Regular Expressions

Greg Plaxton
Theory in Programming Practice, Fall 2005
Department of Computer Science
University of Texas at Austin

What is a Regular Expression?

- A regular expression defines a (possibly infinite) set of strings over a given alphabet
- Analogous to an arithmetic expression
 - The symbols of the alphabet are analogous to the numerical constants in an arithmetic expression
 - Instead of arithmetic operators such as addition, multiplication, and exponentiation, the operators are concatenation, union, and closure

Regular Expressions: Syntax

- The symbols \emptyset (empty set), ϵ (empty string), and any symbol of the alphabet are regular expressions
- For any regular expressions p and q, (pq) (concatenation) and $(p \mid q)$ (union) are regular expressions
- For any regular expression p, p^* (Kleene closure) is a regular expression

Regular Expressions: Semantics

- ullet The regular expression \emptyset corresponds to the empty set of strings
- The regular expression ϵ corresponds to the set of strings $\{\epsilon\}$
- For any symbol a in the alphabet, the regular expression a corresponds to the set of strings $\{a\}$
- For any regular expressions p and q with corresponding sets of strings X and Y, the regular expression (pq) (resp., $(p \mid q)$) denotes the set of strings $\{xy \mid x \in X \land y \in Y\}$ (resp., $X \cup Y$)
- For any regular expression p with corresponding set of strings X, the regular expression p^* denotes the set of strings

$$\{x_1x_2\cdots x_k\mid k\geq 0 \land \langle \forall i:1\leq i\leq k:x_i\in X\rangle\}$$

Regular Expressions: Parenthesization

- When writing a regular expression, we generally try to omit as many parentheses as possible without altering the meaning of the expression
- Where parentheses are omitted, Kleene closure has the highest binding power, then concatenation, then union
 - Parentheses may be omitted whenever this convention yields the intended parenthesization
- Note that concatenation and union are associative
 - These facts often enable us to drop parentheses, e.g., we can write abc instead of ((ab)c)

A Remark on Kleene Closure

One can think of Kleene closure as follows:

$$p^* = \epsilon \mid p \mid pp \mid ppp \mid \dots$$

- The RHS above is not a regular expression because it has an infinite number of terms
 - It is straightforward to prove by induction that every regular expression has a finite length
- The motivation for introducing the Kleene closure operator is to make the above RHS into a regular expression

Regular Expressions: Examples

- What is the set of strings corresponding to the regular expression $a \mid bc^*d?$
- It is often convenient to introduce identifiers to stand for certain regular expressions and then to use these identifiers as a shorthand for building up more complex regular expressions
 - PosDigit = 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
 - $Digit = 0 \mid PosDigit$
 - $Natural = 0 \mid PosDigit Digit^*$
- The set of strings over the lowercase English alphabet containing all five vowels in order corresponds to the regular expression

$$(Letter^*)a(Letter^*)e(Letter^*)i(Letter^*)o(Letter^*)u(Letter^*)$$

where

$$Letter = a \mid b \mid c \mid \dots \mid z$$

A More Elaborate Example

- ullet For any binary string x, let f(x) denote the nonnegative integer corresponding to x
 - Example: If x = 00110, then f(x) = 6
- Problem: Construct a regular expression corresponding to the set of all binary strings x such that f(x) is a multiple of 3
 - We first inductively define the sets B_0 , B_1 , and B_2 of all binary strings x such that f(x) is congruent to 0, 1, and 2, respectively, modulo 3
 - We then deduce a regular expression for B_0

Inductive Definition of Sets B_0 , B_1 , and B_2

- (0) The empty string belongs to B_0
- (1) For any binary string x in B_0 , x0 belongs to B_0 and x1 belongs to B_1
- (2) For any binary string x in B_1 , x0 belongs to B_2 and x1 belongs to B_0
- (3) For any binary string x in B_2 , x0 belongs to B_1 and x1 belongs to B_2

Characterization of B_2 in Terms of B_1

- By (2) and (3), any binary string in B_2 is either of the form x0 where x belongs to B_1 , or is of the form x1 where x belongs to B_2
- It follows that B_2 consists of all binary strings of the form $x01^*$ where x belongs to B_1

Characterization of B_1 in terms of B_0

- By (1), (3), and the preceding characterization of B_2 , any binary string in B_1 is either of the form x1 where x belongs to B_0 , or is of the form x01*0 where x belongs to B_1
- It follows that B_1 consists of all binary strings of the form $x1(01^*0)^*$ where x belongs to B_0

Deducing a Regular Expression for B_0

- By (0), (1), (2), and the preceding characterization of B_1 , the set B_0 consists of the empty string, all binary strings of the form x0 where x belongs to B_0 , and all binary strings of the form x1(01*0)*1 where x belongs to B_0
- It follows that B_0 consists of all binary strings of the form

$$(0 \mid 1(01^*0)^*1)^*$$

Remark: Alternative View of the Preceding Example

ullet The binary strings in B_0 may be viewed as being generated by the grammar

$$S \longrightarrow B_0$$

$$B_0 \longrightarrow \epsilon \mid B_0 0 \mid B_1 1$$

$$B_1 \longrightarrow B_0 1 \mid B_2 0$$

$$B_2 \longrightarrow B_1 0 \mid B_2 1$$

- As we have seen, the above grammar generates a regular language
- Not all grammars generate regular languages