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Hindsight Experience Replay(HER)



Engineering Reward Functions
• Rewards 

– Reflect task at hand
– Shaped to help learning

• Reward engineering
– Domain specific knowledge + RL knowledge
– Know admissible behavior

• Real World Limitations
– Costly and time-consuming to design and tune
– Not scalable to many tasks or new environments
– Infeasible when desired behavior is unknown or hard to specify

• Unintended or suboptimal behavior from poorly designed 
rewards



What if we could learn from unshaped rewards?



Rewards Used for Policy Optimization
Sparse and Binary Awards
• Vast majority of states give no 

informative reward signal
• Steps in between goal give little to 0 

feedback
• Agent receives reward so 

infrequently 
• Ex. win/loss rewards

Intermediate/Dense Awards
• Awarding for getting closer to the 

goal
• Frequent feedback, guiding step by 

step
• Ex. making progress around the 

track in car racing



Sparse Reward Problem Consequences

• Inefficient search/ Slow learning 
– Unlikely to stumble upon rewarding state by chance
– Long time to find reward signal

• Credit Assigning problem
– Struggles to understand which sequence of actions led to failure or 

rare success
• Poor Exploration

– Explore large region without finding reward + get stuck in local optima 



Sparse Reward Solutions

• Reward shaping
– Design rewards for intermediate steps
– But…

• Needs human expertise
• Needs to be well designed 

– Otherwise: lead to suboptimal policies
• Hindsight Experience Replay



Hindsight Experience Replay (HER): Intuition

• A failed scenario for the target goal is 
a successful scenario for a different 
goal

• Paper Ex: You miss a goal in hockey, 
but what if the goal was placed where 
you hit the puck?



HER

• Replay each episode with a different goal than the one 
the agent was trying to achieve
– Learning possible for sparse and binary rewards
– Used with ANY off-policy RL algorithm 
– Can deal with multiple goal situations



Question: Any Off-policy RL Algorithm?

• HER needs to be trained on multiple goals.
• DQN is trained for a specific task or goal.
• How to extend this?



From One Goal to Multi-Goal

• Universal Value Function Approximators
– DQN extension from one goal to multi-goal
– Policy and value function take in s = state and g = goal

• Details
– At the beginning of each episode, state-goal is sampled from 

p(s0, g)



Multi-goal RL

• Rewards depend on goals now
• One goal sparse rewards

– Does this state achieve the goal?
• Multi-goal sparse rewards

– How to check state satisfies particular goal?
• Does state s satisfy goal g?
• Predicate function



Multi-goal RL: Predicate Function

Predicate function
Multi-goal RL Sparse Reward



Question: How to relabel transitions with a new goal?

• Let’s create a mapping that maps states to the goal that 
is satisfied in that state

• Function answers the question: What goal would this 
state satisfy?



Mapping States to Goals

=> mapping states to goals. g = m(s)

=> if this is the case, then the 
mapping is just the identity. m(s) = s

=> extracting 1D goal from 2D state



HER Algorithm



● Run RL algorithm for M 
episodes

● For each episode, select 
a goal and an initial state 



● Go through all steps in the 
episode and and interact with 
environment

● Choose an action and see result 
as a new state 



=> storing transitions in the replay 
buffer

=> for each new goal, replace each 
transition with the new goal. Place in 
replay buffer

For each step in the episode:



=> Train on a batches chosen from 
the replay buffer



Bit Flipping Example



Regular RL: Bit Flipping N = 3, T = 3, Target g = 111

1. Initial state s0 = 000
a. Take action flip bit 0 (a0)

2. s1= 100
a. r(s0,a0) = -1
b. Take action flip bit 1 (a1)

3. s2= 110
a. r(s1,a1) = -1
b. Take action flip bit 1 (a1)

4. s3= 100
a. r(s2,a1) = -1

1. Initial state s0 = 000
a. Take action flip bit 0 (a0)

2. s1= 100
a. r(s0, a0) = -1
b. Take action flip bit 1 (a1)

3. s2= 110
a. r(s1, a1) = -1
b. Take action flip bit 2 (a2)

4. s3= 111
a. r(s2,a2) = 0

Failure Episode Successful Episode



Problems with Regular RL

• But what if N = 40?
– Large number of rewards will be -1 (might never 

experience something else)
• Reward shaping (not recommended)



Bit Flipping HER:  N = 3, T= 3, Target g = 111

1. Initial state s0 = 000
a. Take action flip bit 0 (a0)

2. s1= 100
a. r(s0,a0) = -1
b. Take action flip bit 1 (a1)

3. s2= 110
a. r(s1,a1) = -1
b. Take action flip bit 1 (a1)

4. s3= 100
a. r(s2,a1) = -1

5. Replace g with s3 in replay 
buffer

Failure Episode



Other Experiments Set Up

• Simulate 7-DOF Fetch Robotics arm in MuJuCo physics 
engine



Experiment SetUp

• States
– Represented in simulation (robot angles, robot velocities of 

joints, object positions, object velocities)
• Goals

– Desired position of object with some tolerance



Experiment SetUp

• Rewards
– Sparse and binary rewards

• Strategy for sampling goals for replay
– Goal corresponding to final state in episode



Results of 3 Tasks



HER One Goal Performance



Reward Shaping Performance



Choosing Different Goals

• Final - goals corresponding to the final state of the 
episode



Sampling Goals Differently



The End

Pictures from 
https://openai.com/index/ingredients-for-robotics-research/

https://openai.com/index/ingredients-for-robotics-research/


Continuous Action Spaces

• DQN supports finite action spaces
– How to take the max of a continuous action space?

• DDPG
– Q learning with continuous action spaces



Continuous Action Spaces - DDPG

• Actor NN (essentially the policy)
– Input: states
– Output: optimal action

• Critic NN 
– Used for calculating the Q value of the action from the actor 

NN
– Input: state and action
– Output: Q value



Continuous Action Spaces - DDPG

Image from this link 

https://medium.com/@amaresh.dm/how-ddpg-deep-deterministic-policy-gradient-algorithms-works-in-reinforcement-learning-117e6a932e68


Continuous Action Spaces - DDPG

Image from this link 
Image2 from this link

https://medium.com/@amaresh.dm/how-ddpg-deep-deterministic-policy-gradient-algorithms-works-in-reinforcement-learning-117e6a932e68
https://youtu.be/gugtnu0n1Ss

