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Lecture Content 

• Concepts of Design Patterns 

• Connection with Models of Computation 
Lecture 

• Common Patterns of Parallelism (with some 
examples) 

• Summary 

 



Design Patterns: Definitions 

• Design Patterns – A set of architecture level specifications 
for the logical units of a computation and their relationships 
which are common across multiple application types. 

• Design Patterns – Are partial architectural specifications for 
software systems. 

  http://www.sei.cmu.edu/architecture/ 
• Parallel Design Patterns – A set of architecture level 

specifications for the parallel structure of the execution 
behavior of the logical units of a computation which are 
common across multiple applications. 

 Berna L. Massingill, Timothy G. Mattson, and Beverly A. 
Sanders; "Patterns for Parallel Application Programs"; 
Proceedings of the Sixth Pattern Languages of Programs 
Workshop (PLoP 1999), 1999. 



Parallel Programming Pattern : WHY? 

• Follows principle of separation of concerns 

• Reuses expert knowledge  
– Shortens development time 

• Leads to readable, modular, evolvable and efficent 
programs. 

 



Multiple Approaches 

•Different authors propose multiple different but  
 partially overlapping lists/sets of patterns 
•Different authors sometimes give different names  
 to the same pattern 
•A given application may be classified into or be  
 formulated in multiple patterns 
 



How To Use Parallel Design Patterns 

• Follow the process described in the last lecture to 
identify the units of computation  

• Identify the dependencies among the units of 
computation you have identified. 

• Examine the catalogs of parallel design patterns 
for structures which match the dependencies in 
your application. 

• Use the templates and examples for the 
appropriate patterns to structure and implement 
your code. 



Common Parallel Patterns 

• Embarassingly Parallel 

• Replicable 

• Repository 

• Divide&Conquer 

• Pipeline 

• Recursive Data 

• Geometric 

• IrregularMesh 

• Inseparable 

 



The Algorithm Design Patterns: Massingill, Sanders and 
Mattson 

Result 

Parallelism 

Geometric 

Decomposition 

Task 

Parallelism 

Divide and 

Conquer 

Recursive 

Data 

Specialist 

Parallelism 

Pipeline Event Based 

Coordination 

Agenda 

Parallelism 

Data 

Parallelism 

Embarrassingly 

Parallel 

Separable 

Dependencies 

Start with a basic concurrency decomposition 

• A problem decomposed into a set of tasks 

• A data decomposition aligned with the set of tasks … designed to minimize interactions 
between tasks and make concurrent updates to data safe. 

• Dependencies and ordering constraints between groups of tasks. 



Embarassingly Parallel 

A 
B D E 

Independent Tasks 

Problem: Need to perform same operations to tasks that are independent 

C 

A 
B 

C 

E 

D 

manager 

worker worker worker worker 



Example Ray Tracing 



Replicable (Map Reduce) 

Global Data 

Sets of operations need to be performed using global data structure, causing dependency. 

local local local 

replicate 

Operation I Operation II Operation III 

Solution 

reduce 



PageRank 



• Simulates a “random-surfer” 

• Begins with pair (URL, list-of-URLs)  

• Maps to (URL, (PR, list-of-URLs)) 

• Maps again taking above data, and for each u 
in list-of-URLs returns (u, PR/|list-of-URLs|), as 
well as (u, new-list-of-URLs) 

• Reduce receives (URL, list-of-URLs), and many 
(URL, value) pairs and calculates (URL, (new-
PR, list-of-URLs)) 

PageRank 



Repository 
Independent computations needs to applied to centralized data structure in  
non-deterministic way. 

repository 

Compute A 

Compute B 

Compute E 

Compute D 

Compute C 

Asynchronous 
Function calls 

Compute object cannot access  
Same element simultaneously. 
(Repository controls access) 



Example: Parallel Update of Data Base 

• Online auctions 

• Online merchants 

• Etc. 



Divide & Conquer 

problem 

A problem is structured to be solved in sub-problems independently, and merging them later. 

subproblem subproblem 

Compute 
subproblem 

Compute 
subproblem 

Compute 
subproblem 

Compute 
subproblem 

subproblem subproblem 

solution 

merge merge 

merge 

split split 

split 

* Split level needs to be adjusted appropriately. 



Examples: FFT 

FFT(0,1,2,3,…,15) = FFT(xxxx) 

FFT(1,3,…,15) = FFT(xxx1) FFT(0,2,…,14) = FFT(xxx0) 

FFT(xx10) FFT(xx01) FFT(xx11) FFT(xx00) 

FFT(x100) FFT(x010) FFT(x110) FFT(x001) FFT(x101) FFT(x011) FFT(x111) FFT(x000) 

FFT(0)  FFT(8)  FFT(4)  FFT(12)  FFT(2) FFT(10) FFT(6) FFT(14) FFT(1) FFT(9) FFT(5)  FFT(13)  FFT(3)  FFT(11)  FFT(7) FFT(15) 

even odd 
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Merge Sort 

• Sorting: An important class of algorithms that take an input list and generate a 
sorted list.\ 

• Merge sort 
– Split a list in two 

– Sort each half by a call to merge sort 

– Continue until you his a trivial base case. 

– Unwind the recursive stack to generate final list 

• Example 
– Starting point:               [3 6 4 1 5 7 3 2] 

– Split in two:             [3 6 4 1]              [5 7 3 2] 

– Split in two:          [3 6]     [4 1]        [5 7]      [3 2] 

– Base case:           [3 6]     [1 4]        [5 7]      [2 3] 

– Sort on merge:        [1 3 4 6]             [2 3 5 7] 

– Sort on merge:             [1 2 3 3 4 5 6 7] 

Source: Mattson and Keutzer, UCB CS294 



• Fill stack of recursive calls to merge sort, after base case (n<2) unwind the 
stack to generate sorted list) 
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Serial Merge Sort: 

Source: Mattson and Keutzer, UCB CS294 

void mergesort(int * X, int n, int * tmp) 
{ 
     if (n < 2) return; 
 
     /* recursively sort each half of list */ 
     mergesort(X, n/2, tmp); 
     mergesort(X+(n/2), n-(n/2), tmp); 
  
 
 
    /* merge sorted halves into sorted list */ 
    merge(X, n, tmp); 
} 
 

Note: we include the merge function in a 
later slide … it’s the same for both the 
serial and parallel cases. 

tmp points to space 
equal in size to X and is 
used as a buffer to sort 
into 



• Each mergesort is independent so parallel version is trivial to create. 
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Parallel Merge Sort: 

Source: Mattson and Keutzer, UCB CS294 

void mergesort(int * X, int n, int * tmp) 
{ 
     if (n < 2) return; 
 
     /* recursively sort each half of list */ 
     fork mergesort(X, n/2, tmp); 
     fork mergesort(X+(n/2), n-(n/2), tmp); 
  
     join 
 
    /* merge sorted halves into sorted list */ 
    merge(X, n, tmp); 
} 
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Sudoko 

• A game where you fill in a grid with numbers 
– A number cannot appear more than once in any column 

– A number cannot appear more than once in any row 

– A number can not appear more than once in any “region” 

• Typically presented with a 9 by 9 grid … but for simplicity we’ll consider a 4 
by 4 grid 

Source: Mattson and Keutzer, UCB CS294 

A 4 x 4 Sudoku puzzle with 11 open positions … we 
show three steps in the solution 

1 

2 3 

Since 1 is the only number 
missing in this column 

Since 3 already appears in 
this region 

Since 3 is the only 
number missing in this 
row 
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Sudoko Algorithm 

• The two-dimensional Sudoko grid is flattened into a vector 
– Unsolved locations are filled with zeros 
– The first two rows of the initial 4 x 4 puzzle are shown 
– The current working location [loc=0] is shown in red and the subgrid size is 3 
– Initially call fork solve(size=3, grid, loc=0) 

Source: Mattson and Keutzer, UCB CS294 

3 0 0 4 0 0 0 2 … 

• The first location has a solution so move to next location 
– Recursively call fork solve(size=3, grid, loc=loc+1) 

grid 

3 0 0 4 0 0 0 2 … 
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Exhaustive Search 

• The next location *loc=1+ has no solution (‘0’ in the current cell) so … 
– Create 4 new grids and try each of the 4 possibilities (1,2,3,4) concurrently 

– Note: the search goes much faster if the guess is first tested to see if it is legal 

– Spawn a new search tree for each guess k 

– Call:  fork solve(size=3, grid[k], loc=loc+1) 

Source: Mattson and Keutzer, UCB CS294 

3 1 0 4 0 0 0 2 … 

new 
grids 

3 2 0 4 0 0 0 2 … 

3 3 0 4 0 0 0 2 … 

3 4 0 4 0 0 0 2 … 

Illegal since 3 and 4 are 
already in the same 
row 



Pipeline 

Stage 1 

Stage 2 

Stage 3 

Stage 4 

Time 

C1 C2 C3 C4 C5 C6 

C1 C2 C3 C4 C5 C6 

C1 C2 C3 C4 C5 C6 

C1 C2 C3 C4 C5 C6 

A series of ordered but independent computation stages need to be applied on data, 
where each output of a computation becomes input of subsequent computation. 



Example: Microlevel Execution of 
Instructions 

• Stages of execution of instruction 
• Fetch instruction 
• Fetch data 

– Check L1 cache 
– Check L2 cache, 
– Etc. 

• Execute instruction 
• Store result in memory 

– Check for cache invalidation 
– Etc. 



Recursive Data 
Recursive data structures seem to have little exploitable concurrency. 
But in some cases, the structure can be transformed. 

4 

3 

2 

1 6 

5 7 

4 

3 

2 

1 6 

5 7 

4 

3 

2 

1 6 

5 7 

Step 1 

Step 2 

Step 3 

Find Root Problem 



Example: Graph Algorithm – Node 
Roots 

• Consider a forest of rooted directed trees (defined by specifying, for 
each node, its immediate ancestor, with a root node's ancestor 
being itself) 

• compute, for each node in the forest, the root of the tree 
containing that node.  

• Sequential program, we would trace depth-first through each tree 
from its root to its leaf nodes; as we visit each node, we have the 
needed information about the corresponding root. Total running 
time of such a program for a forest of N nodes would be O(N).  

• There is some potential for concurrency (operating on subtrees 
concurrently), but there is no obvious way to operate on all 
elements concurrently, because it appears that we cannot find the 
root for a particular node without knowing its parent's root. 



Example: Graph Algorithm – Node 
Roots 

• Define for each node a "successor", which initially will be its parent 
and ultimately will be the root of the tree to which the node 
belongs.  

• Calculate for each node its "successor's successor".  
• For nodes one "hop“ from the root, this calculation does not 

change the value of its successor (because a root's parent is itself).  
• For nodes at least two "hops" away from a root, this calculation 

makes the node's successor its parent's parent. We repeat this 
calculation until it converges (that is, the values produced by one 
step are the same as those produced by the preceding step), at 
which point every node's successor is the desired value.  

• At each step we can operate on all N nodes in the tree concurrently, 
and the algorithm converges in at most log N steps. 



Geometric 
Dependencies exist, but communicate in predictable (geometric) neighbor-to-neighbor paths. 

Neighbor-To-Neighbor communication 



Irregular Mesh 
Communication in non-predictable paths in mesh topology. 

Hard to define due to varying  
communication patterns. 
 
Start point : 
Pattern that constructed this mesh. 



Still Unrecovered 

• The corrupted file has not yet been recovered. 

• We will repost these notes with comments 
added to the currently missing slides as soon 
as I can recover or recreate the lost slides. 


