
Cryptography: RSA Encryption and
Decryption

Greg Plaxton
Theory in Programming Practice, Spring 2005

Department of Computer Science
University of Texas at Austin



Joining the RSA Cryptosystem: Quick Review

• First, Bob randomly chooses two large (e.g., 512-bit) primes p and q

• Then, Bob computes n = pq, φ(n) = (p − 1)(q − 1), and a positive
integer d < n such that d and φ(n) are relatively prime

– For example, any prime exceeding max(p, q) (and less than n) is a
valid choice for d

• Then, Bob computes e such that de is congruent to 1 modulo φ(n)

– Thus e and φ(n) are also relatively prime

• Bob’s public key is (e, n) and Bob’s private key is (d, n)

– Remark: The scheme willl also work if we use (d, n) as the public
key and (e, n) as the private key

Theory in Programming Practice, Plaxton, Spring 2005



RSA Encryption and Decryption

• Choose the highest block size b such that every b-bit number is less
than n

– Thus b is blog2 nc
– For example, if p and q are 512-bit numbers, then b is either 1022

or 1023

• Suppose Alice wants to send a message to Bob

– She partitions the message into a sequence of b-bit blocks (padding
the last block with zeros if necessary)

– Encryption and decryption is done on a per block basis

– Later we’ll discuss some variations of this basic framework

Theory in Programming Practice, Plaxton, Spring 2005



Encryption of a Single Block

• Suppose Alice wants to send message block X to Bob

– The message block X is a b-bit string

– We interpret X as a nonnegative integer in the usual manner, e.g.,
if X is the 5-bit string 00110 then we interpret X as 6

– By our choice of b, X is less than n

• Alice encrypts X by computing the number Y equal to Xe mod n; note
that Y is less than n and thus has at most b′ = 1+dlog2(n−1)e ≤ b+1
bits in its binary representation

• Alice sends Y to Bob

– Alice could send Y as a b′-bit string (i.e., padded with leading zeros
if necessary)

Theory in Programming Practice, Plaxton, Spring 2005



Decryption of a Single Block

• Bob receives encrypted message block Y and would like to recover the
corresponding plaintext message block X

• Bob computes the number Z equal to Y d mod n; note that Z is less
than n

• We claim that Z = X

– Lemma: For any integers a and b, and any positive integer c,
(ab) mod c equals ((a mod c)b) mod c

– It follows that Y d mod n is equal to Xde mod n

– It remains to prove that Xde mod n equals X

Theory in Programming Practice, Plaxton, Spring 2005



Lemma: Xde mod p equals X mod p

• Recall that e was chosen so that de is congruent to 1 modulo φ(n) =
(p− 1)(q − 1)

• Thus de = t(p− 1) + 1 for some nonnegative integer t

• Thus Xde mod p equals

[(
Xp−1 mod p

)t ·X
]

mod p

• By Fermat’s Little Theorem, Xp−1 mod p is equal to 1 for X 6= 0 (if
X = 0, the lemma holds trivially)

• Hence Xde mod p equals X mod p, as desired

Theory in Programming Practice, Plaxton, Spring 2005



Theorem: Xde mod n equals X

• We have just established that Xde −X is a multiple of p

• A symmetric argument shows that Xde −X is a multiple of q

• Thus Xde −X is a multiple of n, i.e., Xde is congruent to X modulo
n

• The claim of the theorem follows since 0 ≤ X < n

Theory in Programming Practice, Plaxton, Spring 2005



Modular Exponentiation

• It remains to show how to compute ab mod c efficiently

• The naive approach is to compute a2, a3, a4, . . . , ab and then compute
the remainder when the last number in this sequence is divided by c

– If b is a 512-bit number, say, the length of this sequence is
astronomical

– Furthermore, the length of each number in the last half, say, of this
sequence is astronomical

• A slightly less naive approach is to observe that we can compute
a mod c, a2 mod c, a3 mod c, a4 mod c,. . . , ab mod c

– This ensures that we are always working with numbers in the range
{0, . . . , c− 1}

– However, the length of the sequence remains astronomical

Theory in Programming Practice, Plaxton, Spring 2005



Fast Exponentiation

• Suppose we want to compute ab, where a and b are nonnegative
integers, using a small number of multiplications

– For the moment, let us ignore any difficulties associated with
multiplying astronomically large numbers

– We’ll simply charge one unit of time for each multiplication

• What is an efficient way to compute ab when b is of the form 2k for
some nonnegative integer k?

• What about the case of general b?

Theory in Programming Practice, Plaxton, Spring 2005



Fast Exponentiation by Repeated Squaring

• Example: Suppose we want to compute ab where b = 35 = 1000112

• We can compute a2, then a4, then a8, then a16, then a17, then a34,
then a35

– Note that 2 = 102, 4 = 1002, 8 = 10002, 16 = 100002, 17 = 100012,
34 = 1000102, 35 = 1000112

• It is often more convenient to examine the bits of b starting with
the low order position and to compute, e.g., (a, a), (a2, a3), (a4, a3),
(a8, a3), (a16, a3), (a32, a35)

– As above, we use a total of seven multiplications

– At each iteration, we examine the low-order bit of b and then shift b
right (dropping the low order bit)

– The loop terminates when b is zero

Theory in Programming Practice, Plaxton, Spring 2005



Fast Modular Exponentiation

• To compute ab mod c, we proceed as on the previous slide (either
method will work), but every time we compute a product we take the
result modulo c

• Example: Suppose we want to compute 1135 mod 13

• Using the first method from the previous slide, we compute 112 mod
13 = 4, 114 mod 13 = 42 mod 13 = 3, 118 mod 13 = 32 mod 13 = 9,
1116 mod 13 = 92 mod 13 = 3, 1117 mod 13 = 3 · 11 mod 13 = 7,
1134 mod 13 = 72 mod 13 = 10, 1135 mod 13 = 10 · 11 mod 13 = 6

• Using the second method, we compute (11, 11), (4, 5), (3, 5), (9, 5),
(3, 5), (9, 6), so once again we get 6 as the answer

Theory in Programming Practice, Plaxton, Spring 2005



Performance of RSA

• A trick that is often used to speed encryption (but not decryption) is
to choose d and e so that e is small

• RSA encryption and decryption is quite fast, but not sufficiently fast
for many high-speed network applications

– Accordingly, RSA is often only used to exchange a secret key

• This secret key is not a one-time pad of the sort we discussed earlier in
a previous lecture

– Recall that such a one-time pad would have to be as large as the
message we intend to transmit

• Instead, the secret key is often used to determine a block cipher
encryption of the data

Theory in Programming Practice, Plaxton, Spring 2005



Block Cipher

• A block cipher is a function that takes two inputs, a plaintext block
and a key, and produces as output a ciphertext block

– The plaintext and ciphertext blocks are normally of the same size
(e.g., 64 bits is common)

– The key may be a different size; in practice, it is often 64 or 128 bits

• A good block cipher must satisfy the following properties:

– Given the key and the plaintext (resp., ciphertext) block, it is easy
for a computer program to determine the corresponding ciphertext
(resp., plaintext) block

– Given a plaintext block M and the corresponding ciphertext block
C, it is computationally hard to determine a key mapping M to C

Theory in Programming Practice, Plaxton, Spring 2005



Block Cipher Encryption Modes

• Assume that the sender and receiver have agreed on a block cipher and
a secret key

• Electronic codebook encryption mode: Just divide the message into
blocks and apply the block cipher to each block

– A serious disadvantage of this scheme is that multiple copies of the
same plaintext block all map to the same ciphertext block

• Cipher block chaining encryption mode:

– The first ciphertext block is computed as above

– For i > 1, the ith ciphertext block is obtained by applying the block
cipher to the XOR of the ith plaintext block and the (i − 1)th
ciphertext block

– How do we decrypt in this case?

• Other encryption modes exist

Theory in Programming Practice, Plaxton, Spring 2005


