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POLICY GRADIENT METHODS

- Reinforcement learning (RL) seeks policy Ty to maximize the expected return:

(Euxnpcle::epdoﬁf;%n J(H) — E’TN’R‘@ [R(T>] T = (807 ap, 81,01, - - - )

Sampled Trajectory (following )

o0
Return of Trajectory R(T) = nytfr(st, at) (Sta at) cT
t=0

Discounted per-transition reward




POLICY GRADIENT METHODS

« Simplest solution: Follow the gradient!

Optimal “Best Performing Policy”

2D representation of “policy space”




HOW DO WE LOOK AT J?

- Expected return can be factored:

Expected Value of Action (downstream following )
Q™ (s,a) = Er, [Y oo v'7(st,at) | S0 = 8,a0 = a

Expected Return ,](9) — E’TNTFQ [R(T)]

(under policy 7)

JO) =) _p™(s) Y molal] $)Q™(s,a)
SES acA

State Visitation Value of Action

Q™ (s,a)
o\
«

p™(s)




HOW DO WE LOOK AT J?

- Expected return can be factored:

Expected Return J(@) — E’TN'TI'Q [R(T)]

(under policy 7)

Expected Value of Action (downstream following )
Q™ (s,a) = Er, [Y oo v'7(st,at) | S0 = 8,a0 = a

J0) =D p™(s) Y mola|s)Q™(s,a)

seS

State Visitation

acA

Q™ (s,a)

LN

Probability of being
in state s

e -
p’?"(«?) ‘

Value of Action

Expected remaining value in
trajectory given action




WHAT IS V] (6)?
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WHAT IS V] (8)?
JO) = p™(s) > mo(a]s)Q™(s,a)

SES acA

Vo (0) =V | > p™(s) > mo(a|s)Q™(s,a)

seS acA
Vo (0) => p™(s) > _ Valme(al| s)]Q™(s,a)
SES ac A

Policy Gradient Theorem: VgJ(0) does not depend on gradient of state-visitations!




WHAT IS V] (8)?
JO) = p™(s) > mo(a]s)Q™(s,a)

SES acA

Vo (0) =V | > p™(s) > mo(a|s)Q™(s,a)

seS acA
Vo (0) => p™(s) > _ Valme(al| s)]Q™(s,a)
SES ac A

Policy Gradient Theorem: VgJ(0) does not depend on gradient of state-visitations!
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WHAT IS V] (6)?

Policy Gradient Theorem: Vg/(08) does not depend on gradient of state-visitations

VoJ(0) x|Egur, Vomg(a | s)Q™ (s, a)

This is an on-policy estimator.

- Actions taken by following g
- Value estimated assuming g
- Computes gradient at 0
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WHAT IS V] (6)?

Policy Gradient Theorem: Vg/(08) does not depend on gradient of state-visitations

VoJ(0) x|Egmr, Vomg(a | s)

Q™ (s, a)

This is an on-policy estimator.

Actions taken by following mg
Value estimated assuming mg
Computes gradient at 6

High Level Idea:
- What happens when we break these assumptions?
- Why would we want to?

How do we solve the new problem?
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WHAT IS V] (6)?

Policy Gradient Theorem: Vg/(08) does not depend on gradient of state-visitations

VoJ(0) x|Egmr, Vomg(a | s)

Q"™ (s,a)

This is an on-policy estimator.

Actions taken by following mg
Value estimated assuming mg
Computes gradient at 6

High Level Idea:
- What happens when we break these assumptions?

- Why would we want to?

p"?(s) starts to matter!

How do we solve the new problem? J(0) = Zp”" (s) Z mo(a | $)Q™ (s, a)

seS acA
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WHY WOULD WE WANT TO BREAK THESE?

Motivation: Make on-policy RL slightly more like supervised learning
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POLICY GRADIENT - REINFORCEMENT LEARNING

Algorithm 1: Advantage Actor-Critic (A2C) Training Loop
Input: Initial policy parameters 0, value parameters ¢
while not converged do
- Dataset collected inside the loop |Collect N trajectories {7; : {(s¢,a:)}1¥} ¥ ; using current policy mp;
. - AT — RT _U%(e,)-
 Each collected sample is used once Bstimate advantages: Aj = Rf —V¥(s;);

/ Update policy (actor)
» All current samples compute the loss b 0+ a9 VoE,, om0 0 [l08 Ta(az | 52)AT]; ]

// Update value function (critic)

L ¢ — ¢ - aqﬁvqustwp"e,atN'/rg [(V¢(5t) - R;)Z]v
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ACTION/VALUE PREDICTION - SUPERVISED LEARNING

« Dataset exists outside the loop

« Each sample used many times (epochs)

» Loss is computed on mini-batches

Controls compute / memory costs
Stochasticity sometimes helpful

Algorithm 2: Supervised Learning

Training Loop

Input: Initial model parameters 6

1 Input:|Labeled dataset D = {(a],

StTa RT)}t,T

2 while not converged do

3 || Sample minibatch B = {(a;, s;,

R;)}, from D;

'y

// Compute average loss

B A "
5 | |£(0) = 5 Xm0 485, a4, 05, Ry)
// Update model parameters
6 0+ 0 —aVyL(0);

// Compute model predictions
Q¢, V¢ = fe(Sj) for all (aj,sj,Rj) € B;

~ E(a,,s;,R;)~D [£(aj,aj,05, Rj)l;
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HOW TO ADJUST

« Gradient approximated by minibatches

« Each (state, action, reward) sample used multiple times

« Dataset size “separate” from optimization steps

« Dataset does not depend on 8 and optimization
* If Ty shifts too much, some states never resampled

« RL has stability concerns

16



HOW TO ADJUST

« Gradient approximated by minibatches

« Each (state, action, reward) sample used multiple times

« Dataset size “separate” from optimization steps

« Dataset does not depend on 8 and optimization
* If Ty shifts too much, some states never resampled

« RL has stability concerns

S—

Optimize current policy w.r.t
samples collected on older policy
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HOW TO ADJUST

« Gradient approximated by minibatches

« Each (state, action, reward) sample used multiple times

« Dataset size “separate” from optimization steps

« Dataset does not depend on 8 and optimization
* If Ty shifts too much, some states never resampled

« RL has stability concerns

S—

Optimize current policy w.r.t
samples collected on older policy

Requires small policy updates
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HOW TO ADJUST

« Gradient approximated by minibatches Optimize current policy w.r.t

samples collected on older policy

S—

« Each (state, action, reward) sample used multiple times
Requires small policy updates

« Dataset size “separate” from optimization steps

« Dataset does not depend on 8 and optimization

* If Ty shifts too much, some states never resampled _
Small policy updates help

« RL has stability concerns
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PROBLEM SCOPE!

J Optimize current policy w.r.t samples collected on older policy
- Break the on-policy assumption a little bit

X Optimize current policy w.r.t samples collected on external (possibly expert) policy
- No (or even weaker) on-policy assumption

For this see:

« off-policy RL,

* behavioral cloning,

« offline RL

. ” (Ghosh, 2020)
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https://arxiv.org/pdf/2006.11266

WHAT DOES SAMPLE REUSE MEAN IN RL?

The usual setting:
Samples collected by policy g, optimize mg toward mg+:
Measure &

ObjeCtive: J(a) — ]ETNﬂ-g [Rﬂ-e (7')] step here ™
g
Gradient expectation w.r.t mg: Vo J(6) < Eq~r, [Voma(a | $)Q™ (s, a)]

Once we step policy parameters (68" = 8 + aVgJ(6)), no longer at gy

(@)
VB] Ttg,

If we want to step AGAIN without collecting new data

* Need new objective and estimator

21



WHAT DOES SAMPLE REUSE MEAN IN RL?

Old samples collected by policy mg, but we want to keep optimizing mg,:

Optimize: J(0) = Erw [R7 (1) = Epn, 2] < Vot

Gradient: VoJ(0') = E;pmor amm, [Vormor (a | $)Q™ (s,a)] = Esupro amnmy (7]

Measure here

Requires a change of variable between probability densities

Stép from here
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WHAT DOES SAMPLE REUSE MEAN IN RL?

Old samples collected by policy mg, but we want to keep optimizing mg,:

OptirT]ize: J(O0) =E r, [R"(7)] ~ Ermmg[?7] szammﬁnd\,r
Gradlent: VOJ(H,) = ESNP%’ YA T g1 [Velﬂ'g/(a | S)Qwel (33 a’)] ~ Elffvae ,anvTg [?7]

Measure here

Requires a change of variable between probability densities

Stép from here
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CHANGE OF VARIABLE - IMPORTANCE SAMPLING

Given two densities p and q:

Banplf@)] = 3 @) (0) = 3 a@)2 f(0) =1 Bﬂf(w)}

rzeX reX (

Example: Single transition following my, but sampled from mg:

o (A
J(mor) = Es,a,r)~m, [7(5 8)|8] = Zm; (als)r(a, s) Zﬂ'g a|3 || ))( s) = [

a€A a€EA

69@\5\ r=1(a,s)
84

o (-|s)

mo(+|s)

r(- s)ls]
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CHANGE OF VARIABLE - IMPORTANCE SAMPLING

The new re-centered estimator is unbiased (have the same true mean).

But they are different estimators, at finite number of samples they have DIFFERENT ERROR

T ()
ro(]s) 7

True Mean  p = E(4 4. r)~m, | = E(s,a,r)~mys r(-,s)]

X mo (als .
sampleMean fms = S0 g2 S ays) = fim,

(s,a,m)EBx, 7Tg(a|8) (s,a,7)€EBx,,

Sample batch under my Sample batch under my,




IMPORTANCE SAMPLING - ERROR

2
: . r(s,a)mg (s,a) — ume(s, a
Error of re-centered IS estimator:  Var(s 4 r)~mp [fms] z/ (r(s,a)mo (s, 0) = pmo(s, a)) da

A 71'9(8, CL)

In many (non-RL) applications: You pick my so IS is more accurate than the original

In RL, the opposite is true. Optimization picks . We do IS bc we have to, not to reduce error

Error is typically (much) worse when: g << g/

e

Ter T |mg — mg/| > large (and r(s,a) nearly constant)

A policy that shifts too far can lead to terrible approximations

26



WHAT IS OUR NEW ESTIMATOR?

r=1(a,s)
,“QKO‘\ 5\ Measure here
Tor\*|S
« With 1-transition; or (! )7”(-,8)
7r9(.|8) Step from here
S‘
» But we got to state S from the old policy q‘6\0,\‘5\

p™(s) # p™ (s)

* Need importance sampling along the whole trajectory:

H H
‘](7") =K [Z '7'11_17'h ‘ ai:H ~ 71'] =Ervp lz 'Yh_lrh] =Erng
h=1

h=1

_E [ do(s1)m(a1|s1)R(r1|s1,a1)P(sz2|s1,a1) - m(ap|sg)R(ru|sy,an
=Ernqg

H
do(s1)mp(a1|s1)R(r1|s1,a1)P(sz2|s1,a1) - mp(ap|su)R(ru|su, an) —

Notes on Importance Sampling and Policy Gradient (Jiang, 2023)
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https://nanjiang.cs.illinois.edu/files/cs542f23/note6.pdf

WHAT IS OUR NEW ESTIMATOR?

r=1(a,s)
,“QKO‘\ 5\ Measure here
Tor\*|S
« With 1-transition; or (! )7”(-,8)
7r9(.|8) Step from here
S‘
» But we got to state S from the old policy q‘6\0,\‘5\

p™(s) # p™ (s)

* Need importance sampling reweighting for every step in trajectory so far:

H H
‘](7") =K [Z '7'11_17'h ‘ ai:H ~ 71'] =Ervp lz 'Yh_lrh] =Erng
h=1

h=1

Qe

~~~
\1‘\\
S |
=
=2

Pl
o
<

&
—

H
_E do(s1)m(a1|s1)|R(r1|s1,a1)P(sz2|s1,a1) - - |m(am|sa)R(ru|su, an Z"/h_lTh
T~ do(s1)fp(a1|s1)|R(r1|s1,a1)P(sz2|s1,a1) - - |\mp(ap|su |R(re |k, an)

Notes on Importance Sampling and Policy Gradient (Jiang, 2023)
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https://nanjiang.cs.illinois.edu/files/cs542f23/note6.pdf

WHAT IS OUR NEW ESTIMATOR?

« Using the full path has problems:
« Quadratic compute cost (in trajectory length) to reweight each sample

« Variance & Error explodes: multiplying many small or large ratios

* ldea: Use an approximation based on the 1-step update as a proxy

« Control the error by keeping the two policies close

Measure here

Step from here

29



WHAT IS OUR NEW ESTIMATOR?

Measure here
e Claim: p™(s) is close to P™ (s), when Tg is close to Tg,

« Assume | mg(as, s¢) — mgr(ag, sp)l < €,

Step from here

Different action at each decision chosen with prob at most e
lpe(se) —per(s)l = (1 — (1 —€)Y)Ipe/(se) —pa(se)| < 2et

The approximate expected return using off-centered measurements at g

o (at|St)
7o (at|st)

2t€T max
1 -7

Y AT (s4,a4) | + O(

)

‘](0/)|9 ~ ]EStNPG,atN”TG(at|3t)

This proxy objective 1s also a lower bound, optimizing this optimizes the original objective.

Advanced Policy Gradients (Levine, 2020)
Trust Region Policy Optimization (Schulman, 2015)
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WHAT IS OUR NEW ESTIMATOR?

Measure here
e Claim: p™(s) is close to P™ (s), when Tg is close to Tg,
« Assume | mg(as, s¢) — mgr(ag, sp)l < €,

Step from here

Different action at each decision chosen with prob at most e
lpe(se) —per(s)l = (1 — (1 —€)Y)Ipe/(se) —pa(se)| < 2et

The approximate expected return using off-centered measurements at g

Old advantages

’YtA(St,at) + O(

Old actions 7T9/ (at | St)

2termax
.](9’) 0 ~ ]E!swpe,aw"’@(ads‘” mo(at|st) -7

1 —~

)

This proxy objective 1s also a lower bound, optimizing this optimizes the original objective.

Advanced Policy Gradients (Levine, 2020)
Trust Region Policy Optimization (Schulman, 2015)
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KEEPING POLICY UPDATES CLOSE

+ If we keep mgand mg, close we can use the proxy

Measure here

Region with okay error

Step from here

32



SMALL PARAMETER STEPS ! = SMALL POLICY UPDATES.

Example:

Gaussian w/ mean (61) and std (6,): |16 — 8'||= 1 for both cases

Au=1,01 =0, =0.3 Au=1,01=0, =3

008
006
0.04

0.02

000

2 1 0 1 2 3 10 5 0 5 10

Ratio between my/(x)/mg(x) large Ratio between mgr(x)/mg(x) small

Natural Policy Gradients in Reinforcement Learning Explained (Heeswiik, 2022)
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https://arxiv.org/abs/2209.01820
https://arxiv.org/abs/2209.01820
https://arxiv.org/abs/2209.01820

KEEPING POLICY UPDATES CLOSE

If we keep mgand mg, close we can use the proxy Measure here

Need to measure ‘close’ w.r.t. the distribution not the parameters

o (CL | 8) Region with okay error
e el

subject to ([T — mollrv <€) IP-allrv = Y 1P@) - Q)]

In practice, Total Variation (TV) is hard to optimize;
KL-Divergence is easier. Pinsker’s Inequality:

||mor — mol|rv < /2DkuL(mor|| o)

max E mo:(als )A”" (a, s)}

0 s~pg,a~mg(als) (al )

subject to  Dkr(me||m9) <0 Dxu(P| Q) =

Step from here

Y P(z)

zeX

P(z)
Q(z)
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TRUST REGION POLICY OPTIMIZATION

samples collected on old policy

+ Gradient steps can be split by minibatches Optimize current policy w.r.t J
« Each sample can be used multiple times

* If g shifts too much, some states never resampled  geguire small policy updates J

max B py,anmo (als) {

7o (a15) gmo g, s)]

mo(als)

subject to Dkt (mg||mg) < &
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TRUST REGION POLICY OPTIMIZATION

samples collected on old policy

+ Gradient steps can be split by minibatches Optimize current policy w.r.t ~/
« Each sample can be used multiple times

* If g shifts too much, some states never resampled  geguire small policy updates J

o (als)
E AT
rnea;X s~pg,a~g(als) |: (a|s) (a S)]

subject to Dkt (mg||mg) < &
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HOW DO WE SOLVE THIS? TRUST REGION OPTIMIZATION

Xt+1

Xt

Xt—1

Ty (als)
IIIQE}XESNPB,GNWO(MS) (a|s) — <A™ (a,5)
mo) = ||mer — mol|3, <6

Fisher information metric

subject to DKL(’"’()'

Solve each epoch (or mini-batch) step with constrained Newton's method

1. Form a local quadratic approximation to objective
2. Step as far as possible towards solution of quadratic
3. Backtrack if step overshoots constraint

37



CONSTRAINED LINEAR UPDATE - EUCLIDEAN

min  f(x)

z,||lz—zo || <A
Linear approximation: ~ felgl my(z, zx) = fzx) + V()" (@ — k) %(

Up :={z: |z — x| <Ak}

Solve approximation Tomin & T* € arg min mg (). Farthest step down the line
exactly within the ball: z€Uk that stays in the radius

Vi(z)
1f (@)

IE*:.’Ek—Ak

Update new center to x* and iterate
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CONSTRAINED LINEAR UPDATE - KL-DIVERGENCE

Ball is warped locally by F

min x
Linear approximation: ~ fel}}i my(z, %) = f(zx) + V()" (2 — ) (
Up :={z: Dxi(z|zr) = ||z — 2||r = (x — 23) T F(z —2) <A}, v

Solve approximation Tomin & T* € arg min mg (). Farthest step down the line
exactly within the ball: z€Uk that stays in the radius

z* =z — DV f(x)

A 1
o \/me)TF—l(xk)w(xk)F )

Update new center to x* and iterate
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CONSTRAINED LINEAR UPDATE - KL-DIVERGENCE

* .
L in R~ a . .
Solve approximation Tmin & T° € aIg mr'relgi () Farthest step down the line

exactly within the ball: that stays in the radius
x* =z — DV f(x)

A —1
o \/Vf(xk)TF-lm)Vf(xk)F o

Ball is warped locally by F

This is derived from Lagrange multipliers and KKT conditions, assuming solution is on the boundary of constraints

1
L(s,\) =g s+A(5s Fs—A%) s=(x—xz) =Vf(a), F:=F(z) >0
Stationarity VL =0 = s*=—1Flg, B . A »
Tp+1 =Tk + 8 =T — e Fa) Y o) F(zr)” " Vf(xg).
Boundar KT po*x — A2 1__ A
Yy s*' F's A T
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HOW DO WE SOLVE THIS?

5(1+1

Xt

Xt—1

7o (als)
n})a}x Esnpy,anme(als) WAM (a, s)

subject to Dk (mr||mg) = || — 7r9”%‘6 <9

See also:
e Solve + backtracking Newton’s Method

Quasi-Newton / CG-Newton
Natural Gradient Methods

« Expensive!l O(NA3) per step
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https://proceedings.mlr.press/v100/jha20a/jha20a.pdf
https://proceedings.mlr.press/v100/jha20a/jha20a.pdf
https://proceedings.mlr.press/v100/jha20a/jha20a.pdf
https://proceedings.neurips.cc/paper_files/paper/2001/file/4b86abe48d358ecf194c56c69108433e-Paper.pdf

SOFT CONSTRAINTS:

o (als)

7o(als) A™ (a,s)| — BDxr(me||mg)

max [E

07 s~pg,a~mg(als)

» Use first-order methods (SGD) on penalized problem
» KL-penalty Proximal Policy Optimization (PPO-KL)
« Adaptive B: x2 if constraint threshold violated, +2 if well within threshold
* Mirror Descent Policy Optimization (MDPO)

Cc
optimization step’

* Scheduled g = (they also use reverse KL )

» Very sensitive to choice of 8
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https://arxiv.org/pdf/2005.09814

ARE THERE EVEN CHEAPER ROBUST APPROXIMATIONS?

 Clipped Proximal Policy Optimization (PPO)

« Modify objective function to "discourage” steps far from trust region w(s, a) — o (a|s)

((1—€)A™
maxg Ly (6")]o = ¢ (1+ €)A™

| w(s,a)A™

0
VO/L?LIP (el)le — 0

if w(s,a) <1—e€eand A™ <0
if w(s,a) > 1+ € and A™ >0

otherwise

if w(s,a) <1—e€and A™ <0
if w(s,a) >1+¢€and A™ >0

Vo J(0")]s otherwise
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ARE THERE EVEN CHEAPER APPROXIMATIONS?

7o (als)
w(s,a) = ———=
* Clipped Proximal Policy Optimization (PPO) o (als)
0 if w(s,a) <1—eand A™ <0
Per-Sample Gradient: VO/L?LIP (9’)|9 =<0 if w(s,a) >1+¢€and A™ >0

Vo J(0")|s otherwise

Allows steps that bring

Nearby ratio = step freely 0 nolicy OUTSIDE of threshold

[w(s,a) = 1] <e Restricts steps that can be
taken once outside
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UNDERSTANDING THE THRESHOLD

0
VGILtCLIP(GI)le — 0

Four cases: V()’J(el) |0

Observed a good action
Already have high likelihood
Shouldn't increase it too much

w(s,a) >1+e¢

A™ > ()

Observed a good action, have low likelihood  Steps that:
Could increase likelihood more - Increase w(s, a)

- Increase perf

7o (als)

if w(s,a) <1—eand A™ <0 v&9=T705
if w(s,a) >1+¢€and A™ >0

otherwise

g,

Observed a bad action

Already have low likelihood
X Shouldn'’t decrease it too much

A™ < 0

Observed a bad action, have high likelihood

Could decrease likelihood more
Steps that:

- Decrease w(s, a)
- Increase perf
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UNDERSTANDING THE THRESHOLD

0
VGILtCLIP(GI)le — 0

Four cases: V()’J(el) |0

Observed a good action
Already have high likelihood
Shouldn't increase it too much

w(s,a) >1+e¢

A™ > ()

Observed a good action, have low likelihood  Steps that:
Could increase likelihood more - Increase w(s, a)

- Increase perf

7o (als)

if w(s,a) <1—eand A™ <0 v&9=T705
if w(s,a) >1+¢€and A™ >0

otherwise

g,

Observed a bad action

Already have low likelihood
X Shouldn'’t decrease it too much

A™ < 0

Observed a bad action, have high likelihood

Could decrease likelihood more
Steps that:

- Decrease w(s, a)
- Increase perf
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PROXIMAL POLICY OPTIMIZATION: HEALTH MONITORING

« PPO is not even a “soft constraint” optimization -> important to monitor trust region and stability
« Two common metrics:

 Clip Fraction -- what percentage of samples fall outside of the trust region after a step

« Effective Sample Size (ESS) - IS estimator ratios, error behaves as if “"ESS%" less samples were taken

batch_loss/clip_fraction batch_loss/ESS
ph.config.n: 4, graph.config.steps: 16, graph.config.interior_time: 10000, feature.observer.version: G B

Ty is recentered
every 16 batch
steps

New data is
collected




PPO OVERVIEW

Algorithm 2: Proximal Policy Optimization (PPO) Training Loop

Input: Initial policy parameters 6, value parameters ¢
Input: Clip €, epochs K, minibatch size M, entropy coef. cs, value-loss
coef. ¢,, learning rates ayp, oy

while not converged do

// Rollont with the current policy

Collect trajectories {7;}Y, with 7y to obtain {(s;,as, ¢, 5¢41)};

Compute returns R; (e.g., discounted) and advantages A; (e.g.,
GAE);

Normalize advantages: A, < (A; — nz)/ o

Store behavior log-probabilities log mg_,, (at|st); set Ooig < 6;

fork=1,2,...,K // epochs do |

[Shuffle the dataset into minibatches {8}, of size M;

foreach minibatch B, do
// Update policy (actor): gradient ascent on total
objective

6 — 6+ agVo(Laip(8) + cs Lon(0));

// Update value function (critic): gradient
descent on value loss

¢ < ¢ - a¢v¢£value(¢);

49



SO FAR

* Introduced “old sample” corrections to the policy network update

« Requires taking small steps (in “policy space”) to ensure low variance & accurate approximations

« What about corrections update to the Value/Critic/Baseline network?
« In general, value network is “less sensitive” to using old samples than the policy network
« Phasic Policy Gradient (Cobbe, Schulman, 2020) -different number of steps for each / different update frequency
« But, yes, it requires a similar correction when samples may be “much” older

« IMPALA and V-Trace are similar importance sampling updates to the critic!

« See also:

ReTrace
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https://arxiv.org/abs/1205.4839
https://arxiv.org/abs/1205.4839
https://arxiv.org/abs/1205.4839
https://arxiv.org/abs/1205.4839
https://arxiv.org/abs/1606.02647
https://arxiv.org/abs/1910.06591
https://arxiv.org/abs/1910.06591
https://arxiv.org/abs/1910.06591

IMPALA

« Samples may be several updates behind current policy

« Need state distribution correction to N-step Temporal Difference (TD) Target

N-step Temporal Difference (TD) Value Target:

s+n—1

Vizs) =V(zs)+ ) Ve +7V(@e41) — V(zs))

Network Parameter updates in direction of: (V(zs) — Vi (x5))VVy (zs)
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https://arxiv.org/abs/1802.01561

STATE DISTRIBUTION CORRECTION

N-step Temporal Difference (TD) Value Target:

s+n—1
Vias) = V(zs)+ Y 7 (re+9V(@e01) — V()

‘ Reweight future state probabilities

s+n—1 t—1

V(e = Vi) + S ot Releiledymoleedae) oy~ vie))

o Wo(ai|$z‘) We(at|37t)

« To reduce variance blowup, IMPALA applies truncated IS estimators:

mo (aelae) ) (lonides, 2008) - Original

¢; = min
‘ ( mo(as|zs) " (Liang, Fu, 2025) - New Bias Bounds
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https://www.jstor.org/stable/27594308
https://www.jstor.org/stable/27594308
https://www.jstor.org/stable/27594308
https://arxiv.org/pdf/2505.03607

OTHER REFERENCES & EXTERNAL SOURCES

Book on trust regions & optimization theory: Numerical Optimization by Nocedal & Wright

Trust Region Policy Optimization (Schulman, 2015)

Proximal Policy Optimization (Schulman, 2017)

Phasic Policy Gradient (Schulman, 2020)

New Insights and Perspectives on the Natural Gradient Method

Natural, Trust Region and Proximal Policy Optimization (Blog Post)

Natural Policy Gradients in Reinforcement Learning Explained (Heeswijk, 2022)

Advanced Policy Gradients, Slides from Sergey Levine’s CS285 Course.
Trust Region Methods (Lectures 14/15), CS885 Pascal Poupart's Course.

What Matters In On-Policy Reinforcement Learning? A Large-Scale Empirical Study

Implementation Matters in Deep Policy Gradients: PPO and TRPO

Notes on Importance Sampling and Policy Gradient (Jiang, 2023)
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https://arxiv.org/abs/1502.05477
https://arxiv.org/abs/1502.05477
https://arxiv.org/pdf/1707.06347
https://arxiv.org/pdf/1707.06347
https://arxiv.org/abs/2009.04416
https://arxiv.org/abs/2009.04416
https://arxiv.org/pdf/1412.1193
https://arxiv.org/pdf/1412.1193
https://transferlab.ai/blog/trpo-and-ppo/
https://transferlab.ai/blog/trpo-and-ppo/
https://arxiv.org/abs/2209.01820
https://arxiv.org/abs/2209.01820
https://rail.eecs.berkeley.edu/deeprlcourse/deeprlcourse/static/slides/lec-9.pdf
https://rail.eecs.berkeley.edu/deeprlcourse/deeprlcourse/static/slides/lec-9.pdf
https://youtu.be/qaOKZkeutqE?si=pkqVBcK2vKSM5GOu
https://youtu.be/qaOKZkeutqE?si=pkqVBcK2vKSM5GOu
https://arxiv.org/pdf/2006.05990
https://arxiv.org/pdf/2006.05990
https://arxiv.org/pdf/2006.05990
https://arxiv.org/pdf/2006.05990
https://arxiv.org/pdf/2006.05990
https://arxiv.org/pdf/2006.05990
https://arxiv.org/pdf/2005.12729
https://arxiv.org/pdf/2005.12729
https://nanjiang.cs.illinois.edu/files/cs542f23/note6.pdf
https://nanjiang.cs.illinois.edu/files/cs542f23/note6.pdf

OTHER REFERENCES & EXTERNAL SOURCES

« Papers that tie Policy Gradient theory with other methods:
« Monte-Carlo Tree Search as Regularized Policy Optimization

« A Theory of Regularized Markov Decision Processes
« An Operator View of Policy Gradient Methods
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https://arxiv.org/abs/2007.12509
https://arxiv.org/pdf/1901.11275
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