
String Matching: Boyer-Moore Algorithm

Greg Plaxton
Theory in Programming Practice, Fall 2005

Department of Computer Science
University of Texas at Austin



The (Exact) String Matching Problem

• Given a text string t and a pattern string p, find all occurrences of p in
t

Theory in Programming Practice, Plaxton, Fall 2005



Three Efficient String Matching Algorithms

• Rabin-Karp

– This is a simple randomized algorithm that tends to run in linear
time in most scenarios of practical interest

– The worst case running time is as bad as that of the naive algorithm,
i.e., Θ(p · t)

• Knuth-Morris-Pratt

– The worst case running time of this algorithm is linear, i.e., O(p+ t)

• Boyer-Moore (this lecture and the next)

– This algorithm tends to have the best performance in practice, as it
often runs in sublinear time

– The worst case running time is as bad as that of the naive algorithm

Theory in Programming Practice, Plaxton, Fall 2005



Boyer-Moore String Matching Algorithm

• At any moment, imagine that the pattern is aligned with a portion of
the text of the same length, though only a part of the aligned text may
have been matched with the pattern

• Henceforth, alignment refers to the substring of t that is aligned with
p and l is the index of the left end of the alignment; i.e., p[0] is aligned
with t[l] and, in general, p[i], 0 ≤ i < m, with t[l + i]

• Whenever there is a mismatch, the pattern is shifted to the right, i.e.,
l is increased, as explained in the following sections

Theory in Programming Practice, Plaxton, Fall 2005



Algorithm Outline

• The overall structure of the program is a loop that has the invariant
Q1: Every occurrence of p in t that starts before l has been recorded

• The following loop records every occurrence of p in t eventually

l := 0;
{ Q1 }
loop
{ Q1 }
“increase l while preserving Q1”

endloop

Theory in Programming Practice, Plaxton, Fall 2005



The Variable j

• Next, we show how to increase l while preserving Q1

• We introduce variable j, 0 ≤ j < m, with the meaning that the suffix
of p starting at position j matches the corresponding portion of the
alignment

Q2: 0 ≤ j ≤ m, p[j..m] = t[l + j..l + m]

• Thus, the whole pattern is matched when j = 0, and no part has been
matched when j = m

Theory in Programming Practice, Plaxton, Fall 2005



A Refinement of the Previous Algorithm

• We establish Q2 by setting j to m

• We match the symbols from right to left of the pattern until we find a
mismatch or the whole pattern is matched

j := m;

{ Q2 }
while j > 0 ∧ p[j − 1] = t[l + j − 1] do j := j − 1 endwhile
{ Q1 ∧ Q2 ∧ (j = 0 ∨ p[j − 1] 6= t[l + j − 1]) }
if j = 0

then { Q1 ∧ Q2 ∧ j = 0 } record a match at l; l := l′ { Q1 }
else { Q1 ∧ Q2 ∧ j > 0 ∧ p[j − 1] 6= t[l + j − 1] } l := l′′{ Q1 }

endif
{ Q1 }

• How do we compute l′ and l′′?

Theory in Programming Practice, Plaxton, Fall 2005



Computation of l′

• This turns out to be essentially a special case of the computation of l′′

• So we focus primarily on the computation of l′′ in the presentation that
follows

Theory in Programming Practice, Plaxton, Fall 2005



Computation of l′′

• The precondition for the computation of l′′ is,

Q1 ∧ Q2 ∧ j > 0 ∧ p[j − 1] 6= t[l + j − 1].

• We consider two heuristics, each of which can be used to calculate a
value of l′′; the greater value is assigned to l

– The first heuristic, called the bad symbol heuristic, exploits the fact
that we have a mismatch at position j − 1 of the pattern

– The second heuristic, called the good suffix heuristic, uses the fact
that we have matched a (possibly empty) suffix of p with the suffix
of the alignment, i.e., p[j..m] = t[l + j..l + m].

Theory in Programming Practice, Plaxton, Fall 2005



The Bad Symbol Heuristic: Easy Case

• Suppose we have the pattern “attendance” that we have aligned against
a portion of the text whose suffix is “hce”, as shown below

text - - - - - - - h c e

pattern a t t e n d a n c e

align a t t e n d a n c e

• The suffix “ce” has been matched; the symbols ’h’ and ’n’ do not
match

• There is no ’h’ in the pattern, so no match can include this ’h’ of the
text

• Hence, the pattern may be shifted to the symbol following ’h’ in the
text, as shown by align above

Theory in Programming Practice, Plaxton, Fall 2005



The Bad Symbol Heuristic: The More Interesting Case

• Next, suppose the mismatched symbol in the text is ’t’, as shown below

text - - - - - - - t c e
pattern a t t e n d a n c e

• There are two ways to align the ’t’ in the pattern with a ’t’ in the text

text - - t c e - - - - - -
align1 a t t e n d a n c e
align2 a t t e n d a n c e

• Which alignment should we choose?

Theory in Programming Practice, Plaxton, Fall 2005



Minimum Shift Rule

• Rule: Shift the pattern by the minimum allowable amount

• Justification: Preservation of Q1

– We never skip over a possible match following this rule, because no
smaller shift yields a match at the given position, and, hence no full
match

• So, in the example of the previous slide, we should use align1

Theory in Programming Practice, Plaxton, Fall 2005



Motivation for the Minimum Shift Rule: Example

• In this example, the leftmost symbol ’y’ of the pattern “xxy” fails to
match the text symbol ’x’

text - - x - -
pattern x x y
align1 x x y
align2 x x y

• If we were to advance to alignment align2 , we might skip a match in
position in align1 , violating invariant Q1

Theory in Programming Practice, Plaxton, Fall 2005



Bad Symbol Heuristic: Implementation

• For each symbol in the alphabet, we precalculate its rightmost position
in the pattern

• if the mismatched symbol’s rightmost occurrence in the pattern is at
p[k], then p[0] is aligned with t[l − k + j − 1], or l is increased by
−k + j − 1

• For a nonexistent symbol in the pattern, like ’h’, we set its rightmost
occurrence to −1 so that l is increased to l + j, as required

• Note that the shift −k + j−1 is negative if k > j−1, which can easily
occur

– But the good suffix heuristic always yields a positive increment for l,
so the maximum of these two increments is positive

Theory in Programming Practice, Plaxton, Fall 2005



The Good Suffix Heuristic

• Suppose we have a pattern “abxabyab” of which we have already
matched the suffix “ab”, but there is a mismatch with the preceding
symbol ’y’, as shown below

text - - - - - z a b - -
pattern a b x a b y a b

• Then, we shift the pattern to the right so that the matched part is
occupied by the same symbols, “ab”; this is possible only if there is
another occurrence of “ab” in the pattern

Theory in Programming Practice, Plaxton, Fall 2005



Case 1: The Matched Suffix Occurs Elsewhere in the
Pattern

• For the pattern of the previous slide, the matched portion “ab” occurs
in two other places

• Thus there are two possible alignments to consider, as shown below

text - - z a b - - - - - -
align1 a b x a b y a b
align2 a b x a b y a b

• By the minimum shift rule, we select align1

Theory in Programming Practice, Plaxton, Fall 2005



Case 2: The Matched Suffix Does Not Occur Elsewhere

• No complete match of the suffix s is possible if s does not occur
elsewhere in p

• This possibility is shown in the example below, where s is “xab”

text - y x a b - - -
pattern a b x a b
align a b x a b

• In this case, the best that can be done is to match with a suffix of
“xab” that is also a prefix of p

• In the example above, “ab” is a suffix of s (and hence also a suffix of
p) that is also a prefix of p

Theory in Programming Practice, Plaxton, Fall 2005



Good Suffix Heuristic

• Let s denote the matched suffix and let

R = {r is a proper prefix of p ∧
(r is a suffix of s ∨ s is a suffix of r)}

• The good suffix heuristic aligns an r in R with the end of the previous
alignment

• According to the minimum shift rule, the amount b(s) by which the
pattern is shifted is

b(s) = min{p− r | r ∈ R}
• Next time we will develop an efficient algorithm for computing b(s)

Theory in Programming Practice, Plaxton, Fall 2005



Updating l: Summary

• In the algorithm outlined earlier, we have two assignments to l

– l := l′, when the whole pattern has matched

– l := l′′, when p[j..p] = t[l + j..l + p] and p[j − 1] 6= t[l + j − 1]

• These assignments are implemented as follows

– l := l′ is implemented by l := l + b(p)

– l := l′′ is implemented by l := l + max(b(s), j − 1 − rt(h)), where
s = p[j..p], h = t[l + j − 1], and rt(h) is the index of the rightmost
occurrence of h in p (or −1 if h does not occur in p)

Theory in Programming Practice, Plaxton, Fall 2005


