Numerical Linear Algebra: iterative methods

Victor Eijkhout

Two different approaches

Solve Ax = b

Direct methods:

- Deterministic
- Exact up to machine precision
- Expensive (in time and space)

Iterative methods:

- Only approximate
- Cheaper in space and (possibly) time
- Convergence not guaranteed

Iterative methods

Choose any x_0 and repeat

$$x^{k+1} = Bx^k + c$$

until
$$\|x^{k+1}-x^k\|_2<\epsilon$$
 or until $\frac{\|x^{k+1}-x^k\|_2}{\|x^k\|}<\epsilon$

Example of iterative solution

Example system

$$\begin{pmatrix} 10 & 0 & 1 \\ 1/2 & 7 & 1 \\ 1 & 0 & 6 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 21 \\ 9 \\ 8 \end{pmatrix}$$

with solution (2,1,1).

Suppose you know (physics) that solution components are roughly the same size, and observe the dominant size of the diagonal, then

$$\begin{pmatrix} 10 & & \\ & 7 & \\ & & 6 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 21 \\ 9 \\ 8 \end{pmatrix}$$

might be a good approximation: solution (2.1, 9/7, 8/6).

Iterative example

Example system

$$\begin{pmatrix} 10 & 0 & 1 \\ 1/2 & 7 & 1 \\ 1 & 0 & 6 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 21 \\ 9 \\ 8 \end{pmatrix}$$

with solution (2,1,1).

Also easy to solve:

$$\begin{pmatrix} 10 & & \\ 1/2 & 7 & \\ 1 & 0 & 6 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 21 \\ 9 \\ 8 \end{pmatrix}$$

with solution (2.1, 7.95/7, 5.9/6).

Iterative example"

Instead of solving Ax = b we solved $L\tilde{x} = b$. Look for the missing part: $\tilde{x} = x + \Delta x$, then $A\Delta x = A\tilde{x} - b \equiv r$. Solve again $L\widetilde{\Delta x} = r$

pare: x		z — /		
	iteration	1	2	3
and update $\widetilde{\widetilde{x}} = \widetilde{x} - \widetilde{\Delta x}$.	<i>x</i> ₁	2.1000	2.0017	2.000028
	<i>x</i> ₂	1.1357	1.0023	1.000038
	<i>x</i> ₃	0.9833	0.9997	0.999995

Two decimals per iteration. This is not typical

Exact system solving: $O(n^3)$ cost; iteration: $O(n^2)$ per iteration. Potentially cheaper if the number of iterations is low.

Abstract presentation

- To solve Ax = b; too expensive; suppose K ≈ A and solving Kx = b is possible
- Define $Kx_0 = b$, then error correction $e_0 = x x_0$, and $A(x_0 + e_0) = b$
- so $Ae_0 = b Ax_0 = r_0$; this is again unsolvable, so
- $K\tilde{e}_0$ and $x_1 = x_0 + \tilde{e}_0$.
- now iterate: $e_1 = x x_1$, $Ae_1 = b Ax_1 = r_1$ et cetera

Error analysis

One step

$$r_1 = b - Ax_1 = b - A(x_0 + \tilde{e}_0)$$
 (1)

$$= r_0 - AK^{-1}r_0 (2)$$

$$= (I - AK^{-1})r_0 (3)$$

- Inductively: $r_n = (I AK^{-1})^n r_0$ so $r_n \downarrow 0$ if $|\lambda(I AK^{-1})| < 1$ Geometric reduction (or amplification!)
- This is 'stationary iteration': every iteration step the same.
 Simple analysis, limited applicability.

Choice of *K*

- The closer *K* is to *A*, the faster convergence.
- Diagonal and lower triangular choice mentioned above: let

$$A = D_A + L_A + U_A$$

be a splitting into diagonal, lower triangular, upper triangular part, then

- Jacobi method: $K = D_A$ (diagonal part),
- Gauss-Seidel method: $K = D_A + L_A$ (lower triangle, including diagonal)

Computationally

lf

$$A = K - N$$

then

$$Ax = b \Rightarrow Kx = Nx + b \Rightarrow Kx_{i+1} = Nx_i + b$$

Equivalent to the above, and you don't actually need to form the residual.

Jacobi

$$K = D_A$$

Algorithm:

for
$$k = 1, ...$$
 until convergence, do:
for $i = 1 ... n$:
 $x_i^{(k+1)} = a_{ii}^{-1} (\sum_{j \neq i} a_{ij} x_j^{(k)} + b_i)$

Implementation:

for
$$k=1,\ldots$$
 until convergence, do:
for $i=1\ldots n$:
 $t_i=a_{ii}^{-1}(-\sum_{j\neq i}a_{ij}x_j+b_i)$
 $copy\ x\leftarrow t$

Jacobi in pictures:

Gauss-Seidel

$$K = D_A + L_A$$

Algorithm:

for
$$k=1,\ldots$$
 until convergence, do:
for $i=1\ldots n$:
 $x_i^{(k+1)}=a_{ii}^{-1}(-\sum_{j< i}a_{ij}x_j^{(k+1)})-\sum_{j> i}a_{ij}x_j^{(k)}+b_i)$

Implementation:

for
$$k = 1, ...$$
 until convergence, do:
for $i = 1 ... n$:
 $x_i = a_{ii}^{-1} (-\sum_{j \neq i} a_{ij} x_j + b_i)$

GS in pictures:

Choice of K through incomplete LU

Gauss elimination LU = A:

```
for k,i,j:

a[i,j] = a[i,j] - a[i,k] * a[k,j] / a[k,k]
```

Incomplete variant $K = LU \approx A$:

```
for k,i,j:
   if a[i,j] not zero:
    a[i,j] = a[i,j] - a[i,k] * a[k,j] / a[k,k]
```

 \Rightarrow sparsity of L + U the same as of A it is possible to allow some fill-in

Stopping tests

When to stop converging? Can size of the error be guaranteed?

- Direct tests on error $e_n = x x_n$ impossible; two choices
- Relative change in the computed solution small:

$$||x_{n+1}-x_n||/||x_n||<\epsilon$$

Residual small enough:

$$||r_n|| = ||Ax_n - b|| < \epsilon$$

Without proof: both imply that the error is less than some other ϵ' .

General form of iterative methods 1.

System Ax = b has the same solution as $K^{-1}Ax = K^{-1}b$.

Let \tilde{x} be a guess and

$$\tilde{r} = K^{-1}A\tilde{x} - K^{-1}b.$$

then

$$x = A^{-1}b = \tilde{x} - A^{-1}K\tilde{r} = \tilde{x} - (K^{-1}A)^{-1}\tilde{r}.$$

Using Cayley-Hamilton theorem:

$$x = \tilde{x} - \pi(K^{-1}A)K^{-1}\tilde{r} = \tilde{x} - K^{-1}\pi(AK^{-1})\tilde{r}.$$

Iterative scheme:

$$x_{i+1} = x_0 + K^{-1}\pi^{(i)}(AK^{-1})r_0$$
(4)

Convergence theory for residuals

$$x_{i+1} = x_0 + K^{-1}\pi^{(i)}(AK^{-1})r_0$$

Multiply by A and subtract b:

$$r_{i+1} = r_0 + \tilde{\pi}^{(i)}(AK^{-1})r_0$$

So:

$$r_i = \hat{\pi}^{(i)}(AK^{-1})r_0$$

where $\hat{\pi}^{(i)}$ is a polynomial of degree i with $\hat{\pi}^{(i)}(0) = 1$.

What polynomial sequence minimizes the residual?

Juggling polynomials

Lots of induction proves

$$(AK^{-1})^i r_0 \in [r_i, \dots, r_0].$$
 (5)

and

$$r_i \in [(AK^{-1})^0 r_0 \dots, (AK^{-1})^{i-1} r_0].$$
 (6)

General form of iterative methods 3.

$$x_{i+1} = x_0 + \sum_{j \le i} K^{-1} r_j \alpha_{ji}.$$

or equivalently:

$$x_{i+1} = x_i + \sum_{j \le i} K^{-1} r_j \alpha_{ji}.$$

More residual identities

$$x_{i+1} = x_i + \sum_{j \le i} K^{-1} r_j \alpha_{ji}.$$

gives

$$r_{i+1} = r_i + \sum_{j \le i} AK^{-1}r_j\alpha_{ji}.$$

More throwing of formulas:

$$r_{i+1}\gamma_{i+1,i} = AK^{-1}r_i + \sum_{i < i} r_j\gamma_{ji}$$

where $\gamma_{i+1,i} = \sum_{j < i} \gamma_{ji}$.

General form of iterative methods 4.

$$r_{i+1}\gamma_{i+1,i} = AK^{-1}r_i + \sum_{j \le i} r_j\gamma_{ji}$$

and $\gamma_{i+1,i} = \sum_{i \le i} \gamma_{ji}$.

Write this as $AK^{-1}R = RH$ where

$$H = \begin{pmatrix} -\gamma_{11} & -\gamma_{12} & \dots & & \\ \gamma_{21} & -\gamma_{22} & -\gamma_{23} & \dots & \\ 0 & \gamma_{32} & -\gamma_{33} & -\gamma_{34} & \\ \emptyset & \ddots & \ddots & \ddots & \ddots \end{pmatrix}$$

H is a Hessenberg matrix, and note zero column sums.

Divide A out:

$$x_{i+1}\gamma_{i+1,i} = K^{-1}r_i + \sum_{i \le i} x_j \gamma_{ji}$$

General form of iterative methods 5.

$$\begin{cases} r_{i} = Ax_{i} - b \\ x_{i+1}\gamma_{i+1,i} = K^{-1}r_{i} + \sum_{j \leq i} x_{j}\gamma_{ji} \\ r_{i+1}\gamma_{i+1,i} = AK^{-1}r_{i} + \sum_{j \leq i} r_{j}\gamma_{ji} \end{cases}$$

where
$$\gamma_{i+1,i} = \sum_{j \leq i} \gamma_{ji}$$
.

Orthogonality

Idea one:

If you can make all your residuals orthogonal to each other, and the matrix is of dimension n, then after n iterations you have to have converged: it is not possible to have an n+1-st residuals that is orthogonal and nonzero.

Idea two:

The sequence of residuals spans a series of subspaces of increasing dimension; by orthogonalizing the error is the distance between r_0 and these spaces. This means that the error will be decreasing.

Full Orthogonalization Method

```
Let r_0 be given
For i > 0:
      let s \leftarrow K^{-1}r:
      let t \leftarrow AK^{-1}r:
      for i < i:
            let \gamma_i be the coefficient so that t - \gamma_i r_i \perp r_i
      for i < i:
            form s \leftarrow s - \gamma_j x_j
            and t \leftarrow t - \gamma_i r_i
      let x_{i+1} = (\sum_{i} \gamma_{i})^{-1} s, r_{i+1} = (\sum_{i} \gamma_{i})^{-1} t.
```


Modified Gramm-Schmidt

```
Let r_0 be given

For i \geq 0:

let s \leftarrow K^{-1}r_i

let t \leftarrow AK^{-1}r_i

for j \leq i:

let \gamma_j be the coefficient so that t - \gamma_j r_j \perp r_j

form s \leftarrow s - \gamma_j x_j

and t \leftarrow t - \gamma_j r_j

let x_{i+1} = (\sum_j \gamma_j)^{-1} s, r_{i+1} = (\sum_j \gamma_j)^{-1} t.
```


Coupled recurrences form

$$x_{i+1} = x_i - \sum_{j < i} \alpha_{ji} K^{-1} r_j$$
 (7)

This equation is often split as

• Update iterate with search direction: direction:

$$x_{i+1} = x_i - \delta_i p_i,$$

Construct search direction from residuals:

$$p_i = K^{-1} r_i + \sum_{i < i} \beta_{ij} K^{-1} r_j.$$

Inductively:

$$p_i = K^{-1}r_i + \sum_{i < i} \gamma_{ij} p_j,$$

Conjugate Gradients

Basic idea:

$$r_i^t K^{-1} r_j = 0 \quad \text{if } i \neq j.$$

Split recurrences:

$$\begin{cases} x_{i+1} = x_i - \delta_i p_i \\ r_{i+1} = r_i - \delta_i A p_i \\ p_i = K^{-1} r_i + \sum_{j < i} \gamma_{ij} p_j, \end{cases}$$
(8)

Derivation 1.

Let

- x₁, r₁, p₁ are the current iterate, residual, and search direction.
 Note that the subscript 1 does not denote the iteration number here.
- x₂, r₂, p₂ are the iterate, residual, and search direction that we are about to compute. Again, the subscript does not equal the iteration number.
- X_0 , R_0 , P_0 are all previous iterates, residuals, and search directions bundled together in a block of vectors.

Derivation 2.

In terms of these quantities, the update equations are then

$$\begin{cases} x_2 = x_1 - \delta_1 p_1 \\ r_2 = r_1 - \delta_i A p_1 \\ p_2 = K^{-1} r_2 + v_{12} p_1 + P_0 u_{02} \end{cases}$$
 (9)

where δ_1, v_{12} are scalars, and u_{02} is a vector with length the number of iterations before the current.

Derivation of scalars

We want:

$$r_2^t K^{-1} r_1 = 0, \qquad r_2^t K^{-1} R_0 = 0.$$

Combining these relations gives us, for instance,

$$\left. \begin{array}{l} r_1^t K^{-1} r_2 = 0 \\ r_2 = r_1 - \delta_i A K^{-1} p_1 \end{array} \right\} \Rightarrow \delta_1 = \frac{r_1^t r_1}{r_1^t A K^{-1} p_1}.$$

Finding v_{12} , u_{02} is a little harder.

Preconditioned Conjugate Gradients

```
Compute r^{(0)} = b - Ax^{(0)} for some initial guess x^{(0)}
for i = 1, 2, ...
      solve Mz^{(i-1)} = r^{(i-1)}

\rho_{i-1} = r^{(i-1)^T} z^{(i-1)}

      if i = 1
         p^{(1)} = z^{(0)}
      else
         \beta_{i-1} = \rho_{i-1}/\rho_{i-2}
         p^{(i)} = z^{(i-1)} + \beta_{i-1} p^{(i-1)}
      endif
      a^{(i)} = A p^{(i)}
      \alpha_i = \rho_{i-1}/p^{(i)^T}a^{(i)}
      x^{(i)} = x^{(i-1)} + \alpha : p^{(i)}
      r^{(i)} = r^{(i-1)} - \alpha_i a^{(i)}
      check convergence; continue if necessary
end
```


Observations on iterative methods

- Conjugate gradients: constant storage and inner products; works only for symmetric systems
- GMRES (like FOM): growing storage and inner products: restarting and numerical cleverness
- BiCGstab and QMR: relax the orthogonality

CG derived from minimization

Special case of SPD:

For which vector
$$x$$
 with $||x|| = 1$ is $f(x) = 1/2x^tAx - b^tx$ minimal? (10)

Taking derivative:

$$f'(x) = Ax - b.$$

Update

$$x_{i+1} = x_i + p_i \delta_i$$

optimal value:

$$\delta_i = \operatorname*{argmin}_{\delta} \| f(x_i + p_i \delta) \| = \frac{r_i^t p_i}{p_1^t A p_i}$$

Other constants follow from orthogonality.

Parallism

- Vector operations, including inner products
- Matrix vector product
- Preconditioner (K) application

Parallelism in preconditioners: the problem Mvp:

```
for i=1..n
  y[i] = sum over j=1..n a[i,j]*x[j]
In parallel:
for i=myfirstrow..mylastrow
  y[i] = sum over j=1..n a[i,j]*x[j]
Preconditioner II U:
for i=1..n
  x[i] = (y[i] - sum over j=1..i-1 ell[i,j]*x[j]) / a[i,i]
parallel:
for i=myfirstrow..mylastrow
```

x[i] = (y[i] - sum over j=1..i-1 ell[i,j]*x[j]) / a[i,i]

Block Jacobi

```
for i=myfirstrow..mylastrow
  x[i] = (y[i] - sum over j=myfirstrow..i-1 ell[i,j]*x[j])
      / a[i,i]
```


Multicolouring

Parallelism through multicolouring

