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Engineering Reward Functions

Rewards
— Reflect task at hand
— Shaped to help learning

« Reward engineering
— Domain specific knowledge + RL knowledge
— Know admissible behavior
« Real World Limitations
— Costly and time-consuming to design and tune
— Not scalable to many tasks or new environments
— Infeasible when desired behavior is unknown or hard to specify
« Unintended or suboptimal behavior from poorly designed

rewards
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What if we could learn from unshaped rewards?
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Rewards Used for Policy Optimization

Intermediate/Dense Awards Sparse and Binary Awards
* Awarding for getting closer to the * Vast majority of states give no
goal informative reward signal
* Frequent feedback, guiding step by « Steps in between goal give little to O
step feedback
 Ex. maklng pro_greSS around the . Agent receives reward so

track in car racing infrequently

 Ex. win/loss rewards

+1, good job!
—1, you failed!

T =
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Sparse Reward Problem Consequences

* |nefficient search/ Slow learning
— Unlikely to stumble upon rewarding state by chance
— Long time to find reward signal
» Credit Assigning problem
— Struggles to understand which sequence of actions led to failure or
rare success
* Poor Exploration
— Explore large region without finding reward + get stuck in local optima
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Sparse Reward Solutions

* Reward shaping

— Design rewards for intermediate steps
— But...
 Needs human expertise
* Needs to be well designed
— Otherwise: lead to suboptimal policies

« Hindsight Experience Replay
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Hindsight Experience Replay (HER): Intuition

A failed scenario for the target goal is
a successful scenario for a different
goal

Paper Ex: You miss a goal in hockey,
but what if the goal was placed where
you hit the puck?
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HER

* Replay each episode with a different goal than the one
the agent was trying to achieve
— Learning possible for sparse and binary rewards
— Used with ANY off-policy RL algorithm
— Can deal with multiple goal situations
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Question: Any Off-policy RL Algorithm?

 HER needs to be trained on multiple goals.
« DQN is trained for a specific task or goal.
 How to extend this?
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From One Goal to Multi-Goal

« Universal Value Function Approximators
— DAQN extension from one goal to multi-goal
— Policy and value function take in s = state and g = goal

* Details
— At the beginning of each episode, state-goal is sampled from
p(s0, g)
T:SxG — A re = rg(Se, ar)

QW(Sta a'tag) — ]E[Rtlsty &t,g]
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Multi-goal RL

 Rewards depend on goals now

* One goal sparse rewards
— Does this state achieve the goal?

* Multi-goal sparse rewards
— How to check state satisfies particular goal?

* Does state s satisfy goal g?
* Predicate function

re = 'rg(Staat)
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Multi-goal RL: Predicate Function

Predicate function

Multi-goal RL Sparse Reward

rg(s,a) = —[fy(s) = 0]
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Question: How to relabel transitions with a new goal?

« Let's create a mapping that maps states to the goal that
IS satisfied in that state

* Function answers the question: What goal would this
state satisfy?
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Mapping States to Goals

m:S — G s.t. Vees fm(s)(s) = 1 => mapping states to goals. g = m(s)

G =S and f,(s) = |s = g] =>ifthisisthe case, then the
mapping is just the identity. m(s) = s

G =Rand f,((z,y)) = [x =g| =>extracting 1D goal from 2D state

m((z,y)) = x
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Algorithm 1 Hindsight Experience Replay (HER)

Given:
e an off-policy RL algorithm A, > e.g. DQN, DDPG, NAF, SDQN
e astrategy S for sampling goals for replay, >e.g. S(sg,...,s7) =m(sT)
e areward functionr : S x A x G — R. >e.g. r(s,a,9) = —[fe(s) =0]
Initialize A > e.g. initialize neural networks

Initialize replay buffer R
for episode=1, M do
Sample a goal g and an initial state sg.
fort = 0,7 —1do
Sample an action a; using the behavioral policy from A:
a; < mp(st||g) > || denotes concatenation
Execute the action a; and observe a new state s;11
end for
fort = 0,7 —1do
iy = (S iy G)

Store the transition (s||g, a¢, ¢, S¢+1]|g) in R > standard experience replay
Sample a set of additional goals for replay G := S(current episode)
for ¢ € G do
= r{sia6:9)
Store the transition (s¢||¢’, at, ', si4+1]|¢’) in R > HER
end for
end for
fort = 1, Ndo

Sample a minibatch B from the replay buffer R
Perform one step of optimization using A and minibatch B
end for
end for

HER Algorithm
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Algorithm 1 Hindsight Experience Replay (HER)

Given:
e an off-policy RL algorithm A, > e.g. DQN, DDPG, NAF, SDQN
e astrategy S for sampling goals for replay, >e.g. S(sg,...,s7) =m(sT)
e areward functionr : S x A x G — R. >e.g. r(s,a,9) = —[fe(s) =0]
Initialize A > e.g. initialize neural networks
Initialize replay buffer R
for episode=1, M do
Sample a goal g and an initial state sg.

fort = 0, T — I do
Sample an action a; using the behavioral policy from A:
a; < mp(st||g) > || denotes concatenation
Execute the action a; and observe a new state s;11
end for
fort = 0,7 —1do
iy = (S iy G)

Store the transition (s||g, a¢, ¢, S¢+1]|g) in R > standard experience replay
Sample a set of additional goals for replay G := S(current episode)
for ¢ € G do
= r{sia6:9)
Store the transition (s¢||¢’, at, ', si4+1]|¢’) in R > HER
end for
end for
fort = 1, Ndo

Sample a minibatch B from the replay buffer R
Perform one step of optimization using A and minibatch B
end for
end for

Run RL algorithm for M
episodes

For each episode, select
a goal and an initial state
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Algorithm 1 Hindsight Experience Replay (HER)

Given:
e an off-policy RL algorithm A, > e.g. DQN, DDPG, NAF, SDQN
e astrategy S for sampling goals for replay, >e.g. S(sg,...,s7) =m(sT)
e areward functionr : S x A x G — R. >e.g. r(s,a,9) = —[fe(s) =0]
Initialize A > e.g. initialize neural networks

Initialize replay buffer R
for episode=1, M do
Sample a goal g and an initial state sg.

fort = 0,7 —1do
Sample an action a; using the behavioral policy from A:
a; < mp(st||g) > || denotes concatenation
Execute the action a; and observe a new state s;11
end for

fort = 0,7 —1do
Ts = 1(5¢, a1, 9)

Store the transition (s||g, a¢, ¢, S¢+1]|g) in R > standard experience replay
Sample a set of additional goals for replay G := S(current episode)
for ¢ € G do
= r{sia6:9)
Store the transition (s¢||¢’, at, ', si4+1]|¢’) in R > HER
end for
end for
fort = 1, Ndo

Sample a minibatch B from the replay buffer R
Perform one step of optimization using A and minibatch B
end for
end for

Go through all steps in the
episode and and interact with
environment

Choose an action and see result
as a new state
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Algorithm 1 Hindsight Experience Replay (HER)

Given:
e an off-policy RL algorithm A,
e astrategy S for sampling goals for replay,
e areward functionr: S X A x G — R.
Initialize A
Initialize replay buffer R
for episode=1, M do
Sample a goal g and an initial state sg.
fort = 0,7 —1do
Sample an action a; using the behavioral policy from A:
ar < my(stllg)
Execute the action a; and observe a new state s;11
end for

> e.g. DQN, DDPG, NAF, SDQN
>e.g. S(sg,...,s7) =m(sT)

> o.g. 1(s,a,9) = —[fy(s) = 0]
> e.g. initialize neural networks

> || denotes concatenation

fort = 0,7 —1do
Ty :=7(8¢, 0, 9)
Store the transition (s;||g, a¢, r¢, s¢11]|lg) in R > standard experience replay

Sample a set of additional goals for replay GG := S(current episode)

for ¢' € G do
= r{sia6:9)

Store the transition (s¢||¢’, at, 7/, st+1]|g") in R > HER
end for

end for

fort = 1, Ndo
Sample a minibatch B from the replay buffer R
Perform one step of optimization using A and minibatch B
end for
end for

For each step in the episode:

=> storing transitions in the replay
buffer

=> for each new goal, replace each
transition with the new goal. Place in
replay buffer
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Algorithm 1 Hindsight Experience Replay (HER)

Given:
e an off-policy RL algorithm A,
e astrategy S for sampling goals for replay,
e areward functionr: S X A x G — R.
Initialize A
Initialize replay buffer R
for episode=1, M do
Sample a goal g and an initial state sg.
fort =0, 7T—1do
Sample an action a; using the behavioral policy from A:
ar < mo(s¢l|g)
Execute the action a; and observe a new state s;11
end for
fort = 0,7 —1do
iy = (S iy G)
Store the transition (s||g, a¢, ¢, S¢+1]|g) in R > standard experience replay
Sample a set of additional goals for replay G := S(current episode)
for ¢ € G do
= r{sia6:9)
Store the transition (s¢||¢’, at, ', si4+1]|¢’) in R
end for
end for
fort = 1, Ndo
Sample a minibatch B from the replay buffer R
Perform one step of optimization using A and minibatch B
end for
end for

> e.g. DQN, DDPG, NAF, SDQN
>e.g. S(sg,...,s7) =m(sT)

> o.g. 1(s,a,9) = —[fy(s) = 0]
> e.g. initialize neural networks

> || denotes concatenation

> HER

=> Train on a batches chosen from
the replay buffer
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Bit Flipping Example

Consider a bit-flipping environment with the state space § = {0, 1}" and the action space A =
{0,1,...,n— 1} for some integer n in which executing the i-th action flips the i-th bit of the state.

rg(s,a) = _[5'75 gl
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Regular RL: Bit Flipping N =3, T = 3, Target g = 111

Failure Episode

1.
2.

Initial state sO = 000

a. Take action flip bit 0 (a0)
s1=100

a. r(s0,a0)=-1

b. Take action flip bit 1 (a1)
s2= 110

a. r(s1,at1)=-1

b. Take action flip bit 1 (a1)
s3= 100

a. r(s2,atl)=-1

Successful Episode

1.
2.

Initial state sO = 000

a. Take action flip bit 0 (a0)
s1=100

a. r(s0,a0)=-1

b. Take action flip bit 1 (a1)
s2= 110

a. r(s1,a1)=-1

b. Take action flip bit 2 (a2)
s3= 111

a. r(s2,a2)=0
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Problems with Regular RL

 Butwhatif N =407
— Large number of rewards will be -1 (might never
experience something else)
 Reward shaping (not recommended)

rg(s,a) = —|[s — gl|7
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Bit Flipping HER: N =3, T= 3, Target g = 111

Failure Episode

1.
2.

Initial state sO = 000

a. Take action flip bit 0 (a0)
s1=100

a. r(s0,a0)=-1

b. Take action flip bit 1 (a1)
s2= 110

a. r(st1,a1)=-1

b. Take action flip bit 1 (a1)
s3= 100

a. r(s2,a1)=-1

Replace g with s3 in replay
buffer

- = DQN — DQN+HER]

-
o

T

success rate
o o =
SN (e)] [o¢]

o
(N

e
o

0 10 20 30 40 50
number of bits n
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Other Experiments Set Up

« Simulate 7-DOF Fetch Robotics arm in MuJuCo physics
engine

F VN
A AN A

y N
A

Figure 2: Different tasks: pushing (top row), sliding (middle row) and pick-and-place (bottom row).
The red ball denotes the goal position.
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Experiment SetUp

« States
— Represented in simulation (robot angles, robot velocities of
joints, object positions, object velocities)
 Goals
— Desired position of object with some tolerance

m(S) — SObjeCt T(S,CL,Q) — _Hg T Sobject| ? E]
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Experiment SetUp

 Rewards
— Sparse and binary rewards

r(s,a,g9) = —[fy(s’) = 0]

« Strategy for sampling goals for replay
— Goal corresponding to final state in episode

S(sg,...,87) =m(sT).
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Results of 3 Tasks

- = DDPG —— DDPG+count-based exploration — DDPG+HER —— DDPG+HER (version from Sec. 4.5)]
pushing sliding pick-and-place
100% 100% 100%
80% 80% 80%
2
S 60% 60% —  60%
2
S 40% 40% 40%
?
20% 20% 20%
0% — 0% 0%
0 50 100 150 200 0 50 100 150 200 0 50 100 150 200

epoch number (every epoch = 800 episodes = 800x50 timesteps)
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HER One Goal Performance

- = DDPG - DDPG+count-based exploration — DDPG+HERJ

pushing sliding pick-and-place
100% 100% 100%

80% ~ 80% 80%

O
§ 60% _7¢ 60% 60%
2 s
S 40% L 40% = 40%
@

20% 20% 20%

0% 0% 0%

0 50 100 150 200 0 50 100 150 200 0 50 100 150 200

epoch number (every epoch = 800 episodes = 800x50 timesteps)

Figure 4: Learning curves for the single-goal case.
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Reward Shaping Performance

- - DDPG — DDPG+HER]
pushing sliding pick-and-place
100% 100% 100%
80% 80% 80%
2
S 60% 60% 60%
(2}
(%2}
§ 40% 40% 40%
3
20% 20% — 20%
e e
0% 0% 0% ===
0 50 100 150 200 0 50 100 150 200 0 50 100 150 200
epoch number (every epoch = 800 episodes = 800x50 timesteps)
s i § _ / AT
Figure 5: Learning curves for the shaped reward r(s,a,g) = —|g — sobject| (it performed best

among the shaped rewards we have tried). Both algorithms fail on all tasks.
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Choosing Different Goals

* Final - goals corresponding to the final state of the
episode

e future — replay with £ random states which come from the same episode as the transition
being replayed and were observed after it,

e episode — replay with £ random states coming from the same episode as the transition
being replayed,

e random — replay with k£ random states encountered so far in the whole training procedure.



TEXAS

The University of Texas at Austin

WHAT STARTS HERE CHANGES THE WORLD

Sampling Goals Differently

—— final —@— random —@— episode —@— futurel

= = noHER
pushing
1.0 —ﬁ

2

g 08

2

2 0.6

o

=

204

173

[0}

=

D02 - .

£

pushing

average success rate

o o o o

N S (o)) o]
[

o

o
[N
N
S
o]

16 all

sliding pick-and-place
1.0 1.0 » @ @ Lo |
0.8 0.8 l\'
06 06 \
h
04 - 0.4 —
0.2 0.2
0.0 0.0
1 2 4 8 16 al 1 2 4 8 16 all
sliding pick-and-place
1.0 1.0
0.8 0.8
0.6 0.6 A
0.4 0.4
0.2 0.2
0.0 Qe ~ ~ 0.0

1 2 4 8 16 all

1 2 4 8 16 all

number of additional goals used to replay each transition with



@ TEX_A WHAT STARTS HERE CHANGES THE WORLD
The University of Texas at Austin

The End

Pictures from
https://openai.com/index/ingredients-for-robotics-research/



https://openai.com/index/ingredients-for-robotics-research/
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Continuous Action Spaces

* DQN supports finite action spaces
— How to take the max of a continuous action space?

« DDPG

— Q learning with continuous action spaces
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Continuous Action Spaces - DDPG

« Actor NN (essentially the policy)

— Input: states
— Output: optimal action

e Critic NN
Used for calculating the Q value of the action from the actor

NN
— Input: state and action
— Output: Q value
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Continuous Action Spaces - DDPG

riti iti
Critic Critic Actor STOCHASTIC pPOLICY
Q(s,a,) Q(s,a,) Q(sa,)
A2 A3
DETERMINISTIC POLICY

? 53 _’ n(S) _’

Image from this link



https://medium.com/@amaresh.dm/how-ddpg-deep-deterministic-policy-gradient-algorithms-works-in-reinforcement-learning-117e6a932e68
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Continuous Action Spaces - DDPG

Critic Critic Actor

Q(s,a,) Q(s,a,) Q(sa,) A, A A,
g |

5 5, 9

DQN

Image from this link
Image?2 from this link



https://medium.com/@amaresh.dm/how-ddpg-deep-deterministic-policy-gradient-algorithms-works-in-reinforcement-learning-117e6a932e68
https://youtu.be/gugtnu0n1Ss

