
Design Patterns for Parallel

Computation

Jim Browne

September 21, 2011

Lecture Content

• Concepts of Design Patterns

• Connection with Models of Computation
Lecture

• Common Patterns of Parallelism (with some
examples)

• Summary

Design Patterns: Definitions

• Design Patterns – A set of architecture level specifications
for the logical units of a computation and their relationships
which are common across multiple application types.

• Design Patterns – Are partial architectural specifications for
software systems.

 http://www.sei.cmu.edu/architecture/
• Parallel Design Patterns – A set of architecture level

specifications for the parallel structure of the execution
behavior of the logical units of a computation which are
common across multiple applications.

 Berna L. Massingill, Timothy G. Mattson, and Beverly A.
Sanders; "Patterns for Parallel Application Programs";
Proceedings of the Sixth Pattern Languages of Programs
Workshop (PLoP 1999), 1999.

Parallel Programming Pattern : WHY?

• Follows principle of separation of concerns

• Reuses expert knowledge
– Shortens development time

• Leads to readable, modular, evolvable and efficent
programs.

Multiple Approaches

•Different authors propose multiple different but
 partially overlapping lists/sets of patterns
•Different authors sometimes give different names
 to the same pattern
•A given application may be classified into or be
 formulated in multiple patterns

How To Use Parallel Design Patterns

• Follow the process described in the last lecture to
identify the units of computation

• Identify the dependencies among the units of
computation you have identified.

• Examine the catalogs of parallel design patterns
for structures which match the dependencies in
your application.

• Use the templates and examples for the
appropriate patterns to structure and implement
your code.

Common Parallel Patterns

• Embarassingly Parallel

• Replicable

• Repository

• Divide&Conquer

• Pipeline

• Recursive Data

• Geometric

• IrregularMesh

• Inseparable

The Algorithm Design Patterns: Massingill, Sanders and
Mattson

Result

Parallelism

Geometric

Decomposition

Task

Parallelism

Divide and

Conquer

Recursive

Data

Specialist

Parallelism

Pipeline Event Based

Coordination

Agenda

Parallelism

Data

Parallelism

Embarrassingly

Parallel

Separable

Dependencies

Start with a basic concurrency decomposition

• A problem decomposed into a set of tasks

• A data decomposition aligned with the set of tasks … designed to minimize interactions
between tasks and make concurrent updates to data safe.

• Dependencies and ordering constraints between groups of tasks.

Embarassingly Parallel

A
B D E

Independent Tasks

Problem: Need to perform same operations to tasks that are independent

C

A
B

C

E

D

manager

worker worker worker worker

Example Ray Tracing

Replicable (Map Reduce)

Global Data

Sets of operations need to be performed using global data structure, causing dependency.

local local local

replicate

Operation I Operation II Operation III

Solution

reduce

PageRank

• Simulates a “random-surfer”

• Begins with pair (URL, list-of-URLs)

• Maps to (URL, (PR, list-of-URLs))

• Maps again taking above data, and for each u
in list-of-URLs returns (u, PR/|list-of-URLs|), as
well as (u, new-list-of-URLs)

• Reduce receives (URL, list-of-URLs), and many
(URL, value) pairs and calculates (URL, (new-
PR, list-of-URLs))

PageRank

Repository
Independent computations needs to applied to centralized data structure in
non-deterministic way.

repository

Compute A

Compute B

Compute E

Compute D

Compute C

Asynchronous
Function calls

Compute object cannot access
Same element simultaneously.
(Repository controls access)

Example: Parallel Update of Data Base

• Online auctions

• Online merchants

• Etc.

Divide & Conquer

problem

A problem is structured to be solved in sub-problems independently, and merging them later.

subproblem subproblem

Compute
subproblem

Compute
subproblem

Compute
subproblem

Compute
subproblem

subproblem subproblem

solution

merge merge

merge

split split

split

* Split level needs to be adjusted appropriately.

Examples: FFT

FFT(0,1,2,3,…,15) = FFT(xxxx)

FFT(1,3,…,15) = FFT(xxx1) FFT(0,2,…,14) = FFT(xxx0)

FFT(xx10) FFT(xx01) FFT(xx11) FFT(xx00)

FFT(x100) FFT(x010) FFT(x110) FFT(x001) FFT(x101) FFT(x011) FFT(x111) FFT(x000)

FFT(0) FFT(8) FFT(4) FFT(12) FFT(2) FFT(10) FFT(6) FFT(14) FFT(1) FFT(9) FFT(5) FFT(13) FFT(3) FFT(11) FFT(7) FFT(15)

even odd

18

Merge Sort

• Sorting: An important class of algorithms that take an input list and generate a
sorted list.\

• Merge sort
– Split a list in two

– Sort each half by a call to merge sort

– Continue until you his a trivial base case.

– Unwind the recursive stack to generate final list

• Example
– Starting point: [3 6 4 1 5 7 3 2]

– Split in two: [3 6 4 1] [5 7 3 2]

– Split in two: [3 6] [4 1] [5 7] [3 2]

– Base case: [3 6] [1 4] [5 7] [2 3]

– Sort on merge: [1 3 4 6] [2 3 5 7]

– Sort on merge: [1 2 3 3 4 5 6 7]

Source: Mattson and Keutzer, UCB CS294

• Fill stack of recursive calls to merge sort, after base case (n<2) unwind the
stack to generate sorted list)

19

Serial Merge Sort:

Source: Mattson and Keutzer, UCB CS294

void mergesort(int * X, int n, int * tmp)
{
 if (n < 2) return;

 /* recursively sort each half of list */
 mergesort(X, n/2, tmp);
 mergesort(X+(n/2), n-(n/2), tmp);

 /* merge sorted halves into sorted list */
 merge(X, n, tmp);
}

Note: we include the merge function in a
later slide … it’s the same for both the
serial and parallel cases.

tmp points to space
equal in size to X and is
used as a buffer to sort
into

• Each mergesort is independent so parallel version is trivial to create.

20

Parallel Merge Sort:

Source: Mattson and Keutzer, UCB CS294

void mergesort(int * X, int n, int * tmp)
{
 if (n < 2) return;

 /* recursively sort each half of list */
 fork mergesort(X, n/2, tmp);
 fork mergesort(X+(n/2), n-(n/2), tmp);

 join

 /* merge sorted halves into sorted list */
 merge(X, n, tmp);
}

21

Sudoko

• A game where you fill in a grid with numbers
– A number cannot appear more than once in any column

– A number cannot appear more than once in any row

– A number can not appear more than once in any “region”

• Typically presented with a 9 by 9 grid … but for simplicity we’ll consider a 4
by 4 grid

Source: Mattson and Keutzer, UCB CS294

A 4 x 4 Sudoku puzzle with 11 open positions … we
show three steps in the solution

1

2 3

Since 1 is the only number
missing in this column

Since 3 already appears in
this region

Since 3 is the only
number missing in this
row

22

Sudoko Algorithm

• The two-dimensional Sudoko grid is flattened into a vector
– Unsolved locations are filled with zeros
– The first two rows of the initial 4 x 4 puzzle are shown
– The current working location [loc=0] is shown in red and the subgrid size is 3
– Initially call fork solve(size=3, grid, loc=0)

Source: Mattson and Keutzer, UCB CS294

3 0 0 4 0 0 0 2 …

• The first location has a solution so move to next location
– Recursively call fork solve(size=3, grid, loc=loc+1)

grid

3 0 0 4 0 0 0 2 …

23

Exhaustive Search

• The next location *loc=1+ has no solution (‘0’ in the current cell) so …
– Create 4 new grids and try each of the 4 possibilities (1,2,3,4) concurrently

– Note: the search goes much faster if the guess is first tested to see if it is legal

– Spawn a new search tree for each guess k

– Call: fork solve(size=3, grid[k], loc=loc+1)

Source: Mattson and Keutzer, UCB CS294

3 1 0 4 0 0 0 2 …

new
grids

3 2 0 4 0 0 0 2 …

3 3 0 4 0 0 0 2 …

3 4 0 4 0 0 0 2 …

Illegal since 3 and 4 are
already in the same
row

Pipeline

Stage 1

Stage 2

Stage 3

Stage 4

Time

C1 C2 C3 C4 C5 C6

C1 C2 C3 C4 C5 C6

C1 C2 C3 C4 C5 C6

C1 C2 C3 C4 C5 C6

A series of ordered but independent computation stages need to be applied on data,
where each output of a computation becomes input of subsequent computation.

Example: Microlevel Execution of
Instructions

• Stages of execution of instruction
• Fetch instruction
• Fetch data

– Check L1 cache
– Check L2 cache,
– Etc.

• Execute instruction
• Store result in memory

– Check for cache invalidation
– Etc.

Recursive Data
Recursive data structures seem to have little exploitable concurrency.
But in some cases, the structure can be transformed.

4

3

2

1 6

5 7

4

3

2

1 6

5 7

4

3

2

1 6

5 7

Step 1

Step 2

Step 3

Find Root Problem

Example: Graph Algorithm – Node
Roots

• Consider a forest of rooted directed trees (defined by specifying, for
each node, its immediate ancestor, with a root node's ancestor
being itself)

• compute, for each node in the forest, the root of the tree
containing that node.

• Sequential program, we would trace depth-first through each tree
from its root to its leaf nodes; as we visit each node, we have the
needed information about the corresponding root. Total running
time of such a program for a forest of N nodes would be O(N).

• There is some potential for concurrency (operating on subtrees
concurrently), but there is no obvious way to operate on all
elements concurrently, because it appears that we cannot find the
root for a particular node without knowing its parent's root.

Example: Graph Algorithm – Node
Roots

• Define for each node a "successor", which initially will be its parent
and ultimately will be the root of the tree to which the node
belongs.

• Calculate for each node its "successor's successor".
• For nodes one "hop“ from the root, this calculation does not

change the value of its successor (because a root's parent is itself).
• For nodes at least two "hops" away from a root, this calculation

makes the node's successor its parent's parent. We repeat this
calculation until it converges (that is, the values produced by one
step are the same as those produced by the preceding step), at
which point every node's successor is the desired value.

• At each step we can operate on all N nodes in the tree concurrently,
and the algorithm converges in at most log N steps.

Geometric
Dependencies exist, but communicate in predictable (geometric) neighbor-to-neighbor paths.

Neighbor-To-Neighbor communication

Irregular Mesh
Communication in non-predictable paths in mesh topology.

Hard to define due to varying
communication patterns.

Start point :
Pattern that constructed this mesh.

Still Unrecovered

• The corrupted file has not yet been recovered.

• We will repost these notes with comments
added to the currently missing slides as soon
as I can recover or recreate the lost slides.

