
William L. Ruys

MEASURE ONCE, OPTIMIZE TWICE
TRUST REGIONS & STEP-SIZE RESTRICTIONS IN POLICY GRADIENT METHODS 

CS395: Foundations of  Machine Learning for Systems Researchers



POLICY GRADIENT METHODS

• Reinforcement learning (RL) seeks policy 𝝅𝜽 to maximize the expected return:
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Expected Return 
(under policy 𝜋)

Return of Trajectory

Sampled Trajectory (following 𝜋)

Discounted per-transition reward



POLICY GRADIENT METHODS

• Simplest solution: Follow the gradient! 
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∇!𝐽 𝜋"#

𝜋"∗

∇!#𝐽𝜋"

Optimal “Best Performing Policy”

2D representation of “policy space”



HOW DO WE LOOK AT J?
• Expected return can be factored:
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Expected Return 
(under policy 𝜋)

State Visitation Value of Action

Expected Value of Action (downstream following 𝜋") 
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• Expected return can be factored:
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Expected Return 
(under policy 𝜋)

State Visitation Value of Action

Expected Value of Action (downstream following 𝜋") 

Probability of being 
in state s

Expected remaining value in 
trajectory given action



WHAT IS ∇"𝐽(𝜃)?
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∇!𝐽(𝜃) does not depend on gradient of state-visitations!Policy Gradient Theorem:
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∇!𝐽(𝜃) does not depend on gradient of state-visitationsPolicy Gradient Theorem:

This is an on-policy estimator.
- Actions taken by following 𝜋"
- Value estimated assuming 𝜋"
-   Computes gradient at 𝜃
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∇!𝐽(𝜃) does not depend on gradient of state-visitationsPolicy Gradient Theorem:

This is an on-policy estimator.
- Actions taken by following 𝜋"
- Value estimated assuming 𝜋"
- Computes gradient at 𝜃

High Level Idea: 
- What happens when we break these assumptions?
- Why would we want to?
- How do we solve the new problem?
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∇!𝐽(𝜃) does not depend on gradient of state-visitationsPolicy Gradient Theorem:

This is an on-policy estimator.
- Actions taken by following 𝜋"
- Value estimated assuming 𝜋"
- Computes gradient at 𝜃

High Level Idea: 
- What happens when we break these assumptions?
- Why would we want to?
- How do we solve the new problem?

starts to matter!
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WHY WOULD WE WANT TO BREAK THESE?
Motivation: Make on-policy RL slightly more like supervised learning
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POLICY GRADIENT - REINFORCEMENT LEARNING

• Dataset collected inside the loop
• Each collected sample is used once
• All current samples compute the loss
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• Dataset exists outside the loop
• Each sample used many times (epochs)
• Loss is computed on mini-batches

• Controls compute / memory costs
• Stochasticity sometimes helpful

ACTION/VALUE PREDICTION - SUPERVISED LEARNING



HOW TO ADJUST
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• Gradient approximated by minibatches 

• Each (state, action, reward)  sample used multiple times
• Dataset size “separate” from optimization steps 

• Dataset does not depend on 𝜃 and optimization
• If 𝜋! shifts too much, some states never resampled

• RL has stability concerns
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Optimize current policy w.r.t 
samples collected on older policy



HOW TO ADJUST

18

• Gradient approximated by minibatches 

• Each (state, action, reward)  sample used multiple times
• Dataset size “separate” from optimization steps 

• Dataset does not depend on 𝜃 and optimization
• If 𝜋! shifts too much, some states never resampled

• RL has stability concerns

Optimize current policy w.r.t 
samples collected on older policy

Requires small policy updates



HOW TO ADJUST

19

• Gradient approximated by minibatches 

• Each (state, action, reward)  sample used multiple times
• Dataset size “separate” from optimization steps 

• Dataset does not depend on 𝜃 and optimization
• If 𝜋! shifts too much, some states never resampled

• RL has stability concerns

Optimize current policy w.r.t 
samples collected on older policy

Requires small policy updates

Small policy updates help



PROBLEM SCOPE!
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Optimize current policy w.r.t samples collected on older policy
- Break the on-policy assumption a little bit

Optimize current policy w.r.t samples collected on external (possibly expert) policy
- No (or even weaker) on-policy assumption

For this see: 
• off-policy RL, 
• behavioral cloning, 
• offline RL 
• “An operator view of policy gradient methods” (Ghosh, 2020)

https://arxiv.org/pdf/2006.11266


WHAT DOES SAMPLE REUSE MEAN IN RL?
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The usual setting:

• Samples collected by policy 𝜋", optimize 𝜋"	toward 𝜋"∗:

• Objective: 

• Gradient expectation w.r.t 𝜋":

• Once we step policy parameters (𝜃# = 𝜃 + 𝛼∇"𝐽(𝜃)),  no longer at 𝜋"

• If we want to step AGAIN without collecting new data
• Need new objective and estimator

𝜋" ∇!𝐽 𝜋"#

Measure & 
step here

𝜋"∗



WHAT DOES SAMPLE REUSE MEAN IN RL?
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Old samples collected by policy 𝜋", but we want to keep optimizing 𝜋"#:

Optimize: 

Gradient:

Requires a change of variable between probability densities

𝜋"
≈ ∇!# 𝐽
𝜋"#

Step from here

Measure here

𝜋"∗Want to find



WHAT DOES SAMPLE REUSE MEAN IN RL?
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Old samples collected by policy 𝜋", but we want to keep optimizing 𝜋"#:

Optimize: 

Gradient:

Requires a change of variable between probability densities

𝜋"
≈ ∇!# 𝐽
𝜋"#

Step from here

𝜋"∗Want to find

Measure here



CHANGE OF VARIABLE – IMPORTANCE SAMPLING
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Example: Single transition following 𝜋"#	but sampled from 𝜋":

r = r(a, s)

  

Given two densities p and q:

…



CHANGE OF VARIABLE – IMPORTANCE SAMPLING
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The new re-centered estimator is unbiased (have the same true mean).

But they are different estimators, at finite number of samples they have DIFFERENT ERROR

 

r = r(a, s)

  

Sample Mean

True Mean

Sample batch under 𝜋! Sample batch under 𝜋!"

…



IMPORTANCE SAMPLING – ERROR
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Error of re-centered IS estimator: 

In many (non-RL) applications: You pick 𝜋" so IS is more accurate than the original

In RL, the opposite is true. Optimization picks 𝜋" . We do IS bc we have to, not to reduce error

           Error is typically (much) worse when:

  𝜋"# 𝜋"

A policy that shifts too far can lead to terrible approximations

 



WHAT IS OUR NEW ESTIMATOR?

• With 1-transition:
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r = r(a, s)

• But we got to state S from the old policy

• Need importance sampling along the whole trajectory:

Notes on Importance Sampling and Policy Gradient (Jiang, 2023)

https://nanjiang.cs.illinois.edu/files/cs542f23/note6.pdf


WHAT IS OUR NEW ESTIMATOR?

• With 1-transition:
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r = r(a, s)

• But we got to state S from the old policy

• Need importance sampling reweighting for every step in trajectory so far:

Notes on Importance Sampling and Policy Gradient (Jiang, 2023)

https://nanjiang.cs.illinois.edu/files/cs542f23/note6.pdf


WHAT IS OUR NEW ESTIMATOR?

• Using the full path has problems:
• Quadratic compute cost (in trajectory length) to reweight each sample

• Variance & Error explodes: multiplying many small or large ratios

• Idea: Use an approximation based on the 1-step update as a proxy
• Control the error by keeping the two policies close
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WHAT IS OUR NEW ESTIMATOR?

• Claim:              is close to              , when        is close to 

• Assume 	𝜋" 𝑎$, 𝑠$ − 𝜋"" 𝑎$, 𝑠$ < 𝜖	, 

   Different action at each decision chosen with prob at most 𝜖
𝑝" 𝑠$ − 𝑝"" 𝑠$ = 1	 − 1 − 𝜖 $ 𝑝"# 𝑠$ − 𝑝" 𝑠$ 	< 2𝜖𝑡	

The approximate expected return using off-centered measurements at 𝝅%
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𝜋"
≈ ∇!# 𝐽
𝜋"#

Step from here

Measure here

𝜋( 𝜋()

Advanced Policy Gradients (Levine, 2020)
Trust Region Policy Optimization (Schulman, 2015)

This proxy objective is also a lower bound, optimizing this optimizes the original objective.
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𝜋"
≈ ∇!# 𝐽
𝜋"#

Step from here

Measure here

Advanced Policy Gradients (Levine, 2020)
Trust Region Policy Optimization (Schulman, 2015)

𝜋( 𝜋()

This proxy objective is also a lower bound, optimizing this optimizes the original objective.

Old actions

Old advantages



KEEPING POLICY UPDATES CLOSE
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𝜋"
≈ ∇!# 𝐽
𝜋"#

Step from here

Measure here• If we keep 𝜋"and 𝜋"# close we can use the proxy

Region with okay error



SMALL PARAMETER STEPS ! =	SMALL POLICY UPDATES. 
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Example: 
                   Gaussian w/ mean (𝜃%) and std (𝜃&): 𝜃 − 𝜃# = 1 for both cases
     

Natural Policy Gradients in Reinforcement Learning Explained  (Heeswijk, 2022)

Δ𝜇 = 1, 𝜎% = 𝜎& = 0.3 Δ𝜇 = 1, 	𝜎%= 𝜎& = 3

Ratio between 𝜋!#(𝑥)/𝜋!(𝑥) large Ratio between 𝜋!#(𝑥)/𝜋!(𝑥) small

https://arxiv.org/abs/2209.01820
https://arxiv.org/abs/2209.01820
https://arxiv.org/abs/2209.01820


KEEPING POLICY UPDATES CLOSE
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𝜋"
≈ ∇!# 𝐽
𝜋"#

Step from here

Measure here• If we keep 𝜋"and 𝜋"# close we can use the proxy

• Need to measure ‘close’ w.r.t. the distribution not the parameters

Region with okay error

• In practice, Total Variation (TV) is hard to optimize; 
• KL-Divergence is easier.   Pinsker’s Inequality:



TRUST REGION POLICY OPTIMIZATION
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• Gradient steps can be split by minibatches 

• Each sample can be used multiple times

• If 𝜋" shifts too much, some states never resampled

Optimize current policy w.r.t 
samples collected on old policy

Require small policy updates

𝜋"
𝜋"#



TRUST REGION POLICY OPTIMIZATION
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• Gradient steps can be split by minibatches 

• Each sample can be used multiple times

• If 𝜋" shifts too much, some states never resampled

Optimize current policy w.r.t 
samples collected on old policy

Require small policy updates

𝜋"

𝜋"#



HOW DO WE SOLVE THIS? TRUST REGION OPTIMIZATION
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𝜋"#

Fisher information metric

Solve each epoch (or mini-batch) step with constrained Newton’s method

1. Form a local quadratic approximation to objective
2. Step as far as possible towards solution of quadratic
3. Backtrack if step overshoots constraint 



CONSTRAINED LINEAR UPDATE - EUCLIDEAN
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Linear approximation:

Solve approximation 
exactly within the ball:

Farthest step down the line 
that stays in the radius

Update new center to 𝑥∗ and iterate



CONSTRAINED LINEAR UPDATE – KL-DIVERGENCE
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Linear approximation:

Solve approximation 
exactly within the ball:

Farthest step down the line 
that stays in the radius

Update new center to 𝑥∗ and iterate

Ball is warped locally by F



CONSTRAINED LINEAR UPDATE – KL-DIVERGENCE
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Solve approximation 
exactly within the ball:

Farthest step down the line 
that stays in the radius

This is derived from Lagrange multipliers and KKT conditions, assuming solution is on the boundary of constraints  

Ball is warped locally by F

Stationarity

Boundary



HOW DO WE SOLVE THIS?
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• Solve + backtracking

• Expensive! O(N^3) per step

See also:

Newton’s Method
Quasi-Newton / CG-Newton
Natural Gradient Methods

https://proceedings.mlr.press/v100/jha20a/jha20a.pdf
https://proceedings.mlr.press/v100/jha20a/jha20a.pdf
https://proceedings.mlr.press/v100/jha20a/jha20a.pdf
https://proceedings.neurips.cc/paper_files/paper/2001/file/4b86abe48d358ecf194c56c69108433e-Paper.pdf


SOFT CONSTRAINTS:
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• Use first-order methods (SGD) on penalized problem
• KL-penalty Proximal Policy Optimization (PPO-KL)

• Adaptive 𝛽: x2 if constraint threshold violated, ÷2 if well within threshold

• Mirror Descent Policy Optimization (MDPO)

• Scheduled 𝛽 = $
%&'()(*+'(%,	.'/&

,    (they also use reverse KL )

• Very sensitive to choice of 𝛽

𝜋"#

https://arxiv.org/pdf/2005.09814


• Clipped Proximal Policy Optimization (PPO)
• Modify objective function to ”discourage” steps far from trust region

ARE THERE EVEN CHEAPER ROBUST APPROXIMATIONS?
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• Clipped Proximal Policy Optimization (PPO)

ARE THERE EVEN CHEAPER APPROXIMATIONS?
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𝜋"#
𝜋"

Per-Sample Gradient:

Allows steps that bring 
policy OUTSIDE of threshold

Restricts steps that can be 
taken once outside
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UNDERSTANDING THE THRESHOLD

Four cases:
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𝜋!

𝜋!"
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𝜋!

Observed a good action
Already have high likelihood
Shouldn’t increase it too much

Observed a bad action
Already have low likelihood
Shouldn’t decrease it too much

Observed a good action, have low likelihood
Could increase likelihood more

Steps that:
- Increase w(s, a)
- Increase perf

𝜋!" 𝜋!"

𝜋!"

Observed a bad action, have high likelihood
Could decrease likelihood more

Steps that:
- Decrease w(s, a)
- Increase perf
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𝜋!

Observed a good action
Already have high likelihood
Shouldn’t increase it too much

Observed a bad action
Already have low likelihood
Shouldn’t decrease it too much

Observed a bad action, have high likelihood
Could decrease likelihood moreObserved a good action, have low likelihood

Could increase likelihood more
Steps that:
- Increase w(s, a)
- Increase perf

𝜋!" 𝜋!"

𝜋!"

Steps that:
- Decrease w(s, a)
- Increase perf



PROXIMAL POLICY OPTIMIZATION: HEALTH MONITORING
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• PPO is not even a “soft constraint” optimization -> important to monitor trust region and stability

• Two common metrics:
• Clip Fraction -- what percentage of samples fall outside of the trust region after a step

• Effective Sample Size (ESS) – IS estimator ratios, error behaves as if “ESS%” less samples were taken 

𝜋# is recentered 
every 16 batch 
steps

New data is 
collected

𝜋! 𝜋!"



PPO OVERVIEW
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SO FAR
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• Introduced “old sample” corrections to the policy network update
•  Requires taking small steps (in “policy space”) to ensure low variance & accurate approximations

• What about corrections update to the Value/Critic/Baseline network? 
• In general, value network is “less sensitive” to using old samples than the policy network

• Phasic Policy Gradient (Cobbe, Schulman, 2020) –different number of steps for each / different update frequency

• But, yes, it requires a similar correction when samples may be “much” older

• IMPALA and V-Trace are similar importance sampling updates to the critic!
• See also:

• Off-Policy Actor Critic (Degris, 2012), ReTrace (Munos, 2016),. SEED-RL (Espeholt, 2020)

https://arxiv.org/abs/1205.4839
https://arxiv.org/abs/1205.4839
https://arxiv.org/abs/1205.4839
https://arxiv.org/abs/1205.4839
https://arxiv.org/abs/1606.02647
https://arxiv.org/abs/1910.06591
https://arxiv.org/abs/1910.06591
https://arxiv.org/abs/1910.06591


IMPALA
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• Samples may be several updates behind current policy
• Need state distribution correction to N-step Temporal Difference (TD) Target

N-step Temporal Difference (TD) Value Target:

Network Parameter updates in direction of:

https://arxiv.org/abs/1802.01561


STATE DISTRIBUTION CORRECTION
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• To reduce variance blowup, IMPALA applies truncated IS estimators: 

N-step Temporal Difference (TD) Value Target:

(Ionides, 2008) - Original
(Liang, Fu, 2025) – New Bias Bounds

Reweight future state probabilities

https://www.jstor.org/stable/27594308
https://www.jstor.org/stable/27594308
https://www.jstor.org/stable/27594308
https://arxiv.org/pdf/2505.03607


• Book on trust regions & optimization theory: Numerical Optimization by Nocedal & Wright

OTHER REFERENCES & EXTERNAL SOURCES
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• Trust Region Policy Optimization (Schulman, 2015)
• Proximal Policy Optimization (Schulman, 2017)
• Phasic Policy Gradient (Schulman, 2020)
• New Insights and Perspectives on the Natural Gradient Method 
• Natural, Trust Region and Proximal Policy Optimization (Blog Post)
• Natural Policy Gradients in Reinforcement Learning Explained  (Heeswijk, 2022)

• Advanced Policy Gradients, Slides from Sergey Levine’s CS285 Course.
• Trust Region Methods (Lectures 14/15), CS885 Pascal Poupart’s Course. 

• What Matters In On-Policy Reinforcement Learning? A Large-Scale Empirical Study
• Implementation Matters in Deep Policy Gradients: PPO and TRPO 

• Notes on Importance Sampling and Policy Gradient (Jiang, 2023)

https://arxiv.org/abs/1502.05477
https://arxiv.org/abs/1502.05477
https://arxiv.org/pdf/1707.06347
https://arxiv.org/pdf/1707.06347
https://arxiv.org/abs/2009.04416
https://arxiv.org/abs/2009.04416
https://arxiv.org/pdf/1412.1193
https://arxiv.org/pdf/1412.1193
https://transferlab.ai/blog/trpo-and-ppo/
https://transferlab.ai/blog/trpo-and-ppo/
https://arxiv.org/abs/2209.01820
https://arxiv.org/abs/2209.01820
https://rail.eecs.berkeley.edu/deeprlcourse/deeprlcourse/static/slides/lec-9.pdf
https://rail.eecs.berkeley.edu/deeprlcourse/deeprlcourse/static/slides/lec-9.pdf
https://youtu.be/qaOKZkeutqE?si=pkqVBcK2vKSM5GOu
https://youtu.be/qaOKZkeutqE?si=pkqVBcK2vKSM5GOu
https://arxiv.org/pdf/2006.05990
https://arxiv.org/pdf/2006.05990
https://arxiv.org/pdf/2006.05990
https://arxiv.org/pdf/2006.05990
https://arxiv.org/pdf/2006.05990
https://arxiv.org/pdf/2006.05990
https://arxiv.org/pdf/2005.12729
https://arxiv.org/pdf/2005.12729
https://nanjiang.cs.illinois.edu/files/cs542f23/note6.pdf
https://nanjiang.cs.illinois.edu/files/cs542f23/note6.pdf


• Papers that tie Policy Gradient theory with other methods:
• Monte-Carlo Tree Search as Regularized Policy Optimization
• A Theory of Regularized Markov Decision Processes
• An Operator View of Policy Gradient Methods

OTHER REFERENCES & EXTERNAL SOURCES
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https://arxiv.org/abs/2007.12509
https://arxiv.org/abs/2007.12509
https://arxiv.org/abs/2007.12509
https://arxiv.org/abs/2007.12509
https://arxiv.org/pdf/1901.11275
https://arxiv.org/pdf/1901.11275
https://arxiv.org/pdf/2006.11266
https://arxiv.org/pdf/2006.11266

