# String Matching: Boyer-Moore Algorithm 

Greg Plaxton<br>Theory in Programming Practice, Fall 2005<br>Department of Computer Science<br>University of Texas at Austin

## The (Exact) String Matching Problem

- Given a text string $t$ and a pattern string $p$, find all occurrences of $p$ in $t$


## Three Efficient String Matching Algorithms

- Rabin-Karp
- This is a simple randomized algorithm that tends to run in linear time in most scenarios of practical interest
- The worst case running time is as bad as that of the naive algorithm, i.e., $\Theta(\bar{p} \cdot \bar{t})$
- Knuth-Morris-Pratt
- The worst case running time of this algorithm is linear, i.e., $O(\bar{p}+\bar{t})$
- Boyer-Moore (this lecture and the next)
- This algorithm tends to have the best performance in practice, as it often runs in sublinear time
- The worst case running time is as bad as that of the naive algorithm


## Boyer-Moore String Matching Algorithm

- At any moment, imagine that the pattern is aligned with a portion of the text of the same length, though only a part of the aligned text may have been matched with the pattern
- Henceforth, alignment refers to the substring of $t$ that is aligned with $p$ and $l$ is the index of the left end of the alignment; i.e., $p[0]$ is aligned with $t[l]$ and, in general, $p[i], 0 \leq i<m$, with $t[l+i]$
- Whenever there is a mismatch, the pattern is shifted to the right, i.e., $l$ is increased, as explained in the following sections


## Algorithm Outline

- The overall structure of the program is a loop that has the invariant Q1: Every occurrence of $p$ in $t$ that starts before $l$ has been recorded
- The following loop records every occurrence of $p$ in $t$ eventually

```
\(l:=0 ;\)
\{ Q1 \}
loop
    \{ Q1 \}
    "increase \(l\) while preserving Q1"
endloop
```


## The Variable $j$

- Next, we show how to increase $l$ while preserving Q1
- We introduce variable $j, 0 \leq j<m$, with the meaning that the suffix of $p$ starting at position $j$ matches the corresponding portion of the alignment

$$
\text { Q2: } 0 \leq j \leq m, p[j . m]=t[l+j . l l+m]
$$

- Thus, the whole pattern is matched when $j=0$, and no part has been matched when $j=m$


## A Refinement of the Previous Algorithm

- We establish Q2 by setting $j$ to $m$
- We match the symbols from right to left of the pattern until we find a mismatch or the whole pattern is matched

```
\(j:=m ;\)
\{ Q2 \}
while \(j>0 \wedge p[j-1]=t[l+j-1]\) do \(j:=j-1\) endwhile
\(\{\mathrm{Q} 1 \wedge \mathrm{Q} 2 \wedge(j=0 \vee p[j-1] \neq t[l+j-1])\}\)
if \(j=0\)
    then \(\{\mathrm{Q} 1 \wedge \mathrm{Q} 2 \wedge j=0\}\) record a match at \(l ; l:=l^{\prime}\{\mathrm{Q} 1\}\)
    else \(\{\mathrm{Q} 1 \wedge \mathrm{Q} 2 \wedge j>0 \wedge p[j-1] \neq t[l+j-1]\} l:=l^{\prime \prime}\{\mathrm{Q} 1\}\)
endif
\{Q1 \}
```

- How do we compute $l^{\prime}$ and $l^{\prime \prime}$ ?


## Computation of $l^{\prime}$

- This turns out to be essentially a special case of the computation of $l^{\prime \prime}$
- So we focus primarily on the computation of $l^{\prime \prime}$ in the presentation that follows


## Computation of $l^{\prime \prime}$

- The precondition for the computation of $l^{\prime \prime}$ is,

$$
\mathrm{Q} 1 \wedge \mathrm{Q} 2 \wedge j>0 \wedge p[j-1] \neq t[l+j-1] .
$$

- We consider two heuristics, each of which can be used to calculate a value of $l^{\prime \prime}$; the greater value is assigned to $l$
- The first heuristic, called the bad symbol heuristic, exploits the fact that we have a mismatch at position $j-1$ of the pattern
- The second heuristic, called the good suffix heuristic, uses the fact that we have matched a (possibly empty) suffix of $p$ with the suffix of the alignment, i.e., $p[j . . m]=t[l+j . . l+m]$.


## The Bad Symbol Heuristic: Easy Case

- Suppose we have the pattern "attendance" that we have aligned against a portion of the text whose suffix is "hce", as shown below

- The suffix "ce" has been matched; the symbols ' $h$ ' and ' $n$ ' do not match
- There is no ' $h$ ' in the pattern, so no match can include this ' $h$ ' of the text
- Hence, the pattern may be shifted to the symbol following 'h' in the text, as shown by align above


## The Bad Symbol Heuristic: The More Interesting Case

- Next, suppose the mismatched symbol in the text is ' t ', as shown below

| text | - | - | - | - | - | - | - | t | c | e |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| pattern | a | t | t | e | n | d | a | n | c | e |

- There are two ways to align the ' t ' in the pattern with a ' t ' in the text

$$
\begin{array}{lll|l|llllllll}
\text { text } & - & - & \mathrm{t} & \mathrm{c} & \mathrm{e} & - & - & - & - & - & - \\
\operatorname{align1} & \mathrm{a} & \mathrm{t} & \mathrm{t} & \mathrm{e} & \mathrm{n} & \mathrm{~d} & \mathrm{a} & \mathrm{n} & \mathrm{c} & \mathrm{e} & \\
\operatorname{align2} & & \mathrm{a} & \mathrm{t} & \mathrm{t} & \mathrm{e} & \mathrm{n} & \mathrm{~d} & \mathrm{a} & \mathrm{n} & \mathrm{c} & \mathrm{e}
\end{array}
$$

- Which alignment should we choose?


## Minimum Shift Rule

- Rule: Shift the pattern by the minimum allowable amount
- Justification: Preservation of Q1
- We never skip over a possible match following this rule, because no smaller shift yields a match at the given position, and, hence no full match
- So, in the example of the previous slide, we should use align1


## Motivation for the Minimum Shift Rule: Example

- In this example, the leftmost symbol ' $y$ ' of the pattern "xxy" fails to match the text symbol ' $x$ '

$$
\begin{array}{lll|l|ll}
\text { text } & - & - & \mathrm{x} & - & - \\
\text { pattern } & \mathrm{x} & \mathrm{x} & \mathrm{y} & & \\
\text { align1 } & & \mathrm{x} & \mathrm{x} & \mathrm{y} & \\
\text { align2 } & & & \mathrm{x} & \mathrm{x} & \mathrm{y}
\end{array}
$$

- If we were to advance to alignment align2, we might skip a match in position in align1, violating invariant Q1


## Bad Symbol Heuristic: Implementation

- For each symbol in the alphabet, we precalculate its rightmost position in the pattern
- if the mismatched symbol's rightmost occurrence in the pattern is at $p[k]$, then $p[0]$ is aligned with $t[l-k+j-1]$, or $l$ is increased by $-k+j-1$
- For a nonexistent symbol in the pattern, like 'h', we set its rightmost occurrence to -1 so that $l$ is increased to $l+j$, as required
- Note that the shift $-k+j-1$ is negative if $k>j-1$, which can easily occur
- But the good suffix heuristic always yields a positive increment for $l$, so the maximum of these two increments is positive


## The Good Suffix Heuristic

- Suppose we have a pattern "abxabyab" of which we have already matched the suffix "ab", but there is a mismatch with the preceding symbol 'y', as shown below

$$
\begin{array}{lllllll|ll|ll}
\text { text } & - & - & - & - & - & \mathrm{z} & \mathrm{a} & \mathrm{~b} & - & - \\
\text { pattern } & \mathrm{a} & \mathrm{~b} & \mathrm{x} & \mathrm{a} & \mathrm{~b} & \mathrm{y} & \mathrm{a} & \mathrm{~b} &
\end{array}
$$

- Then, we shift the pattern to the right so that the matched part is occupied by the same symbols, "ab"; this is possible only if there is another occurrence of "ab" in the pattern


## Case 1: The Matched Suffix Occurs Elsewhere in the Pattern

- For the pattern of the previous slide, the matched portion "ab" occurs in two other places
- Thus there are two possible alignments to consider, as shown below

$$
\begin{array}{llll|ll|llllll}
\operatorname{text} & - & - & \mathrm{z} & \mathrm{a} & \mathrm{~b} & - & - & - & - & - & - \\
\operatorname{align} 1 & \mathrm{a} & \mathrm{~b} & \mathrm{x} & \mathrm{a} & \mathrm{~b} & \mathrm{y} & \mathrm{a} & \mathrm{~b} & & & \\
\operatorname{align2} & & & & \mathrm{a} & \mathrm{~b} & \mathrm{x} & \mathrm{a} & \mathrm{~b} & \mathrm{y} & \mathrm{a} & \mathrm{~b}
\end{array}
$$

- By the minimum shift rule, we select align1


## Case 2: The Matched Suffix Does Not Occur Elsewhere

- No complete match of the suffix $s$ is possible if $s$ does not occur elsewhere in $p$
- This possibility is shown in the example below, where $s$ is "xab"

| text | - | y | x | a | b | - | - | - |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| pattern | a | b | x | a | b |  |  |  |
| align |  |  |  | a | b | x | a | b |

- In this case, the best that can be done is to match with a suffix of "xab" that is also a prefix of $p$
- In the example above, "ab" is a suffix of $s$ (and hence also a suffix of $p$ ) that is also a prefix of $p$


## Good Suffix Heuristic

- Let $s$ denote the matched suffix and let

$$
\begin{aligned}
R= & \{r \text { is a proper prefix of } p \wedge \\
& (r \text { is a suffix of } s \vee s \text { is a suffix of } r)\}
\end{aligned}
$$

- The good suffix heuristic aligns an $r$ in $R$ with the end of the previous alignment
- According to the minimum shift rule, the amount $b(s)$ by which the pattern is shifted is

$$
b(s)=\min \{\bar{p}-\bar{r} \mid r \in R\}
$$

- Next time we will develop an efficient algorithm for computing $b(s)$


## Updating $l$ : Summary

- In the algorithm outlined earlier, we have two assignments to $l$
$-l:=l^{\prime}$, when the whole pattern has matched
$-l:=l^{\prime \prime}$, when $p[j . . \bar{p}]=t[l+j . . l+\bar{p}]$ and $p[j-1] \neq t[l+j-1]$
- These assignments are implemented as follows
$-l:=l^{\prime}$ is implemented by $l:=l+b(p)$
$-l:=l^{\prime \prime}$ is implemented by $l:=l+\max (b(s), j-1-r t(h))$, where $s=p[j . . \bar{p}], h=t[l+j-1]$, and $r t(h)$ is the index of the rightmost occurrence of $h$ in $p$ (or -1 if $h$ does not occur in $p$ )

