Numerical Linear Algebra: iterative methods
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Two different approaches
Solve Ax = b
Direct methods:
e Deterministic

e Exact up to machine precision

e Expensive (in time and space)
Iterative methods:

e Only approximate
e Cheaper in space and (possibly) time

e Convergence not guaranteed
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Iterative methods

Choose any xg and repeat

K = Bxk + ¢

+1_Xk||2

until ||x¥*1 — x¥||2 < € or until HXk”Xk”

<€
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Example of iterative solution

Example system

10 0 1 X1 21
12 7 1] x]=1[9
1 0 6 X3 8

with solution (2,1,1).

Suppose you know (physics) that solution components are roughly
the same size, and observe the dominant size of the diagonal, then

10 X1 21
7 X2 = 9
6 X3 8

might be a good approximation: solution (2.1,9/7,8/6).

I A@@ Pingali scicomp 2011 — 4



Iterative example’

Example system

10 0 1 X1 21
12 7 1] [x|=[9
1 0 6 X3 8

with solution (2,1,1).

()6 ()

with solution (2.1,7.95/7,5.9/6).

Also easy to solve:

o~
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Iterative example”

Instead of solving Ax = b we solved LX = b. Look for the missing
part: X = x + Ax, then AAx = Ax — b =r. Solve again LAx =r

iteration 1 2 3
c .~ |x 21000 2.0017 2.000028
and update X =X — Ax. | 1.1357 1.0023 1.000038
X3 0.9833 0.0997 0.999995

Two decimals per iteration. This is not typical

Exact system solving: O(n3) cost; iteration: O(n?) per iteration.
Potentially cheaper if the number of iterations is low.
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Abstract presentation

e To solve Ax = b; too expensive; suppose K =~ A and solving
Kx = b is possible

e Define Kxg = b, then error correction eg = x — xp, and
A(xo +e)=0>b

e so Aey = b — Axp = rp; this is again unsolvable, so

o K& and x3 = xp + &.

e now iterate: e = x — x1, Ae;1 = b — Ax; = 1 et cetera
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Error analysis

e One step
rn = b—Axy=b—A(x + &) (1)
= rn— AKilro (2)
= (I-AK Y (3)

e Inductively: r, = (I —AK Yy so r, L 0 if [N(/ —AK™1)| < 1
Geometric reduction (or amplification!)

e This is ‘stationary iteration’: every iteration step the same.
Simple analysis, limited applicability.
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Choice of K

e The closer K is to A, the faster convergence.

e Diagonal and lower triangular choice mentioned above: let
A=Dp+ Lo+ Up

be a splitting into diagonal, lower triangular, upper triangular
part, then

e Jacobi method: K = D4 (diagonal part),

e Gauss-Seidel method: K = Da + La (lower triangle, including
diagonal)
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Computationally

A=K-N

then
Ax=b= Kx=Nx+ b= Kxiy1 = Nx;+ b

Equivalent to the above, and you don't actually need to form the
residual.
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Jacobi

K =Dgx
Algorithm:

for k =1, ... until convergence, do:

fori=1...n:

) = a (D 2 + i)

Implementation:

for k =1, ... until convergence, do:
fori=1...n:
ti=a;'(— >4 A% + bi)
copy x <t
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Jacobi in pictures:

o é ; 2 /\;/\
X(n+1) G ‘ . .
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Gauss-Seidel

K =D+ Ly
Algorithm:

for k =1, ... until convergence, do:
fori=1...n:

k+1 _ Kk+1 K
Xi( )= a; (-~ D j<i ainj( - Djsi afjxj( )+ bi)

Implementation:

for k =1, ... until convergence, do:
fori=1...n:

xi=a;'(~ >_j+i ijXj + bi)
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GS in pictures:

Py e f) 2 —
l Iy
o o= oo
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Choice of K through incomplete LU

Gauss elimination LU = A:

for k,i,j:
ali,jl = ali,jl - ali,k] * alk,j] / alk,kl]

Incomplete variant K = LU ~ A:
for k,i,j:
if al[i,j] not zero:

ali,jl = ali,jl - ali,k] * alk,j] / alk,kl]

= sparsity of L + U the same as of A
it is possible to allow some fill-in
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Stopping tests

When to stop converging? Can size of the error be guaranteed?

e Direct tests on error e, = x — x, impossible; two choices

o Relative change in the computed solution small:
IXn41 — Xall/lIxnl| < €

e Residual small enough:
Irall = [|Axa — bI| <€

Without proof: both imply that the error is less than some other ¢’.
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General form of iterative methods 1.
System Ax = b has the same solution as K1Ax = K~ 1b.

Let X be a guess and

then
x=Alb=%x-AlKF=x— (K 1A)F.

Using Cayley-Hamilton theorem:
x=%—-m(KTAK ¥ =% - K ln(AK HF.
Iterative scheme:

xit1=x0 + K 1r(AK )rg (4)
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Convergence theory for residuals

Xi+1 = Xo + K_lﬂ(i)(AK_l)ro
Multiply by A and subtract b:
rig1 =r + %(i)(AKfl)ro

So: '
ri = 20 (AK)r
where #() is a polynomial of degree i with #()(0) = 1.

What polynomial sequence minimizes the residual?
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Juggling polynomials

Lots of induction proves
(AK Y eln,... ] (5)

and
ri€ [(AK HPry...,(AK") 1] (6)
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General form of iterative methods 3.

-1
Xi+1 = Xo + E K riai.
J<i

or equivalently:

-1
Xiy1 = X; + E K rioi.
J<i
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More residual identities

-1
Xi+1 = X; + E K rici.
J<i

gives

fiy1=1r+ E AK_lrjozj,-.
J<i

More throwing of formulas:

-1
rig1Viv1,i = AK ri + Z riji
J<i

where i1, = > Vi
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General form of iterative methods 4.

fip1viei = AK i+ ) i

J<i
and Yiy1,i = > i< Vji-
Write this as AK~1R = RH where

711 —712
Y21 —7Y22  —723

H=1 o Y32 —Y33 34
0 ) .
H is a Hessenberg matrix, and note zero column sums.
Divide A out:

-1
Xit1Yieni = K+ ) xii
J<i
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General form of iterative methods 5.

ri = AX,' —b
_ k-1 . J— ..
Xiy1Vit1,i = K™ 'ri + Ejg,-xﬂ’ji where i1 = ngi%"
_ -1
fiv1Vit1,i = AKT i+ 3 i
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Orthogonality

Idea one:

If you can make all your residuals orthogonal to each
other, and the matrix is of dimension n, then after n
iterations you have to have converged: it is not possible
to have an n + 1-st residuals that is orthogonal and
nonzero.

Idea two:

The sequence of residuals spans a series of subspaces of
increasing dimension; by orthogonalizing the error is the
distance between ry and these spaces. This means that

the error will be decreasing.
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Full Orthogonalization Method

Let ry be given
Fori > 0:
let s < K~ 1r;
let t «+ AK™1r;
forj < i:
let y; be the coefficient so that t — ~y;rj L r;
for j < i:
form s <— s — y;x;
and t < t—jr;
let xit1 = (35;7)7"s, rivn = (2;%) 't
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Modified Gramm-Schmidt

Let ry be given
Fori>0:
let s — K 1r;
let t < AK™1r;
forj <i:
let y; be the coefficient so that t — ~y;r; L r;
form s <— s — y;x;
and t < t—jr;
let xip1 = (32;7) 7 s, rivn = () 7't
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Coupled recurrences form

Xit1 = Xj — Z iK™t (7)
J<i
This equation is often split as
o Update iterate with search direction: direction:
Xi+1 = Xj — 0ipj,

e Construct search direction from residuals:

-1 _

pi =K fi+25in '
J<i
Inductively:
-1
pi=K i+ vip,

Jj<i
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Conjugate Gradients

Basic idea:
Kt =0 ifi#j.

Split recurrences:
Xi+1 = X; — 0;p;
riv1 = ri — 0;Ap; (8)
pi = K7+ 3 Py
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Derivation 1.

Let

® Xy, r, p1 are the current iterate, residual, and search direction.
Note that the subscript 1 does not denote the iteration
number here.

® X2, Iy, pp are the iterate, residual, and search direction that we
are about to compute. Again, the subscript does not equal
the iteration number.

e Xo, Ro, Py are all previous iterates, residuals, and search
directions bundled together in a block of vectors.
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Derivation 2.

In terms of these quantities, the update equations are then

Xp = X1 — 01p1
r=r —0jAp (9)
p> = K~ 1ry + viap1 + Pouo

where 01, v12 are scalars, and wugy is a vector with length the
number of iterations before the current.
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Derivation of scalars

We want:
K tn =0, riK 1Ry = 0.

Combining these relations gives us, for instance,

K ln =0 5 - mnn
rn=n—G6AK 1p 1 rfAK=1p;’

Finding v12, ugy is a little harder.
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Preconditioned Conjugate Gradients

Compute r® = b — Ax(©) for some initial guess x(%)
for i=1,2,...
solve Mz(i=1) = f(
oy = P17 )
ifi=1
1) — 50
else
Bi—1 = Pifl/pi72
o) = A1) 4 g pl-D)
endif
) = Apl)
a; = pi—1/pD" g
X = x50 4 g p(0)
P = 1) D)

i—1)

check convergence; continue if necessary
end
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Observations on iterative methods

e Conjugate gradients: constant storage and inner products;
works only for symmetric systems

e GMRES (like FOM): growing storage and inner products:
restarting and numerical cleverness

e BiCGstab and QMR: relax the orthogonality
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CG derived from minimization
Special case of SPD:

For which vector x with ||x| =1 is f(x) = 1/2x*Ax — b'x minimal?
(10)
Taking derivative:
f'(x) = Ax — b.
Update
Xi41 = Xj + pi0;

optimal value:

h ,‘tPi
piApi

§; = argmin ||f(x; + pid)|| =
1)

Other constants follow from orthogonality.
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Parallism

e Vector operations, including inner products
e Matrix vector product

e Preconditioner (K) application
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Parallelism in preconditioners: the problem

Mvp:
for i=1..n

y[i] = sum over j=1..n ali,jl*x[j]
In parallel:

for i=myfirstrow..mylastrow
y[i] = sum over j=1..n ali,jl*x[j]

Preconditioner ILU:

for i=1..n
x[i] = (y[i] - sum over j=1..i-1 ell[i,jl*x[jl1) / ali,i]

parallel:

for i=myfirstrow..mylastrow
x[i] = (y[i] - sum over j=1..i-1 ell[i,jl*x[jl) / ali,i]
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Block Jacobi

for i=myfirstrow..mylastrow
x[i] = (y[i] - sum over j=myfirstrow..i-1 ell[i,jl*x[j])

/ ali,il
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ail

azi

as3

a3
a43

Multicolouring

ass

das

a2 X1
a32 d34 X3
X5

ax X2
asa x4

Y1
y3
Y5

Y2
ya

TACC
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Parallelism through multicolouring

Solve

distribute

Solve

o o o o o -
o o o o o
\“/ \“/
° -
° o

TACC
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