
Error Detection and Correction: Parity Check
Code; Bounds Based on Hamming Distance

Greg Plaxton
Theory in Programming Practice, Spring 2005

Department of Computer Science
University of Texas at Austin



Error Detection: A Simple Example

• Suppose bits are occasionally “flipped” in transmission, e.g., the
message 1110001 gets corrupted to 0110011 (two bit flips)

• By using a code with sufficient redundancy, we can hope to
detect/correct such errors, assuming there aren’t too many of them

• For example, suppose we just repeat each bit twice

– If the receiver gets xx, it assumes the bit is x

– If the receiver gets two different bits, it requests retransmission

• The above is an example of an error detecting code (that can detect
one error)

• The code is not considered to be error correcting because retransmission
is necessary

Theory in Programming Practice, Plaxton, Spring 2005



Error Correction: A Simple Example

• Suppose the sender codes each bit x as xxx

• Claim: The receiver can now correct a single error

• How?

• How many errors can be detected?

Theory in Programming Practice, Plaxton, Spring 2005



Parity Check Code

• Commonly used technique for detecting a single flip

• Define the parity of a bit string w as the parity (even or odd) of the
number of 1’s in the binary representation of w

• Assume a fixed block size of k

• A block w is encoded as wa where the value of the “parity bit” a is
chosen so that wa has even parity

– Example: If w = 10101, we send 101011

• If there are an even number of flips in transmission, the receiver gets a
bit string with even parity

• If there are an odd number of flips in transmission, the receiver gets a
bit string with odd parity

Theory in Programming Practice, Plaxton, Spring 2005



Parity Check Code: Decoding

• If the receiver gets a bit string wa with even parity, it assumes that
there were zero flips in transmission and outputs w

– Note that the receiver fails to decode properly if the (even) number
of flips is nonzero

• If the receiver gets a bit string wa with odd parity, it knows that
there were an odd (and hence nonzero) number of flips, so it requests
retransmission

– The receiver never makes a mistake in this case

– Still, it is a bad case because no progress is being made

• Underlying assumption: Flips are rare, so we can tolerate the corruption
of the extremely small fraction of blocks with a nonzero even number
of flips

Theory in Programming Practice, Plaxton, Spring 2005



Parity Check Code: Analysis of a Simple Example

• Note that the bit-duplicating code (where bit a is transmitted as aa)
we discussed earlier is a parity check code

• Suppose we are using this code in an environment where each bit
transmitted is independently flipped with probability 10−6

• Without the code, one bit in a million is corrupted

– We use one bit to encode each bit

• With the code, only about one bit in a trillion is corrupted

– The retransmission rate is negligible, so on average we use slightly
over each bits to encode each bit

Theory in Programming Practice, Plaxton, Spring 2005



Two-Dimensional Parity Check Code

• Generalization of the simple parity check code just presented

• Assume each block of data to be encoded consists of mn bits

• View these bits as being arranged in an m × n array (in row-major
order, say)

• Compute m + n + 1 parity bits

– One for each row, one for each column, and one for the whole
message

• Send mn + m + n + 1 bits (in some fixed order)

• How many errors can be detected?

Theory in Programming Practice, Plaxton, Spring 2005



Hamming-Distance-Based Bounds on Error Correction
and Detection

• Assume we would like to encode each symbol in a given set by a distinct
codeword, where all codewords have the same length k

– For a given k, and some desired level of error correction or detection,
how large a set of symbols can we support?

– It is also interesting to consider variable-sized codewords, but we will
restrict our attention to the simpler scenario of fixed-size codewords

• Theorem: Let S be a set of codewords and let h be the minimum
Hamming distance between any two codewords in S. Then it is possible
to detect any number of errors less than h and to correct any number
of errors less than h/2

Theory in Programming Practice, Plaxton, Spring 2005



Error Detection Bound

• Let S be a set of codewords and let h be the minimum Hamming
distance between any two codewords in S

• Why are we guaranteed to detect any number of errors less than h?

• Is there guaranteed to be a case in which we are unable to detect h
errors?

Theory in Programming Practice, Plaxton, Spring 2005



Error Correction Bound

• Let S be a set of codewords and let h be the minimum Hamming
distance between any two codewords in S

• Why are we guaranteed to be able to correct any number of errors less
than h/2?

• Is there guaranteed to be a case in which we are unable to correct
dh/2e errors?

Theory in Programming Practice, Plaxton, Spring 2005


