problem: The biggest issue is that once the ratio rt(θ) moves outside the [1 − ϵ, 1 + ϵ] clipping range,
the objective function becomes flat.

• The Consequence: A flat objective means the gradient for that data point becomes zero. The algorithm loses its
“corrective signal”—it no longer receives a gradient to push the policy back inside the trust region. This can lead to
instability, especially when training complex models where large, uncontrolled updates are more likely.

SPO

SPO
Simple Policy Optimization (SPO) was created to directly solve the “zero gradient” problem that makes PPO unstable.
SPO’s goal is to keep the simplicity and efficiency of PPO but enforce the trust region constraint in a more reliable and
mathematically sound way. The core question SPO answers is: “Can we design a new objective function that
provides a continuous corrective signal to keep the policy within the trust region?”

rt(θ) · A’t: “Surrogate Objective”. This term drives the policy to take actions that have a higher estimated advantage. It’s
the “performance-seeking” part of the function

: This is the novel SPO penalty, and it is the core contribution of the algorithm.

SPO: Penalty Term

• [rt(θ) − 1]2 is a quadratic penalty. Unlike PPO’s hard clip, this creates a smooth penalty that increases
progressively in size as the ratio rt(θ) moves away from 1.

• Because it is a smooth function, its gradient is never zero (unless the ratio is perfectly on target).

• This means there is always a corrective force that gently pulls the policy ratio back towards the trust
region boundary, preventing it from drifting too far away.

SPO: Why it works?
The “ϵ-aligned” Objective: The paper provides a formal property to explain why the SPO objective is so effective. it
is “ϵ-aligned.”

r∗ = 1 + sign(A) · ϵ

The formula defines the optimal probability ratio (r*). It's the
"perfect" or "optimal" value for the probability ratio that will give the
best policy improvement without leaving the trust region.

If the advantage is positive (A > 0), the objective is maximized when
the ratio is at the upper bound, 1 + ϵ. The penalty gently pulls it back
if it tries to exceed this

If the advantage is negative (A < 0), the objective is maximized when
the ratio is at the lower bound, 1 − ϵ. The penalty again provides a
corrective pull if it tries to go lower.

SPO: Algorithm

r∗ = 1 + sign(A) · ϵ

EXPERIMENTS

Experiment 1: Benchmarking on MuJoCo
Goal: To compare SPO’s performance against PPO
and a suite of other modern policy gradient algorithms
on standard continuous control benchmarks.
Setup: The algorithms were tested on six MuJoCo-v4
environments. Performance was aggregated and
compared using several statistical metrics like Median,
Interquartile Mean (IQM), and Optimality Gap.
Results:

• The paper shows in Figure 4 that SPO
achieved the best performance across almost
all metrics.

• It had a higher median, IQM, and mean
score, and a lower optimality gap compared
to PPO-Clip, PPO-Penalty, TR-PPO, and
others.

• This demonstrates that even with a simple
implementation, SPO is a highly competitive
and robust algorithm for standard tasks.

Experiment 2: Scaling Policy Networks
Goal: To test the central hypothesis that SPO’s
stability allows it to successfully train a deep policy
networks, a known failure point for PPO.
Setup:

• The researchers conducted two key sets of
experiments:

• In MuJoCo, they increased the policy network
depth from a standard 3 layers to a much
deeper network, 7 layers, for both PPO and
SPO.

• In Atari 2600, they replaced the default CNN
encoder with a much larger ResNet-18 network.

Experiment 2: Scaling Policy Networks
• PPO performance collapsed when the network depth was increased to 7 layers; PPO’s performance catastrophically
dropped in most MuJoCo environments. Table 1 quantifies the reason: PPO’s “ratio deviation” (how far the policy strays
from the trust region) exploded to uncontrollable values (e.g., ‘3689.957‘ in Humanoid-v4).
• SPO’s performance was stable and often improved with the deeper 7-layer network. Table 1 confirms that SPO
successfully kept the ratio deviation within a small, controlled bound (e.g., ‘0.191‘ in Humanoid-v4).

Experiment 2: Scaling Policy Networks

A similar outcome occurred in Atari. Figure 6 shows that when using the large ResNet-18 encoder, SPO’s performance
was “significantly improved,” while PPO struggled to maintain control over the probability ratio, failing to leverage the more
powerful network.

Experiment 3: Objective Function Analysis
Goal: To verify that SPO’s specific objective function
design is superior to other possible “ϵ-aligned”
objectives.
Setup: The authors compared the optimization behavior
of three objectives on the same batch of data:

• PPO’s clipping function (fppo),
• SPO’s quadratic penalty (fspo),
• and a simpler quadratic objective (fsimple) that

is also ϵ-aligned.
Results: Figure 7 provides a clear ablation.
• PPO achieved the highest “surrogate objective” value

but at the cost of an uncontrollable ratio deviation
that quickly violated the ϵ = 0.2 bound.

• Both fspo and fsimple successfully constrained the ratio
deviation.

• However, fspo achieved a much better surrogate
objective value than fsimple.

CONCLUSION

Conclusion
• The paper’s experiments provide strong, multifaceted evidence supporting its claims.
• They demonstrate that SPO is a high-performing algorithm on standard benchmarks.
• More importantly, it overcomes a fundamental stability weakness in PPO, making it a more suitable and robust

choice for training the large-scale neural networks common in modern deep reinforcement learning.

THANK YOU

