String Matching: Boyer-Moore Algorithm

Greg Plaxton
Theory in Programming Practice, Fall 2005
Department of Computer Science
University of Texas at Austin

The (Exact) String Matching Problem

e Given a text string t and a pattern string p, find all occurrences of p in
t

Theory in Programming Practice, Plaxton, Fall 2005

Three Efficient String Matching Algorithms

e Rabin-Karp

— This is a simple randomized algorithm that tends to run in linear
time in most scenarios of practical interest

— The worst case running time is as bad as that of the naive algorithm,
ie., O(p-t)
e Knuth-Morris-Pratt

— The worst case running time of this algorithm is linear, i.e., O(p+1)

e Boyer-Moore (this lecture and the next)

— This algorithm tends to have the best performance in practice, as it
often runs in sublinear time

— The worst case running time is as bad as that of the naive algorithm

Theory in Programming Practice, Plaxton, Fall 2005

Boyer-Moore String Matching Algorithm

e At any moment, imagine that the pattern is aligned with a portion of
the text of the same length, though only a part of the aligned text may
have been matched with the pattern

e Henceforth, alignment refers to the substring of ¢ that is aligned with
p and [is the index of the left end of the alignment; i.e., p[0] is aligned
with ¢[l] and, in general, pli], 0 < i < m, with t[l +]

e Whenever there is a mismatch, the pattern is shifted to the right, i.e.,
[is increased, as explained in the following sections

Theory in Programming Practice, Plaxton, Fall 2005

Algorithm Outline

e The overall structure of the program is a loop that has the invariant
Q1: Every occurrence of p in t that starts before [has been recorded

e The following loop records every occurrence of p in t eventually

[.= 0;
{Q1}

loop

{ QL }
“increase [while preserving Q1"
endloop

Theory in Programming Practice, Plaxton, Fall 2005

The Variable ;

e Next, we show how to increase [while preserving Q1

e We introduce variable 5, 0 < 5 < m, with the meaning that the suffix
of p starting at position 7 matches the corresponding portion of the

alignment

Q2: 0 < j<m,plj..m]=t{l+j.l+m)]

e Thus, the whole pattern is matched when 7 = 0, and no part has been
matched when 7 = m

Theory in Programming Practice, Plaxton, Fall 2005

A Refinement of the Previous Algorithm

e We establish Q2 by setting 7 to m

e We match the symbols from right to left of the pattern until we find a
mismatch or the whole pattern is matched

] = m;

{Q2}

while j >0 A p[j — 1] =t[ll4+ 7 — 1] do j:= j — 1 endwhile
{QAAQ@QA(G=0Vplj—1]#t[l+j—-1])}

if j =0

then { QLAQ2A j =0 } recordamatchati;l:=1"{Ql}

else {QLAQAF >0 Aplj—1]#tll+75—-1]}1:=1"{Q1}
endif

{ QL }

e How do we compute !” and "7

Theory in Programming Practice, Plaxton, Fall 2005

Computation of [’

e This turns out to be essentially a special case of the computation of [”

e So we focus primarily on the computation of I” in the presentation that
follows

Theory in Programming Practice, Plaxton, Fall 2005

Computation of [”

e The precondition for the computation of " is,
QLAQAG>0 A plj—1] £l +4—1].
e \We consider two heuristics, each of which can be used to calculate a
value of I”; the greater value is assigned to [

— The first heuristic, called the bad symbol heuristic, exploits the fact
that we have a mismatch at position 5 — 1 of the pattern

— The second heuristic, called the good suffix heuristic, uses the fact
that we have matched a (possibly empty) suffix of p with the suffix
of the alignment, i.e., p[j..m| = t[{l + j..l + m].

Theory in Programming Practice, Plaxton, Fall 2005

The Bad Symbol Heuristic: Easy Case

Suppose we have the pattern “attendance” that we have aligned against
a portion of the text whose suffix is “hce”, as shown below

text - - - - - - - 1h
patterm a t t e n d a|n
align a t t e n d a n c

The suffix “ce” has been matched; the symbols 'h’ and 'n" do not
match

There is no 'h' in the pattern, so no match can include this 'h’ of the
text

Hence, the pattern may be shifted to the symbol following 'h" in the
text, as shown by align above

Theory in Programming Practice, Plaxton, Fall 2005

The Bad Symbol Heuristic: The More Interesting Case

e Next, suppose the mismatched symbol in the text is 't’, as shown below

text - - - -

- T
patterm a t t e n d a

n

cC €
cC €

e There are two ways to align the 't’ in the pattern with a 't" in the text

test - - |t]c - - - .
alignl a t |t|e n d a e
align?2 a|t|t n d a n c e

e Which alignment should we choose?

Theory in Programming Practice, Plaxton, Fall 2005

Minimum Shift Rule

e Rule: Shift the pattern by the minimum allowable amount

e Justification: Preservation of Q1

— We never skip over a possible match following this rule, because no
smaller shift yields a match at the given position, and, hence no full
match

e So, in the example of the previous slide, we should use align1

Theory in Programming Practice, Plaxton, Fall 2005

Motivation for the Minimum Shift Rule: Example

e In this example, the leftmost symbol 'y’ of the pattern “xxy” fails to
match the text symbol "X’

text - - x|- -
pattern X X |V

align1 X | x|y
align? X | X Yy

e |f we were to advance to alignment align2, we might skip a match in
position in alignl, violating invariant Q1

Theory in Programming Practice, Plaxton, Fall 2005

Bad Symbol Heuristic: Implementation

For each symbol in the alphabet, we precalculate its rightmost position
in the pattern

if the mismatched symbol’s rightmost occurrence in the pattern is at
plk], then p[0] is aligned with ¢[l — k + 57 — 1], or [is increased by
—k+7—1

For a nonexistent symbol in the pattern, like 'h’, we set its rightmost
occurrence to —1 so that [is increased to [+ j, as required

Note that the shift —k+ 7 — 1 is negative if £ > 5 — 1, which can easily
occur

— But the good suffix heuristic always yields a positive increment for [,
so the maximum of these two increments is positive

Theory in Programming Practice, Plaxton, Fall 2005

The Good Suffix Heuristic

e Suppose we have a pattern “abxabyab” of which we have already
matched the suffix “ab”, but there is a mismatch with the preceding
symbol 'y’, as shown below

text - - - - - Z
pattern. a b x a b

ab‘——

e Then, we shift the pattern to the right so that the matched part is
occupied by the same symbols, “ab”; this is possible only if there is
another occurrence of “ab” in the pattern

Theory in Programming Practice, Plaxton, Fall 2005

Case 1: The Matched Suffix Occurs Elsewhere in the
Pattern

e For the pattern of the previous slide, the matched portion “ab” occurs
in two other places

e Thus there are two possible alignments to consider, as shown below

text - - zl|a bl- - - - - -
alignl a b x|a b |y a b
align?2 a b|x a b y a b

e By the minimum shift rule, we select align1

Theory in Programming Practice, Plaxton, Fall 2005

Case 2: The Matched Suffix Does Not Occur Elsewhere

e No complete match of the suffix s is possible if s does not occur
elsewhere in p

e This possibility is shown in the example below, where s is “xab”

text - y|x a bl|- - -
pattern a b | x a b
align a b|lx a b

e In this case, the best that can be done is to match with a suffix of
“xab” that is also a prefix of p

e In the example above, “ab” is a suffix of s (and hence also a suffix of
p) that is also a prefix of p

Theory in Programming Practice, Plaxton, Fall 2005

Good Suffix Heuristic

Let s denote the matched suffix and let

R = {r is a proper prefix of p A
(r is a suffix of s V s is a suffix of r)}

The good suffix heuristic aligns an r in R with the end of the previous
alignment

According to the minimum shift rule, the amount b(s) by which the
pattern is shifted is

b(s) =min{p —7 | r € R}

Next time we will develop an efficient algorithm for computing b(s)

Theory in Programming Practice, Plaxton, Fall 2005

Updating [: Summary

e In the algorithm outlined earlier, we have two assignments to [
— [:=1’, when the whole pattern has matched

— [:=1", when p[j.p] =t[l+j..l+Pp| and p[j — 1] A t[l +j — 1]

e These assignments are implemented as follows
— [:=1"is implemented by [:= [+ b(p)

— [:=1"is implemented by [:= [4+ max(b(s),j — 1 — rt(h)), where
s = plj..p]l, h =t[l +j — 1], and rt(h) is the index of the rightmost
occurrence of h in p (or —1 if h does not occur in p)

Theory in Programming Practice, Plaxton, Fall 2005

