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OVERVIEW



What is SPO?

SPO is an algorithm that addresses a significant flaw in PPO, one of today's most widely used reinforcement learning 
methods.

The Problem it Solves: PPO often becomes unstable when training the large, deep neural networks required for 
complex tasks.

SPO's Solution: It makes one small but powerful change to PPO's objective function to guarantee more stable and 
reliable training.

The "Best of Both Worlds": It achieves the rock-solid stability of older, complex methods (like TRPO) while keeping 
the speed and simplicity of PPO.



BACKGROUND



The Goal of Policy Gradient RL
Goal:
• In Reinforcement Learning, we want an agent to learn a policy 
ᵴ� that maximizes its cumulative reward.

• Policy Gradient methods do this by directly adjusting the 
policy's parameters (ᵳ� ) in the direction that promises more 
reward.

Challenge: How big a step should we take?
• Too Small: Learning is extremely slow and sample-inefficient.  

• Too Large: A single bad update can cause the policy to 
completely collapse, a catastrophic failure from which it may 
never recover. 

The key is to find the "Goldilocks zone": 
• Make the biggest possible step without destabilizing the policy.



Two OG Algorithms
TRPO (Trust Region Policy Optimization)
• Strength: Guarantees stable, monotonic improvement by mathematically defining a "trust region" and keeping 

updates within it. It's very reliable.

• Weakness: Uses complex and computationally expensive second-order optimization. It's difficult to implement and too 
slow for many large-scale problems.

PPO (Proximal Policy Optimization)
• Strength: Drastically simplifies TRPO using only first-order optimization. It's fast, simple to implement, and has 

become the default choice for many RL tasks.

• Weakness: Its core mechanism—ratio clipping—is a heuristic that often fails to keep the policy within the trust region, 
leading to instability.



TRPO



TRPO
The main goal of TRPO is to answer the question: “How can I improve my current policy (ᵴ�) to get a better one (ᵴ�′) 
without risking a total collapse in performance?”

In Simple Words: If our new policy (ᵰ�′ ) 
consistently chooses actions that are better 
than the old policy’s average action in those 
same situations, our overall score will go up.

The Problem: Notice the subscript s ∼ ρ˜π(·). This means the 
average is calculated over the states visited by the new policy. We 
don’t have data for that yet! We can’t use this equation directly to 
make an update.

ᵳ�(ᵴ�): Total expected Reward for policy ᵰ�
ᵴ�’: The new policy
ᵴ�: Our current policy
Aᵴ� (s, a): Advantage function 

Answer: The improvement in performance between our old policy and the new one is equal to the average advantage 
of the actions the new policy takes.



TRPO Fix: Find a safe lower bound
This is the core trick of TRPO. Since we can't calculate the exact improvement, we find a guaranteed minimum 
improvement instead, called a “performance lower bound.”

What it says: The performance improvement is, at 
minimum, equal to the expected advantage, but we have 
to subtract a penalty if the new policy becomes too 
different from the old one.

In Simple Words: We can estimate the improvement 
using data from our old policy (notice the subscript 
changed to s ∼ ρπ), but we must be careful. 

If we change the policy too much, this estimate becomes 
unreliable. The penalty term formalizes this “be careful” 
idea.

This is an importance sampling ratio. It 
reweights the advantage to account for using 
data from the old policy.

Penalty Term : is KL Divergence DKL

Sampling Ratio = ᵄ�ᵅ�ᵅ�ᵄ�ᵄ�ᵄ�ᵅ�ᵅ�ᵅ�ᵆ�ᵆ� ᵅ�ᵅ�ᵆ� ᵅ�ᵅ�ᵅ�ᵅ�ᵅ�ᵆ� ᵆ�ᵄ�ᵅ�ᵅ�ᵆ� ᵄ�ᵅ�ᵆ�ᵅ�ᵅ�ᵅ� ᵄ�ᵄ�ᵅ�ᵅ�ᵄ�ᵄ�ᵄ�ᵅ�ᵅ�ᵅ�ᵆ�ᵆ� ᵅ�ᵅ�ᵅ� ᵅ�ᵅ�ᵅ�ᵅ�ᵅ�ᵆ� ᵆ�ᵄ�ᵅ�ᵅ�ᵆ� ᵄ�ᵅ�ᵆ�ᵅ�ᵅ�ᵅ� ᵄ�



TRPO: Final Optimization
Putting everything together we get

What it says: Our goal is to maximize the 
estimated advantage (the “surrogate 
objective”)...but with a very important 
constraint.

In Simple Words: “Make the policy as good 
as you can, BUT do not let the new policy 
deviate from the old one by more than a 
small amount, δ.”



PPO



PPO
Proximal Policy Optimization (PPO) was designed to get the same benefits as TRPO—stable, reliable policy updates—
but without the complex and computationally expensive second-order optimization. 
The core question PPO answers is: “Can we get trust region benefits using only first-order gradients, making the 
algorithm simpler and faster?”

Sampling Ratio = ᵄ�ᵅ�ᵅ�ᵄ�ᵄ�ᵄ�ᵅ�ᵅ�ᵅ�ᵆ�ᵆ� ᵅ�ᵅ�ᵆ� ᵅ�ᵅ�ᵅ�ᵅ�ᵅ�ᵆ� ᵆ�ᵄ�ᵅ�ᵅ�ᵆ� ᵄ�ᵅ�ᵆ�ᵅ�ᵅ�ᵅ� ᵄ�ᵄ�ᵅ�ᵅ�ᵄ�ᵄ�ᵄ�ᵅ�ᵅ�ᵅ�ᵆ�ᵆ� ᵅ�ᵅ�ᵅ� ᵅ�ᵅ�ᵅ�ᵅ�ᵅ�ᵆ� ᵆ�ᵄ�ᵅ�ᵅ�ᵆ� ᵄ�ᵅ�ᵆ�ᵅ�ᵅ�ᵅ� ᵄ�

The min function is the key to the algorithm. It takes a minimum of two terms: the normal policy objective and the clipped 
version. This creates a pessimistic, lower-bound objective.



PPO: How the Clipping works
The clipping has a different effect depending on whether the advantage is positive or negative.

• When Advantage is Positive A’t > 0:     The agent wants to increase the probability of taking this action.
• When Advantage is Negative A’t < 0: The agent wants to decrease the probability of taking this ``bad'' action.

But there is a problem:
While simple and often effective, the clipping mechanism is a heuristic, not a guarantee.

• Zero Gradient Problem: The biggest issue is that once the ratio rt(θ) moves outside the [1 − ϵ, 1 + ϵ] clipping range, 
the objective function becomes flat.

• The Consequence: A flat objective means the gradient for that data point becomes zero. The algorithm loses its 
“corrective signal”—it no longer receives a gradient to push the policy back inside the trust region. This can lead to 
instability, especially when training complex models where large, uncontrolled updates are more likely.



SPO



SPO
Simple Policy Optimization (SPO) was created to directly solve the “zero gradient” problem that makes PPO unstable. 
SPO’s goal is to keep the simplicity and efficiency of PPO but enforce the trust region constraint in a more reliable and 
mathematically sound way. The core question SPO answers is: “Can we design a new objective function that 
provides a continuous corrective signal to keep the policy within the trust region?”

rt(θ) · A’t: “Surrogate Objective”. This term drives the policy to take actions that have a higher estimated advantage. It’s 
the “performance-seeking” part of the function  

: This is the novel SPO penalty, and it is the core contribution of the algorithm.



SPO: Penalty Term

• [rt(θ) − 1]2 is a quadratic penalty. Unlike PPO’s hard clip, this creates a smooth penalty that increases 
progressively in size as the ratio rt(θ) moves away from 1. 

• Because it is a smooth function, its gradient is never zero (unless the ratio is perfectly on target).

• This means there is always a corrective force that gently pulls the policy ratio back towards the trust 
region boundary, preventing it from drifting too far away.



SPO: Why it works?
The “ϵ-aligned” Objective: The paper provides a formal property to explain why the SPO objective is so effective. it 
is “ϵ-aligned.”

r∗ = 1 + sign(A) · ϵ

The formula defines the optimal probability ratio (r*). It's the 
"perfect" or "optimal" value for the probability ratio that will give the 
best policy improvement without leaving the trust region.

If the advantage is positive (A > 0), the objective is maximized when 
the ratio is at the upper bound, 1 + ϵ. The penalty gently pulls it back 
if it tries to exceed this

If the advantage is negative (A < 0), the objective is maximized when 
the ratio is at the lower bound, 1 − ϵ. The penalty again provides a 
corrective pull if it tries to go lower.



SPO: Algorithm

r∗ = 1 + sign(A) · ϵ



EXPERIMENTS



Experiment 1: Benchmarking on MuJoCo
Goal: To compare SPO’s performance against PPO 
and a suite of other modern policy gradient algorithms 
on standard continuous control benchmarks.
Setup: The algorithms were tested on six MuJoCo-v4 
environments. Performance was aggregated and 
compared using several statistical metrics like Median, 
Interquartile Mean (IQM), and Optimality Gap.
Results: 

• The paper shows in Figure 4 that SPO 
achieved the best performance across almost 
all metrics. 

• It had a higher median, IQM, and mean 
score, and a lower optimality gap compared 
to PPO-Clip, PPO-Penalty, TR-PPO, and 
others. 

• This demonstrates that even with a simple 
implementation, SPO is a highly competitive 
and robust algorithm for standard tasks.



Experiment 2: Scaling Policy Networks
Goal: To test the central hypothesis that SPO’s 
stability allows it to successfully train a deep policy
networks, a known failure point for PPO.
Setup: 

• The researchers conducted two key sets of 
experiments:

• In MuJoCo, they increased the policy network 
depth from a standard 3 layers to a much 
deeper network, 7 layers, for both PPO and 
SPO.

• In Atari 2600, they replaced the default CNN 
encoder with a much larger ResNet-18 network.



Experiment 2: Scaling Policy Networks
• PPO performance collapsed when the network depth was increased to 7 layers; PPO’s performance catastrophically 
dropped in most MuJoCo environments. Table 1 quantifies the reason: PPO’s “ratio deviation” (how far the policy strays 
from the trust region) exploded to uncontrollable values (e.g., ‘3689.957‘ in Humanoid-v4).
• SPO’s performance was stable and often improved with the deeper 7-layer network. Table 1 confirms that SPO 
successfully kept the ratio deviation within a small, controlled bound (e.g., ‘0.191‘ in Humanoid-v4).



Experiment 2: Scaling Policy Networks

A similar outcome occurred in Atari. Figure 6 shows that when using the large ResNet-18 encoder, SPO’s performance 
was “significantly improved,” while PPO struggled to maintain control over the probability ratio, failing to leverage the more 
powerful network.



Experiment 3: Objective Function Analysis
Goal: To verify that SPO’s specific objective function 
design is superior to other possible “ϵ-aligned” 
objectives.
Setup: The authors compared the optimization behavior 
of three objectives on the same batch of data: 

• PPO’s clipping function (fppo), 
• SPO’s quadratic penalty (fspo), 
• and a simpler quadratic objective (fsimple) that 

is also ϵ-aligned.
Results: Figure 7 provides a clear ablation.
• PPO achieved the highest “surrogate objective” value 

but at the cost of an uncontrollable ratio deviation 
that quickly violated the ϵ = 0.2 bound.

• Both fspo and fsimple successfully constrained the ratio 
deviation.

• However, fspo achieved a much better surrogate 
objective value than fsimple. 



CONCLUSION



Conclusion
• The paper’s experiments provide strong, multifaceted evidence supporting its claims. 
• They demonstrate that SPO is a high-performing algorithm on standard benchmarks. 
• More importantly, it overcomes a fundamental stability weakness in PPO, making it a more suitable and robust 

choice for training the large-scale neural networks common in modern deep reinforcement learning.
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