Linear Programming

Greg Plaxton
Theory in Programming Practice, Spring 2004
Department of Computer Science
University of Texas at Austin

Optimization

- In an optimization problem, we are given an objective function, the value of which depends on a number of variables, and we are asked to find a setting for these variables so that
 - Certain constraints are satisfied, i.e., we are required to choose a feasible setting for the variables
 - The value of the objective function is maximized (or minimized)
- In general, the objective function and the constraints defining the set of feasible solutions may be arbitrarily complex
- Today we will discuss the important special case in which the objective function and the constraints are linear

Linear Programming

- In linear programming, the goal is to optimize (i.e., maximize or minimize) a linear objective function subject to a set of linear constraints
- Many practical optimization problems can be posed within this framework
- Efficient algorithms are known for solving linear programs
 - Linear programming solving packages routinely solve LP instances with thousands of variables and constraints

Linear Functions

- A linear function of variables $x_1, \ldots x_n$ is any function of the form $c_0 + \sum_{1 < j < n} c_j x_j$ where
 - The c_j 's denote given real numbers
 - The x_j 's denote real variables
- Example: $3x_1 2x_2 + 10$

Linear Objective Function

- The objective function is the function that we are striving to maximize or minimize
- Suppose our goal is to maximize the linear function $3x_1 2x_2 + 10$ (subject to certain constraints that remain to be specified)
- We will get the same result if we drop the constant term and instead simply maximize $3x_1 2x_2$
- Also, note that maximizing $3x_1-2x_2$ is the same as minimizing $-3x_1+2x_2$
- Such a linear objective function is often written in the more compact vector form c^Tx , where c and x are viewed as $n\times 1$ column vectors, the superscript T denotes transpose, and multiplication corresponds to inner product

Linear Constraints

- A linear constraint requires that a given linear function be at most, at least, or equal to, a specified real constant
 - Examples: $3x_1 2x_2 \le 10$; $3x_1 2x_2 \ge 10$; $3x_1 2x_2 = 10$
- Note that any such linear constraint can be expressed in terms of upper bound ("at most") constraints
 - The lower bound constraint $3x_1 2x_2 \ge 10$ is equivalent to the upper bound constraint $-3x_1 + 2x_2 \le -10$
 - The equality constraint $3x_1 2x_2 = 10$ is equivalent to the upper bound constraints $3x_1 2x_2 \le 10$ and $-3x_1 + 2x_2 \le -10$

Sets of Linear Constraints: Matrix Notation

- Suppose we are given a set of m upper bound constraints involving the n variables x_1, \ldots, x_n
- The constraints can be written in the form $Ax \leq b$ where A denotes an $m \times n$ real matrix, x denotes a column vector of length n (i.e., an $n \times 1$ matrix), and b denotes a column vector of length m
 - The *i*th inequality, $1 \le i \le m$, is $\sum_{1 \le j \le n} a_{ij} x_j \le b_i$
- Similarly, a set of lower bounds constraints may be written as $Ax \geq b$ and a set of equality constraints may be written as Ax = b

Nonnegativity Constraints

- The special case of a linear constraint that requires a particular variable, say x_j , to be nonnegative (i.e., $x_j \ge 0$) is sometimes referred to as a nonnegativity constraint
- We will see that such constraints may be handled in a special way within the simplex algorithm, which accounts for their special status
 - Basically, such constraints are handled implicitly rather than explicitly

Standard Form

- A linear programming instance is said to be in *standard form* if it is of the form: Maximize c^Tx subject to $Ax \leq b$ and $x \geq 0$
- It is relatively straightforward to transform any given LP instance into this form
 - As noted earlier, a minimization problem can be converted to a maximization problem by negating the objective function
 - We have already seen how to represent lower bound constraints and equality constraints using upper bound constraints
 - If a nonnegativity constraint is missing for some variable x_j (i.e., x_j is "unrestricted"), we can represent x_j by $x_j' x_j''$ where the variables x_j' and x_j'' are required to be nonnegative

Geometric Interpretation

- Suppose we wish to maximize $3x_1 + 2x_2$ subject to the constraints
 - (1) $x_1 + x_2 \le 10$
 - (2) $x_1 \leq 8$
 - (3) $x_2 \leq 5$
 - (4) x_1 and x_2 nonnegative
- Let's draw out the feasible region in the plane
- Now use a geometric approach to find an optimal solution

Simplex Algorithm

- In general, the feasible region defined by constraints of the form $Ax \leq b$ and $x \geq 0$ forms a simplex
- An optimal solution is guaranteed to occur at some "corner" of the simplex
- These "corners" correspond to basic feasible solutions, a notion to be defined a bit later
- The simplex algorithm maintains a bfs, and repeatedly moves to an "adjacent" bfs with a higher value for the objective function
- The simplex algorithm terminates when it reaches a local optimum
 - Fortunately, for the linear programming problem, any such local optimum can be proven to also be a global optimum

Simplex Algorithm: Performance

- In the worst case, the simplex algorithm can take a long time (exponential number of iterations) to converge
 - Fortunately, only pathological inputs lead to such bad behavior; in practice, the running time of the simplex algorithm is quite good
- More sophisticated algorithms (e.g., the ellipsoid algorithm) are known for linear programming that are guaranteed to run in polynomial time

Running Example

• Maximize $4x_1 + 5x_2 + 9x_3 + 11x_4$ ($c^T x$) subject to

$$x_1 + x_2 + x_3 + x_4 \le 15$$
$$7x_1 + 5x_2 + 3x_3 + 2x_4 \le 120$$
$$3x_1 + 5x_2 + 10x_3 + 15x_4 \le 100$$

$$(Ax \leq b)$$
 and $x_j \geq 0$, $1 \leq j \leq 4$

- An application:
 - Variable x_j denotes the amount of product j to produce
 - Value c_j denotes the profit per unit of product j
 - Value a_{ij} denotes the amount of raw material i used to produce each unit of product j
 - Value b_i denotes the available amount of raw material i
 - The objective is to maximize profit

Simplex Example

- Let x_0 denote the value of the objective function and introduce n=3 slack variable x_5 , x_6 , x_7 to obtain the following equivalent system
- Maximize x_0 subject to the constraints

$$x_0 - 4x_1 - 5x_2 - 9x_3 - 11x_4 = 0$$

$$x_1 + x_2 + x_3 + x_4 + x_5 = 15$$

$$7x_1 + 5x_2 + 3x_3 + 2x_4 + x_6 = 120$$

$$3x_1 + 5x_2 + 10x_3 + 15x_4 + x_7 = 100$$

- It is easy to see that the above constraints are satisfied by setting x_0 to 0, setting each slack variable to the corresponding RHS (i.e., x_5 to 15, x_6 to 120, and x_7 to 100), and setting the remaining variables to 0
 - Simplex uses this method to obtain an initial feasible solution

Basic Feasible Solution

- There are four constraints in the system given on the preceding slide
- Simplex will consider only solutions with at most four nonzero variables
- Such a solution is called a basic feasible solution or bfs
- The four variables that are allowed to be nonzero are called the basic variables; the remaining variables are called nonbasic
- We view the initial feasible solution mentioned on the previous slide as a bfs with basic variables $x_0=0$, $x_5=15$, $x_6=120$, and $x_7=100$

The High-Level Strategy of the Simplex Algorithm

- The algorithm proceeds iteratively; at each iteration, we have a bfs
- We also have a system of equations, one for each basic variable, such that the associated basic variable has coefficient 1 and the remaining basic variables have coefficient 0
 - In our example, we chose x_0 , x_5 , x_6 , and x_7 as our initial basic variables
 - Note that our initial system of four equations satisfies the aforementioned conditions
- The value of the objective function (i.e., of the variable x_0) increases strictly at each iteration
- ullet When the algorithm terminates, the current bfs is optimal, i.e., x_0 is maximized

A Simplex Iteration

- Check a termination condition to see whether the current bfs is optimal;
 if so, terminate
- Apply a particular rule to choose an entering variable, i.e., a nonbasic variable that will become a basic variable after this iteration
- Apply a second rule to choose a departing variable, i.e., a basic variable that will become a nonbasic variable after this iteration
- Perform a pivot operation to determine a new bfs, and to update the associated system of equations appropriately

Termination Condition

- Look at the first equality in the set associated with the current bfs
 - In our example, this is

$$x_0 - 4x_1 - 5x_2 - 9x_3 - 11x_4 = 0$$

- In general, the variables in this equation are x_0 , with a coefficient of 1, and the nonbasic variables
- If every nonbasic variable has a nonnegative coefficient we terminate; it can be shown that the current bfs is optimal
- In our example, the termination condition does not hold at this point

Selection of the Entering Variable

- Any nonbasic variable with a negative coefficient in the first equation can be chosen as the entering variable
- A good heuristic is to choose the nonbasic variable with the least (i.e., most negative) coefficient
- Such a nonbasic variable is guaranteed to exist since we only select an entering variable when the termination condition does not hold
- In our example, we choose x_4 as the entering variable

Selection of the Departing Variable

- ullet We now increase the entering variable u as much as possible, i.e., until one or more basic variables are driven to zero
- Recall that for each basic variable v, there is exactly one equation E (in the system of equations we are maintaining) in which v has a nonzero coefficient, and in that equation the coefficient of v is 1
- If the coefficient of u is positive in E, then v is a candidate to be the leaving variable since increasing u requires v to be decreased in order to preserve the equality
- If no basic variable is driven to zero by increasing u, we terminate and report that the maximum value of the objective function is unbounded
- Otherwise, for each basic variable v that is driven to zero, we calculate the ratio of the current value of v to the coefficient of u in the equation associated with v to determine how much u needs to increase to drive that v to zero; the minimum ratio determines the departing variable

Back to Our Running Example

- The entering variable is x_4
- By our choice of x_4 , x_0 is not a candidate to be a departing variable
- In this example, the remaining basic variables x_5 , x_6 , and x_7 are all candidates to be the departing variable since the coefficient of x_4 is positive in each of the associated equations
- We calculate the relevant ratios: $\frac{15}{1}=15$ for x_5 , $\frac{120}{2}=60$ for x_6 , and $\frac{100}{15}=\frac{20}{3}$ for x_7
- The minimum ratio is $\frac{20}{3}$, so we select x_7 as the departing variable

Pivot Operation

- ullet Once we have chosen some nonbasic variable u as the entering variable, and some basic variable v as the departing variable, we need to update our bfs and associated system of equations accordingly
- ullet In the new bfs, the (newly) basic variable u is set to the value that causes v to become 0
- The remaining basic variables are updated appropriately
- ullet The departing variable v becomes 0, since we require all nonbasic variables to be zero
- To clarify these computations, and to see how the system of equations is updated, let's look at the first pivot operation applied in our example

Pivot Operation: Example

- Recall that x_4 is the entering variable and x_7 is the departing variable
- Since x_7 is departing, we add appropriate multiples of the fourth equation (the one associated with x_7) to the remaining equations in order to eliminate x_4 from those equations
- We also scale the fourth equation appropriately so that the coefficient of x_4 becomes one

Pivot Operation: Example

The result is as follows

$$x_{0} - \frac{9}{5}x_{1} - \frac{4}{3}x_{2} - \frac{5}{3}x_{3} + \frac{11}{15}x_{7} = \frac{220}{3}$$

$$\frac{4}{5}x_{1} + \frac{2}{3}x_{2} + \frac{1}{3}x_{3} + x_{5} - \frac{1}{15}x_{7} = \frac{25}{3}$$

$$\frac{33}{5}x_{1} + \frac{13}{3}x_{2} + \frac{5}{3}x_{3} + x_{6} - \frac{2}{15}x_{7} = \frac{320}{3}$$

$$\frac{1}{5}x_{1} + \frac{1}{3}x_{2} + \frac{2}{3}x_{3} + x_{4} + \frac{1}{15}x_{7} = \frac{20}{3}$$

Interpretation of the RHS's?

Example After Three Iterations

• After three pivot operations, we end up with the basic variables x_0 , x_1 , x_3 , and x_6 and the following associated set of equations

$$x_{0} + \frac{3}{7}x_{2} + \frac{11}{7}x_{4} + \frac{13}{7}x_{5} + \frac{5}{7}x_{7} = \frac{695}{7}$$

$$x_{1} + \frac{5}{7}x_{2} - \frac{5}{7}x_{4} + \frac{10}{7}x_{5} - \frac{1}{7}x_{7} = \frac{50}{7}$$

$$\frac{2}{7}x_{1} + x_{3} + \frac{12}{7}x_{4} - \frac{3}{7}x_{5} + \frac{1}{7}x_{7} = \frac{55}{7}$$

$$-\frac{6}{7}x_{2} + \frac{13}{7}x_{4} - \frac{61}{7}x_{5} + x_{6} + \frac{4}{7}x_{7} = \frac{325}{7}$$

- Since no nonbasic variable has a negative coefficient in the equation associated with basic variable x_0 (the value of the objective function), we terminate
- The maximum value of the objective function is $\frac{695}{7}$ and is attained with $x_1=\frac{50}{7}$, $x_3=\frac{55}{7}$, and $x_6=\frac{325}{7}$

The Dual of a Linear Program

- Suppose we are given a linear program in standard from, i.e., maximize c^Tx subject to $Ax \leq b$ and $x \geq 0$
 - When discussing the dual of such an LP, we normally refer to the LP itself as the *primal*
- The dual problem is to minimize y^Tb subject to $A^Ty \geq c$ and $y \geq 0$
 - Note that the dual problem is itself an LP, and can be written in standard form as "maximize $-y^Tb=-b^Ty$ subject to $(-A)^Ty\leq -c$ and $y\geq 0$
 - Note that the dual of the dual is to minimize $z^T(-c)=c^Tz$ subject to $(-A)z\geq b$ and $z\geq 0$, which is equivalent to the primal, i.e., the dual of the dual is the primal

Back to the Running Example

• The dual of the example LP given earlier is to minimize $15y_1 + 120y_2 + 100y_3$ subject to

$$y_1 + 7y_2 + 3y_3 \ge 4$$
$$y_1 + 5y_2 + 5y_3 \ge 5$$
$$y_1 + 3y_2 + 10y_3 \ge 9$$
$$y_1 + 2y_2 + 15y_3 \ge 11$$

and
$$y_i \ge 0$$
, $1 \le i \le 3$

Back to the Running Example

- \bullet The optimal values of the dual variables are $y_1^*=\frac{13}{7}$, $y_2^*=0$, and $y_3^*=\frac{5}{7}$
 - These correspond to the coefficients associated with the slack variables x_5 , x_6 , and x_7 in the final equation associated with x_0 (see the example simplex execution considered earlier)
- The optimal value of the dual objective is $\frac{695}{7}$, which is the same as the optimal value we found earlier for the primal objective

Weak Duality Theorem

- Primal: Maximize $c^T x$ subject to $Ax \leq b$ and $x \geq 0$
- Dual: Minimize $y^T b$ subject to $A^T y \ge c$ and $y \ge 0$
- \bullet Suppose that x^* is a feasible solution to the primal, i.e., $Ax^* \leq b$ and $x^* \geq 0$
- Further assume that y^* is a feasible solution to the dual, i.e., $A^Ty^* \geq c$ and $y^* \geq 0$
- Then $c^Tx^* \leq (y^*)^Tb$, i.e., the value of the primal objective is at most that of the dual objective
- Proof: Note that $(A^Ty)^T = y^TA$, so $(y^*)^TA \ge c^T$; since x^* and y^* are nonnegative, we conclude that

$$c^T x^* \le (y^*)^T A x^* \le (y^*)^T b$$

Weak Duality Theorem: Corollary

- Primal: Maximize $c^T x$ subject to $Ax \leq b$ and $x \geq 0$
- Dual: Minimize $y^T b$ subject to $A^T y \ge c$ and $y \ge 0$
- Suppose that x^* is a feasible solution to the primal, y^* is a feasible solution to the dual, and $c^Tx^*=(y^*)^Tb$
- ullet Then x^* is an optimal solution to the primal and y^* is an optimal solution to the dual

Strong Duality

- Primal: Maximize $c^T x$ subject to $Ax \leq b$ and $x \geq 0$
- Dual: Minimize $y^T b$ subject to $A^T y \ge c$ and $y \ge 0$
- If there is a finite optimal value for the primal, then the dual has the same finite optimal value
- If the optimal solution to the primal is unbounded, then the dual is infeasible